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1 Introduction

A topological dynamical system (TDS) is a pair (X, f), where X is a (usually compact)
metric space and f : X — X is a homeomorphism. One of the most well-studied classes
of TDS is the class of shift spaces. Given a (usually finite) set A, the set X C AZ is a
subshift over the alphabet A if it is closed in the product topology and invariant under
the shift map o : X — X defined by o(---x_1.20x1-+) = -+~ x_120.21---. We often
refer to the shift space (X,0) as X, since any subshift is endowed with the action of the
homeomorphism o.

We denote by L£,(X) the set of n-length words which appear in points in X and
let £(X) = U,>0 £n(X). When the underlying shift space X is clear from context, we
frequently write £, and £ instead. For a finite-state shift space (that is, the alphabet A
is finite), the notion of topological entropy for a general TDS can be defined as follows:
Riop(X) = limy, 00 = log | £,,(X)].

Thermodynamic formalism studies the relationship between topological entropy and
measure-theoretic entropy, which is denoted by h,(f) for a measure p in the set M(X)
of f-invariant Borel probability measures on X. The variational principle [2I, Theo-
rem 11.40] is a classical result that relates the topological and measure-theoretic entropy
of a compact dynamical system (X, f):

ht0p<X) = sup hu(f) (1)
neM;(X)
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One prominent question in thermodynamic formalism is the existence and uniqueness
of measures which attain the supremum on the RHS of , called measures of maximal
entropy or MMFEs for short. For finite-state shift spaces, there always exist MMEs by
the weak™ compactness of M,(X), which comes from the compactness and separability
of X. For general TDS, Bowen [I] showed that the specification property guarantees the
existence of a unique MME. A finite-state shift space X has the specification property if
there exists a 7 € Ny such that, for all u,w € L, there exists v € L, so that uvw € L.
Recent progress in extending Bowen’s results, including in the symbolic setting, is surveyed
in [3] and [12].

The situation in the non-compact setting is much more complex. First, there is no
general notion of topological entropy for non-compact TDS. In the symbolic setting, Gure-
vich [7] defined a notion of entropy for irreducible topological Markov shifts. Let A be a
countable (possibly finite) set and let 7" = (t4) 4x4 be a matrix of zeros and ones with no
rows or columns which consist only of zeros. The topological Markov shift (TMS) with
alphabet A and transition matriz T is the shift space

X ={rxcAr:T,,, =1foralicZ}

i Li41
We say that a TMS X is irreducible if its transition matrix T is irreducible; that is, if,
for all a,b € A, there exists n € N so that (7™),, > 1.

Given a TMS X, let Per;(X) denote the set of n-length periodic points in X which
start at a; that is, Per(X) = {x € X : xy = a,0™ = x}. The Gurevich entropy of X is
defined to be ]

ha(X) = limsup — log |Per;, (X)] (2)

n—oo T

for an arbitrary @ € A. Two natural questions arise: is the definition of hg(X) inde-
pendent of choice of a € A and is the limsup on the RHS of a limit? As shown by
Gurevich [7] and later Sarig [18], the answer to the first question is yes if X is irreducible,
and the answer to the second question is yes if X is mizing; that is, if, for all a,b € A,
there exists N € N so that n > N implies (7"), > 1. Further, if X is mixing, the
variational principle holds. [I7] is a comprehensive account of modern thermodynamic
formalism for topological Markov shifts.

In the finite-state case, TMS are known as shifts of finite type or SFTs, and are
the simplest and best-understood example of a finite-state shift space. A SFT has the
specification property if and only if it is mixing. Non-SFT shift spaces with specification
have been known for decades: examples include [-shifts [14] [10] [15, 20] and cocyclic
subshifts [I1]. The natural question about the existence of non-TMS countable-state shift
spaces with specification and their associated thermodynamic properties arises.

