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1 Introduction

Knotted graphs are embeddings of graphs in 3-space and topologists are interested in
distinguishing knotted graphs up to ambient isotopy, similar to the goal of knot theory.
Isotopy of knotted graphs can be described combinatorially by working with diagrams of
knotted graphs. A knotted graph diagram is a projection of a knotted graph into a plane,
such that the projection contains only transverse double points; we also require that in
such a projection, no interior point of an edge of the original graph projects to the same
point where a vertex projects. Specifically, a knotted graph diagram contains crossings
(similar to knot or link diagrams) and the vertices of the graph.

In this paper, we work with 4-valent knotted graphs with rigid vertices. Equivalently,
we will distinguish 4-valent knotted graphs up to rigid-vertex isotopy. It is known [6] that
two diagrams of knotted 4-valent graphs represent rigid-vertex isotopic knotted graphs
if and only if there is a finite sequence of planar isotopies and the classical Reidemeister
moves R1, R2 and R3, together with the additional moves R4 and R5 involving a vertex
— as depicted in Figure 1 — taking one diagram to another.

The knotted 4-valent graphs that we consider in this work are oriented, meaning that
each edge is given an orientation, such that the 4-valent vertices are balanced-oriented ;
that is, the in-degree and out-degree at each vertex is two. Specifically, the vertices are of
two orientation types, up to cyclic permutation: In-In-Out-Out and In-Out-In-Out (see
Figure 2).
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R1←→ R1←→

R2←→ R2←→ R3←→

R4←→ R4←→ R5←→

Figure 1: Reidemeister-type moves for 4-valent knotted graphs.

Figure 2: Balanced-oriented 4-valent vertices.

The scope of this paper is to construct a polynomial invariant P (L) for balanced-
oriented, knotted 4-valent graphs L, which is an extension of the sl(n) polynomial invari-
ant for classical knots. We remind the reader that the sl(n) polynomial is a one-variable
specialization of the HOMFLY-PT polynomial invariant of oriented knots [5, 9].

When working with oriented knotted graphs, there are several oriented versions of
the Reidemeister-type moves for knotted graph diagrams. Hence, it is ideal to have at
hand a generating set for all of the moves on knotted graph diagrams when proving that
a certain quantity is an invariant of knotted graphs. In this paper, we also provide a
minimal generating set of Reidemeister-type moves for diagrams of balanced-oriented,
knotted 4-valent graphs with rigid vertices.

The paper is organized as follows: We provide the construction of the polynomial P
in Section 2. In Section 3 we list all of the oriented versions of the Reidemeister-type
moves for diagrams of balanced-oriented, knotted 4-valent graphs, and then provide a
minimal generating set for these moves. We use this minimal generating set to prove in
Section 4 that P (L) is an invariant for balanced-oriented, knotted 4-valent graphs L with
rigid vertices.

2 A Polynomial for Knotted, Balanced-Oriented, 4-Valent
Graphs

The purpose of this paper is to construct a polynomial invariant for knotted 4-valent
graphs by altering Caprau, Heywood, and Ibarra’s [2] modified MOY state model [7] for
the sl(n) polynomial. Our polynomial invariant, denoted by P (L) where L is a balanced-
oriented, knotted 4-valent graph with rigid vertices, is defined in terms of the skein rela-
tions and a graphical calculus involving planar graphs.

Given a knotted 4-valent graph diagram D, we iteratively resolve the crossings using
the skein relations in Figure 3. The three diagrams in a skein relation are parts of knotted
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4-valent graph diagrams that are identical, except in a small region where they differ as
shown.

P

( )
= qn−1P

( )
− qnP

( )

P

( )
= q1−nP

( )
− q−nP

( )

Figure 3: Skein relations for crossings.

After resolving all crossings, P (D) is written as a linear combination of evaluations
of planar 4-valent graphs; the resulting planar graphs are called the states of the original
knotted 4-valent diagram. We evaluate a planar 4-valent graph using the skein relations

for graphical states shown in Figure 4, where [n] =
qn − q−n

q − q−1
such that n ∈ Z, n ≥ 2,

and q is a formal parameter. Note that the symbol P was omitted in Figure 4 to avoid
clutter.

= + = [n] = [n− 1]

= [2] = + [n− 2]

+ = +

+[n− 3] = +[n− 3]

Figure 4: Graphical skein relations.

The skein relations in Figure 3 imply that the polynomial P satisfies the following
skein relation:

qnP

( )
− q−nP

( )
= (q − q−1)P

( )
.