Fix a countable-state shift space X. We generalize the finite-state specification prop-
erty to the countable-state setting. Our generalized property is weaker than the one
considered in [8]: it is local rather than global. We prove the following about this prop-
erty.
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Theorem A
1. A TMS X has the specification property if and only if it is mizing.

2. There exist infinitely many non-TMS countable-state shift spaces with the specifica-
tion property.

It is natural to assume that our shift spaces are locally finite; that is, for all a € A, the
sets Bo(X):={be A:ba € L} and F,(X):={be A:abe L} (“B” for “before” and
“F” for “follow”) are finite. Local finiteness is a working assumption in, for example, the
theory of infinite volume limits of the Ising model 6, 5] and certain results for TMS [4]. A
TMS is locally finite if and only if it is locally compact, which is the working assumption
in upcoming work by Climenhaga, Thompson, and Wang.

Let us denote by L£%(X) the set of n-length words which start at @ and can be followed
by a; that is, £2(X) = {w € L(X) : wo = a,wa € L(X)}. If X is a TMS, then one sees
that a word w € £%(X) induces a periodic point z = ww--- € Per(X) and vice versa.
In general, there are more words in £%(X) than points in Per(X) since £%(X) does not
satisfy the free concatenation property for arbitrary shift spaces. We define the Gurevich
entropy of X to be

ha(X) := limsup 1 log | £ (X)].
n—oo TN
This definition is novel and extends the definition of Gurevich to any countable-state shift
space. We show the following.

Theorem B If X is a locally finite countable-state shift with specification, then the def-
inition of hg(X) is independent of choice of a € A and the limsup in the definition of
ha(X) is a limit.

Theorem C If X is a locally finite countable-state shift space with specification, then the
variational principle holds; that is,

ha(X)= sup hy(o).
HEMo(X)

These theorems indicate that our setting is apt for developing the theory of equilib-
rium states. We hope to do so in future work. TMS can be used to code more complicated
dynamical systems and gain information about their thermodynamic properties, for exam-
ple, [2]. We hope that developing thermodynamic formalism in our setting will allow us to
mimic previously-used codings into shift spaces with specification in the countable-state
setting, for example, [16].

The layout of our paper is as follows. In Section 2we introduce background material
from symbolic dynamics. In Section [3| we define and discuss known properties of TMS. In
Section 4| we define countable-state specification properties, classify TMS with specifica-
tion, and provide an infinite class of non-TMS examples, proving Theorem [A] In Section [5
we define Gurevich entropy for countable-state shift spaces and prove Theorem [B] In Sec-
tion [6] we prove Theorem [C] the variational principle.
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2 Preliminaries

Let A be a countable (possibly finite) set. We call A the set of states or the alphabet. A
shift space X over A is a subset of the full shift A such that X = X7 for some forbidden
word set F. The notion of isomorphism for shift spaces is known as conjugacy (see, e.g.
[19, Definition 3.17] ).

The elements © € X are called points, and finite-length substrings of x are called
words. For n € Ny :={0,1,2,...}, we let £,(X) be the set of n-length words in X and
then define the language of X to be

LX) = Lu(x).

n>0

For a word w € L£(X) with u = ug---u,_1, we denote wu,; the last letter of u; i.e., u, ;.
For m,n € Ng and a_,y,, ...,a, € A, cylinder sets are subsets of X defined to be

[, a,] ={x € X :2; =q; for all —m <i<n}.

Given x,y € X, we define a metric on X:

- min{i:z;#y; } x 7& y
dz.y) = {0 =y

The metric space (X, d) is complete, separable, and is compact if and only if | A| < oc.

3 Topological Markov Shifts

Definition 3.1 Let A be countable and T' = (t;;) x4 a matriz of zeroes and ones. We
call T' a transition matriz if for all a € A there exist i,j € A with T,; = Tj, = 1. Given
such a T, we define the topological Markov shift (TMS) over A generated by T to be

X={xeA” t,,,, =1 foralli}.

We note in passing that a TMS generated by T = (%;;).axa can be thought of as
being generated by bi-infinite walks on the directed graph G = (V,€) where V = A
and £ = {(i,j) € A x A:t; = 1}. In fact, any countably infinite shift space can be
represented as bi-infinite walks on a directed graph, as proven by Sobottka ([19], Theorem
6.1), so graphs provide good intuition for how countable state shift spaces behave. This
notably does not hold in the finite state setting (for example, non-sofic cocyclic subshifts
presented in [T1]).

Proposition 3.2 A shift space X is conjugate to a TMS if and only if there exists a
forbidden word set F generating X whose words have bounded length.
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Proof. (=) If X is conjugate to a TMS, then it is generated by a countable matrix T’
which is indexed by AM x AM for some M, for if not, it’d be indexed by an uncountable
set. Then T gives rise to a forbidden word set containing only words of length M.

( <= ) Assume that X = Xz where the words in F have bounded length. Put
M = max{|w| : w € F} and note that F can be recoded to only contain words of length
M + 1 (the proof of Proposition 2.1.7 in [I3] generalizes). Then we can easily create an
adjacency matrix T = (t;;) gqm+15 qm+1 which generates X. U

We will compare the following properties to the specification property in the next
section.

Definition 3.3 A shift space X is irreducible if, for all u,w € L(X), there ezists a
v € L(X) such that uwvw € L(X).

Definition 3.4 A matriz T = (t;j) ax s irreducible if for all pairs i, j € A, there exists
an € > 0 such that (T*);; > 0.

Lemma 3.5 A TMS X is irreducible if and only if the transition matriz that generates
it is irreducible.

Proof. (=) X isirreducible, so, in particular, for all i, j € A, there exists a v € L£(X)
such that ivj € £(X). Then, (T");; > 0. ( <= ) For all u,w € L(X), there exists an
¢-length word v such that u;vwy € £(X) and thus vow € L£(X) since X is a TMS. O

Definition 3.6 A shift space X is mixing if, for all u,w € L(X), there exists an N € Ny
such that, for alln > N, there ezists an n-length word v such that uvw € L(X).

Lemma 3.7 A TMS X over A is mizing if and only if, for all a,b € A, there exists an
Nap € Ny such that, for alln > Ny, there ezists an n-length word v such that avb € L(X).

Proof. The forward direction is clear. For the reverse direction, note that since X is a
TMS, for any u,w € L(X), wpowy € L(X) implies vvw € L(X) for any v € L(X). O

4 The Generalized Specification Property
The following is a well-studied property of finite state shift spaces:

Definition 4.1 A shift space X C {0,1,...,n— 1}% satisfies the specification property if
there exists a T € Ny such that for all u,w € L(X) there exists a v € L.(X) such that
ww € L(X).

In the more general countable state setting, we introduce the following definition,
which is the symbolic version of a property of complete separable metric spaces due to
Climenhaga, Thompson, and Wang.
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Definition 4.2 Letting I C A be finite, we define L1(X) = {w € L(X) : wp € [,wa €
L(X) for somea € I}. A countable state shift space X satisfies the (countable-state)
specification property if for all finite I C A there exists a T = 7(I) € Ny such that for all
u,w € L1(X) there exists a v € L,(X) such that vow € LT(X).

Remark 4.3 This (countable-state) specification property, though for simplicity we will
call it specification throughout, is a symbolic analogue of Bowen’s specification property
[1]. Bowen'’s specification property can be applied to any metrizable topological dynam-
ical system. For finite alphabets, countable-state specification coincides with the usual
symbolic version of Bowen’s specification property (Definition , while for countable
alphabets it provides a natural extension of this symbolic version to the non-compact,
countable-state setting.

Definition 4.4 A countable state shift space X satisfies the weak specification property
if for all finite I C A there exists a 7 = 7(I) € Ny such that for all u,w € LI(X) there
exists a v € L(X) with |v| < T such that vow € LI(X).

Proposition 4.5 If a shift space X satisfies the weak specification property, then it is
wrreducible.