This is combined with
P
(
D ∪

)
= [n]P (D),
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where D ∪ is a disjoint union of any diagram D and the standard diagram of the
unknot. Therefore, when restricted to diagrams of knots (diagrams that contain only
crossings and no vertices), our polynomial P satisfies the defining skein relations for
the sl(n) polynomial for knots. Hence, P can be regarded as an extension of the sl(n)
polynomial to balanced-oriented, knotted 4-valent graphs.

Lemma 2.1 Let G be a connected, oriented, 4-valent planar graph with vertices of type
In-In-Out-Out. If G contains at least one vertex and does not contain a loop or a

bigon , , then G can be transformed into a 4-valent planar graph with vertices of

type In-In-Out-Out and which contains a bigon, by using a finite sequence of the following
moves:

↔ and ↔

Proof. This statement can be proved in a similar manner as in Carpentier’s paper [4,
Lemma 2]. □

The graphical skein relations given in Figure 4 allow us to evaluate any 4-valent planar
graph G. Using the first skein relation, we can write the evaluation P (G) as a linear
combination of evaluations of 4-valent planar graphs with fewer vertices, all of which are
of type In-In-Out-Out. By applying the skein relations involving a loop or a bigon, we
obtain P (G) written as a Z[q, q−1]-linear combination of evaluations of 4-valent planar
graphs with fewer vertices of type In-In-Out-Out. Then by Lemma 2.1, if a 4-valent
planar graph with vertices of type In-In-Out-Out does not contain a loop or a bigon,
we can use the last two graphical skein relations from Figure 4 in a neighborhood of a
triangular face, to write the evaluation of the graph in terms of evaluations of graphs with
fewer vertices and the evaluation of a graph that contains a bigon. The latter graph is
then evaluated using one of the graphical relations involving a bigon. We continue this
process until P (G) is written as a linear combination of evaluations of disjoint unions of
circles, where each circle is then replaced by [n].

Proposition 2.2 There is a unique polynomial P (G) ∈ Z[q, q−1] associated to a pla-
nar, balanced-oriented, 4-valent graph G, such that the polynomial satisfies the graphical
relations given in Figure 4.

Proof. The existence part follows from Lemma 2.1 and the above paragraph. The
uniqueness part is proved in a similar way as [4, Theorem 3], where the proof is by
induction on the number of 4-valent vertices, as we now show. Let P (G) and P ∗(G) be
two polynomials associated to a planar, balanced-oriented, 4-valent graph G and such
that P and P ∗ satisfy the graphical relations in Figure 4.

If G has no vertices, then since G is planar, it must be the disjoint union of unknotted
circles. Hence, P (G) = [n]α = P ∗(G), where α is the number of unknotted circles in G.

Suppose P (G) = P ∗(G) for all planar, balanced-oriented, 4-valent graphs G with up
to n vertices. Let G be a planar 4-valent graph containing n + 1 vertices. If G contains
vertices of type In-Out-In-Out, we then resolve them using the first graphical relation in
Figure 4, to write the evaluation of G in terms of planar graphs with fewer vertices, all of
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which are of type In-In-Out-Out. Thus, by the inductive hypothesis, P (G) = P ∗(G). On
the other hand, if G contains only vertices of type In-In-Out-Out and it contains a loop or
a bigon, then using the graphical skein relations in Figure 4 we can write the polynomials
associated to G as a sum of polynomials associated to graphs with fewer vertices than G.
Thus by our inductive hypothesis, P (G) = P ∗(G). Now, if G contains only vertices of
type In-In-Out-Out and it does not contain a loop or a bigon, then by Lemma 2.1 there
exists a finite sequence of graphs

G = G0 → G1 → G2 → · · · → Gm,

where Gm contains a bigon and where for each i with 1 ≤ i ≤ m, Gi is obtained from
Gi−1 via one of the moves below:

↔ or ↔

By the last two graphical relations in Figure 4, we know that P

( )
−P

( )
and P

( )
− P

( )
, as well as P ∗

( )
− P ∗

( )
and P ∗

( )
−

P ∗
( )

, can be written as a sum of polynomials associated to graphs with fewer

vertices than G. Then by the induction hypothesis,

P (Gi)− P (Gi−1) = P ∗(Gi)− P ∗(Gi−1),

for all i where 1 ≤ i ≤ m. Hence,

P (Gm)− P (G0) = P ∗(Gm)− P ∗(G0).