Proof. For any u,w € £(X), there exists a finite I C A such that u,w € £L(X). Then,
there exists a v € L(X) (with |v| < 7(I)) such that uwvw € L(X). O
We get as an immediate result of Proposition that all shift spaces satisfying the
specification property are irreducible.
We now characterize these specification properties in the class of TMSs.

Proposition 4.6 A TMS satisfies the weak specification property if and only if it is ir-
reducible.

Proof. Let X be a TMS over A generated by 7" = (¢;;)axa. ( = ) If X satisfies the
weak specification property, then it is irreducible by Proposition [4.5]

(<= ) Let I C Abe finite. For each pair a,b € I, there exists a {4, such that (T%t),, >
0. Putting 7 = max{/, : a,b € I}, we see that X satisfies the weak specification property.
O

Proposition 4.7 A TMS X satisfies the specification property if and only if it is mixing.

Proof. (=) That X is irreducible follows from Proposition 1.6l To show that X is
mixing, let I = {a,b} C A. Since X satisfies the specification property, there exists a
7 = 7(I) € Ny such that, for all u,w € LI(X) with |u] = n, up = a, and wy = b, there
exists a v € L,4,_1(X) such that wow € L£(X). Thus, by varying the length of u, we see
that N,, = 7 works.

(<= ) X is irreducible and thus satisfies the weak specification property by Proposi-
tion 4.6 Fix I C A finite. Since X is mixing, for any a,b € I, there exists an N, such
that for all n > N, there exists a v € £,(X) such that avb € £(X) by Lemma[3.7 Let
T =max{ Ny : a,b € I} to finish since X is a TMS. O
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The following is an infinite class of non-TMS shift spaces which satisfy the specification
property.

Theorem 4.8 Fizr > 0. Let X C {0,1,...,7r — 1}% be a shift space with specification
such that any forbidden word set generating X contains words of unbounded length. Let
Y C{r,r+1,...}2 be a TMS satisfying the specification property with Y = Yz. Then
the shift Z = Zrur € {0,1,2,...}2 satisies the specification property and is not a TMS.

Proof. That Z isn’t a TMS follows from Proposition [3.2] To show that Z satisfies the
specification property, put A = Ny, Ax ={0,1,...,r =1}, and Ay = {r,r+1,...}, and
let a € Ay, b € Ay, and I C A be finite. For u,w € £I(X), we have
uaw € LY(X) if uy, wy € Ay,
ubw € L1(X) if uy, wy € Ax,
ucw € L1(X) for some ¢ € Ay if u; € Ax,wy € Ay,
udw € L£1(X) for some d € Ay if v, € Ay, w, € Ax,

so 7 = 7(I) = 1 works as the specification constant. O

5 Gurevich Entropy

Gurevich proved that the following definition is well-defined in the case of TMSs (see [7]
and [8] in [18§]).

Definition 5.1 Let X be a shift space over a countable alphabet A. For any finite I C A,
we define

BL(X) = lim ~ log #£1(X),

n—oo N

which takes values in [0,00]. Then we define the Gurevich entropy of X to be hg(X) =
hE(X) for an arbitrary finite I C A.

We impose the following property on our shift spaces to ensure that their Gurevich
entropies do not blow up in finite time.

Definition 5.2 Let X be a shift space over a countable alphabet A. For any a € A, we
define the letter follower set of a to be F, = {al € L(X) : £ € A}. We say that X is
locally finite if for all a € A, #F, < 00.

Proposition 5.3 Define
LI(X) = {we LX) : wo,w; € I}

X is a locally finite shift space with specification if and only if, for all finite I C A, there
exists a T = 7(I) € N such that, for all u,w € L1(X), there exists a v € L, (X) such that

ww € LI(X).
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Proof. Fix a finite ] C A. ( = ) Since X is locally finite, = I U U.e; Fa is finite, so
apply X's specification property to I. B

(<= ) For any @, w € L/(X) and © € L,(X) such that aow € LI(X), let u (resp. w)
be @ (resp. w) without its last (resp. first) letter, and let v = @;0wy. Then, u,w € L(X)
and v € L, (X)) with uwvw € LI(X). O

Remark 5.4 Moving forwards, we adopt £/(X) as the definition of £7(X), since we'll
be working exclusively with locally finite shift spaces.