Since Gm contains a bigon, the first part of the proof implies that P (Gm) = P ∗(Gm).
Therefore, P (G) = P ∗(G), as desired. By the principle of mathematical induction, we
conclude that the statement holds for any planar 4-valent graph with balanced-oriented
vertices. □

We will prove that P (L) is an invariant for balanced-oriented, knotted 4-valent graphs
L in Section 4.

Example 2.3 We provide an example that evaluates the polynomial P for a given dia-
gram. In the first step below, we apply the skein relation for the vertex of type In-Out-
In-Out. In the second step, we use the graphical relation to resolve the negative crossing
in the second diagram, and use that P is invariant under the first Reidemeister move to
simplify the evaluation of the first diagram. In the third step we employ the first graphical
relation involving a bigon followed by combining like terms. In the final steps, we use the
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graphical relation for the loop and that P

( )
= [n].

P

( )
= P

( )
+ P

( )
= P

( )
+

[
q1−nP

( )
− q−nP

( )]
= (q1−n + 1)P

( )
− q−n[2]P

( )
= (q1−n − q−n[2] + 1)P

( )
= (q1−n − q−n[2] + 1)[n− 1]P

( )
= (q1−n − q−n[2] + 1)[n− 1][n].

3 Reidemeister-type Moves for Knotted, Balanced-Oriented, 4-
Valent Graphs

In this section, we list all oriented versions of the Reidemeister-type moves for diagrams of
balanced-oriented, knotted 4-valent graphs with rigid vertices. We also provide a minimal
generating set for all of such moves, which will shorten the proof of invariance of the
polynomial P .

Figures 5, 6, and 7 show all the oriented versions of the three classical Reidemeis-
ter moves R1, R2 and R3, but we employ Polyak’s notation from [8], using Ω1,Ω2 and
respectively Ω3 to denote these moves.

Ω1a←→ Ω1b←→

Ω1c←→ Ω1d←→

Figure 5: Oriented Ω1 moves.

We split the oriented versions of the moves R4 and respectively R5 into two sets, to
separate the moves applied in a neighborhood of a vertex of type In-In-Out-Out from
those applied in a neighborhood of a vertex of type In-Out-In-Out. This will also allow us
to apply certain results from the work by Bataineh et al. in [1]. We remark that the paper
[1] is about singular links and that a diagram of a singular link contains classical crossings
and 4-valent vertices of type In-In-Out-Out. Moreover, singular links are equivalent to
knotted 4-valent graphs (regarded up to rigid-vertex isotopy) whose vertices are of type
In-In-Out-Out.
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Ω2a←→ Ω2b←→

Ω2c←→ Ω2d←→

Figure 6: Oriented Ω2 moves.

Ω3a←→ Ω3b←→

Ω3c←→ Ω3d←→

Ω3e←→ Ω3f←→

Ω3g←→ Ω3h←→

Figure 7: Oriented Ω3 moves.

In Figure 8, we present the oriented versions of the moves R4 with vertices of type
In-In-Out-Out, and we denote these oriented versions of the moves by Ω4, following the
conventions used in [1]. Similarly, in Figure 9, we give all oriented versions of the moves
Ω4 with vertices of type In-Out-In-Out.

Ω4a←→ Ω4b←→

Ω4c←→ Ω4d←→

Ω4e←→ Ω4f←→

Ω4g←→ Ω4h←→

Figure 8: Ω4 moves with vertices of type In-In-Out-Out.

Figure 10 shows all of the oriented versions of the moves R5 with vertices of type
In-In-Out-Out, and we denote these oriented versions of the move by Ω5, to be again
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Ω4i←→ Ω4j←→

Ω4k←→ Ω4l←→

Figure 9: Ω4 moves with vertices of type In-Out-In-Out.

consistent with the conventions used in [1]. Finally, in Figure 11 we present all oriented
versions of the moves Ω5 with vertices of type In-Out-In-Out.

Ω5a←→ Ω5b←→

Ω5c←→ Ω5d←→

Ω5e←→ Ω5f←→

Figure 10: Ω5 Moves with vertices of type In-In-Out-Out.

Ω5g←→ Ω5h←→

Figure 11: Ω5 Moves with vertices of type In-Out-In-Out.

3.1 A Minimal Generating Set of Reidemeister-type Moves for Knotted 4-
Valent Graphs

In order to prove that P is an invariant for balanced-oriented, knotted 4-valent graphs
with rigid vertices, it is necessary to prove that P is invariant under all oriented versions of
every move for diagrams describing the rigid-vertex isotopy of balanced-oriented, knotted
4-valent graphs, which is computationally taxing. A collection of oriented Reidemeister-
type moves is a generating set of all the oriented Reidemeister-type moves if every move
can be obtained through a finite sequence of applications of moves in the generating set.
By showing that P is invariant under each move in the generating set, we know that P is
invariant under all of the oriented versions of the Reidemeister-type moves.