Lemma 5.5 Let X be a locally finite shift space over a countable alphabet A. Then for
alln € No,a € A, #L£5(X) < .

Proof. Fix n € Ny,a € A. We denote S,{La}(X) ={aw € L,(X) 1w e L,1(X)} (S for
“start”). That #L57(X) < #3817 (X) is clear, so it suffices to prove that #5 (X) < oo
for all n € Ny. We do this by induction. First, we have that #S5,(X) = #51(z) = 1.
Now if #5S5,,(X) < oo, the set £ = {{ € A: { = w, for some w € S{g“}(X)} is finite, so we
can let M = maxyep{#F;} with M < oo because X is locally compact. Then we have
#S5p41(X) < M#E < 00, so we are finished. O

Theorem 5.6 Let X be a locally finite shift space over a countable alphabet A which
satisfies the specification property. Then for any finite I C A, hL(X) exists, and hg(X)
1s well-defined.

Proof. (hL(X) exists) Let m,n € Ny. Since X satisfies the specification property, there
exists a 7 = 7(I) € Ny such that, for any u € £! (X),w € L1 (X), there exists av € L,(X)
such that vvw € L, 1,.-(X). Thus, there exists an injection between £ (X) x L£I(X)
and L in+-(X), showing that #L0 (X)#LL(X) < #LL ., (X) (here we use Lemma
. Taking the log of both sides and multiplying by —1, we get

—log #L] (X) —log #LL(X) > —log #L} ., (X). (3)

Now we put x,, = — log #L!(X) and y,, 4, = z,, so that becomes Yy, +Yntr = Ymtnt2r
to which we apply Fekete’s lemma to see that lim,,_,., 2* exists; that is, h;(X) exists.

(hg(X) is well-defined) Fix I,J C A finite. It suffices to find an injection between
LI97(X) and £, \(X) for some N € Ny since this would give

HLL(X) < HLV(X) < H#HL;) N (X),

implying the result since I and J were chosen arbitrarily. By Proposition 4.5 we know
that there exists w € £](X) for some ¢ € Ny. Fix w € LI/ (X) for some n € Ny by the
same reasoning. Using the specification property, there exists a 7 = 7(I U J) so that we
can find v,v" € L,(X) with wowv'w € L7, . ,,(X), providing the desired injection. O
Thanks to Theorem [5.6} we can do the preceding calculations of hg(X) on h5(X) for
any finite I C A.
The following is a property of shift spaces which guarantees finite Gurevich entropy.
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Definition 5.7 A shift space X is uniformly locally finite if there exists a constant C €
Ng such that, for alla € A, #F, < C.

Proposition 5.8 If X is a uniformly locally finite shift space, then hg(X) < 0o.

Proof. Pick a constant C' € Ny such that, for all a € A, #F, < C. Recalling the
definition of Sia}(X ) from the proof of Lemma , we have

1 1
ha(X) < lim =log #Si(X) < lim ~logC™ = log C' < oo.

n—oo N, n—oo M

6 The Variational Principle

For a probability measure p on X, we denote by h, (o) the measure-theoretic entropy of X.
The following is a well-known result for finite state shift spaces, known as the variational
principle.

Theorem 6.1 Let X C {0,1,...,n— 1}Z be shift space and denote by My(X) the set of
ergodic o-invariant probability measures on X. Then,

h(X) = sup{h,(o) : p € M,(X)}.

Lemma 6.2 Let X = Xr be a shift space and define K = {K C X : K = [*n
X for some finite I C A}. Then for all K € K, K (which may be empty) is a subshift of
X.

Proof. It suffices to show that each element of K is a subshift over some finite alphabet.
For K € K with K = I? N X where I C A is finite, we see that K is a subshift over the
alphabet I with forbidden word set F U I€. O

Proposition 6.3 Let X be a locally finite countable state shift space with specification
over A= Ny. Then hg(X) =sup{h(K) : K € KC}.

Proof. (>) For any I C A, it is immediate that £, (K) C LL(X) for big enough n,
implying A(K) < hg(X) and thus the result.
(<) For k, L € Ny, let I, ={0,1,...,k — 1} and define

Xf={weX w=w_ v ywowiv; - : w; € LF(X), |vi| = 7(I,) for all i}.

X*¥ is clearly o-invariant and thus a shift space, and since X is locally finite, it is compact.
Thanks to the specification property, X¥ # (), so we have

#LmL+(m—1)T(Ik)(X§> > #Eik (X)m
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for any m € Ny. Dividing both sides by mL + (m — 1)7(1}) and taking the log, we get

1 m

1 _ Xk >

mL + (m — 1)7(1}) 08 #Lmr(m-1y7(1) (X1) = mL + (m — 1)7(I})
1 I

—1 k(X).

log #L 7 (X)

Sending m — oo and then L — oo, we see that liminf; . ha(X¥) > hg(X); i.e., for all
e >0 and k € Ny, there exists an L € Ny such that hg(X) — € < hg(XF). O
The following is our main result, towards which we will now start working:

Theorem 6.4 Let X be a locally finite countable state shift space satisfying the specifi-
cation property. Then the variational principle holds; i.e.,

ha(X) = sup{h,(o) : p € M,(X)}. (4)
Proving one direction of Theorem [6.4] is easy:

Proposition 6.5 Let X be a locally finite countable state shift space satisfying the spec-
ification property. Then,

ha(X) <sup{h,(o): p € M,(X)}.
Proof. Fix a compact subshift K C X. By Theorem and Proposition [6.3], we have
ha(X) = sup h(K)
K

=sup sup h,(o)
K pueMqy(K)

<sup sup h,(o)
K peMqs(X)

= sup hu(a)a
HEM(X)

where the sup is taken over compact subshifts and we use that M, (K) injects naturally
into My (X). O

Definition 6.6 For x € X, n € Ny, and € > 0, we define the Bowen ball around x of
radius € and and order n by

Bu(z,€) = {y € X : d(o?(y),07(x)) < € for all 0 < j < n}.

If EC X, we define B,(E,€) = U,cp Bn(z,¢€).

To prove the other direction of Theorem we use results from Chapter 3 of [9].
Part of their discussion holds in our setting, so that we have the following.
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Theorem 6.7 Let X be a locally finite countable state shift space over A and p an ergodic
o-invariant probability measure on X. Then, for every § € (0,1), we have

1
< T inf X : ' _
hu(o) < hgggolf " log]rgnglgl({#E s u(Bn(E 1) >1—0}.

Given I C A ﬁnite let [I] = Uael[a] Given a p € M,(X), there exists a finite I C A
so that p([I]) > 1 — $. Then pu(o~"[I]) > 1 — % and we have

pIne (1)) > 1 -0
for all n. This gives the following.

Proposition 6.8 Let X be a locally finite countable state shift space which satisfies the
specification property. Then,

ha(X) > sup{hu(o) : € Mo (X)}.

Proof. Fix 0 < <1 and € M,(X) and pick a finite I C A as above. We calculate,
1 :
hu(0) < liminf —log min{#E : p(Bu(E,1)) > 1 — 5}

<liminflog  min  {#E: p(Bu(E,1)) > 1 -8}

n—oo n EC[IIne—m([1])

1
= liminf —1 E": ) >1—
TR 08 {# 2l }

weEr’

1
< lim =1 E 1—96
< Jim Jlog  min, {# > ule)> }

< hi(X)
= ha(X).
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