Polyak [8] showed that {Ω1a,Ω1b,Ω2a,Ω3a} is a minimal generating set for all the
oriented versions of the Reidemeister moves Ω1,Ω2, and Ω3 for oriented knot diagrams.
Building on Polyak’s work, Caprau and Scott [3] found all minimal generating sets for the
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moves Ω1,Ω2, and Ω3. For our purposes, we will use Polyak’s minimal generating set of
moves for oriented knot diagrams.

Furthermore, Bataineh et al. [1] showed that the moves Ω4a,Ω4e, and Ω5a generate
all of the oriented Ω4 and Ω5 moves involving In-In-Out-Out vertex types listed above.

Similar to Bataineh et al. [1], we show that only two Ω4 moves and one Ω5 move,
namely Ω4j, Ω4l, and Ω5g, are needed to generate all oriented Ω4 and Ω5 moves involving
vertices of type In-Out-In-Out.

Lemma 3.1 The move Ω4i can be realized by a sequence of the moves Ω2d,Ω4j, and Ω2b.

Proof.

Ω2d Ω4j Ω2b

□

Lemma 3.2 The move Ω4k can be realized by a sequence of the moves Ω2d,Ω4l, and
Ω2a.

Proof.

Ω2d Ω4l Ω2a

□

Lemma 3.3 The move Ω5h can be realized by a sequence of Ω1c,Ω4j,Ω5g,Ω4k, and Ω1d
moves.

Proof.

Ω1c Ω4j Ω5g

Ω4k

Ω1d

□
Thus, the set {Ω1a,Ω1b,Ω2a,Ω3a,Ω4a,Ω4e,Ω5a,Ω4j,Ω4l,Ω5g} is a generating set

for Reidemeister-type moves for diagrams of knotted, balanced-oriented, 4-valent graphs
with rigid vertices.

Remark 3.4 Note that since the move Ω4j involves sliding a strand under a vertex while
the move Ω4l involves sliding a strand over a vertex, there is no way to derive one move
from the other. Additionally, we know it is necessary to have at least one Ω5 move for
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the In-Out-In-Out vertices. Hence, we conclude that our generating set is minimal for
In-Out-In-Out vertices.

Theorem 3.5 The set {Ω1a,Ω1b,Ω2a,Ω3a,Ω4a,Ω4e,Ω5a,Ω4j,Ω4l,Ω5g} is a minimal
generating set of Reidemeister-type moves for diagrams of balanced-oriented, knotted 4-
valent graphs with rigid vertices.

Proof. The proof follows from results in [1, 8] together with our Lemmas 3.1–3.3 and
Remark 3.4. □

4 The Proof of Invariance of P

We are ready to prove that the polynomial P is a rigid-vertex isotopy invariant for
balanced-oriented, 4-valent knotted graphs. For this, we need to prove that P is indepen-
dent of the diagram D representing a knotted graph with balanced-oriented 4-valent right
vertices. Using Theorem 3.5, it suffices to show that P is invariant under the moves in
our minimal generating set of Reidemeister-type moves for 4-valent knotted graphs with
balanced-oriented vertices.

We show first that P is invariant under the move Ω1a:

P

( )
= qn−1P

( )
− qnP

( )

= qn−1[n]P

( )
− qn[n− 1]P

( )

= (qn−1[n]− qn[n− 1])P

( )

= P

( )
.

Above, we applied the skein relation to resolve the positive crossing, followed by the
application of the graphical relation involving a loop. We also used that

qn−1[n]− qn[n− 1] =
qn−1(qn − q−n)

q − q−1
− qn(qn−1 − q1−n)

q − q−1
= 1.

We now show that P is invariant under the move Ω1b. By applying the skein relation
for the crossing followed by the graphical relation to resolve the loop, we arrive at the
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following:

P

( )
= qn−1P

( )
− qnP

( )

= qn−1[n]P

( )
− qn[n− 1]P

( )

= P

( )
.

We consider next the move Ω2a. In the first step below, we apply the skein relation
for the negative crossing on the right of the diagram and in the second step we apply
the skein relation for the positive crossing. In the third step, we use the first graphical
relation involving a bigon, and in the last steps we merely simplify combining like terms
and use that [2] = q + q−1.

P

( )
= q1−nP

( )
− q−nP

( )

= q1−n

[
qn−1P

( )
− qnP

( )]

− q−n

[
qn−1P

( )
− qnP

( )]

= P

( )
− (q + q−1)P

( )
+ [2]P

( )

= P

( )
.

Before showing that P is invariant under the move Ω3a, we verify that P is invariant
under the move Ω4a, to reduce our computations. For the right hand-side of the move,
we have the following:
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P

( )
= qn−1P

( )
− qnP

( )

= qn−1

[
q1−nP

( )
− q−nP

( )]

− qn

[
q1−nP

( )
− q−nP

( )]

= ([n− 1]− q−1[n− 2]− q[n− 2])P

( )
− q−1P

( )

− qP

( )
+ P

( )

= −[n− 3]P

( )
+ P

( )
− q−1P

( )
− qP

( )
.

In the third equality above, we employed the graphical relation involving a loop and
the graphical relation with an oriented bigon. Using a similar approach, we obtain the
following steps for the evaluation of the left hand-side of the move Ω4a:

P

( )
= q1−nP

( )
− q−nP

( )

= q1−n

[
qn−1P

( )
− qnP

( )]

− q−n

[
qn−1P

( )
− qnP

( )]

= ([n− 1]− q[n− 2]− q−1[n− 2])P

( )
− qP

( )

− q−1P

( )
+ P

( )

= −[n− 3]P

( )
+ P

( )
− q−1P

( )
− qP

( )
.

Since by the last graphical relation in Figure 4 we have that

−[n− 3]P

( )
+ P

( )
= −[n− 3]P

( )
+ P

( )
,
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we obtain the following equality:

P

( )
= P

( )
,

and therefore P is invariant under the move Ω4a.
We will now use this result to prove that P is invariant under the move Ω3a. Starting

with the left hand-side of the move and applying the skein relation to resolve the middle
positive crossing, we obtain:

P

( )
= qn−1P

( )
− qnP

( )

= qn−1

[
q1−nP

( )
− q−nP

( )]
− qnP

( )

= P

( )
− q−1

[
qn−1P

( )
− qnP

( )]
− qnP

( )

= P

( )
− qn−2[n− 1]P

( )
+ qn−1P

( )

+ qn−1[n− 2]P

( )
− qnP

( )

= qn−1P

( )
− qnP

( )
.

In the third equality above, we used that P is invariant under the move Ω1b, while in the
fourth equality we used the graphical relation involving a loop and that with an oriented
bigon. In the last equality we used that 1− qn−2[n− 1] + qn−1[n− 2] = 0.

We apply similar computations for the right hand-side of the move Ω3a, as shown
below:

P

( )
= qn−1P

( )
− qnP

( )

= qn−1

[
q1−nP

( )
− q−nP

( )]
− qnP

( )

= P

( )
− q−1

[
qn−1P

( )
− qnP

( )]
− qnP

( )
.
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Using the graphical relations involving the loop and oriented bigon, we have the following:

P

( )
= P

( )
− qn−2[n− 1]P

( )
+ qn−1P

( )

+ qn−1[n− 2]P

( )
− qnP

( )

= qn−1P

( )
− qnP

( )

= qn−1P

( )
− qnP

( )
.

The last equality above holds, since we have proved that P is invariant under the move
Ω4a. Hence, P is invariant under the move Ω3a. Next we prove the invariance of P under
the move Ω4e:

P

( )
= q1−nP

( )
− q−nP

( )

= q1−n

[
qn−1P

( )
− qnP

( )]

− q−n

[
qn−1P

( )
− qnP

( )]

= ([n− 1]− q[n− 2]− q−1[n− 2])P

( )
− qP

( )

− q−1P

( )
+ P

( )

= −[n− 3]P

( )
+ P

( )
− qP

( )
− q−1P

( )
.

Similarly,

P

( )
= qn−1P

( )
− qnP

( )

= qn−1

[
q1−nP

( )
− q−nP

( )]

− qn

[
q1−nP

( )
− q−nP

( )]
.
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Using again the graphical relations for the loop and the oriented bigon, combined with
adding like terms, we arrive at the following,

P

( )
= ([n− 1]− q−1[n− 2]− q[n− 2])P

( )
− q−1P

( )

− qP

( )
+ P

( )

= −[n− 3]P

( )
+ P

( )
− q−1P

( )
− qP

( )

= −[n− 3]P

( )
+ P

( )
− qP

( )
− q−1P

( )
,

where the last equality above holds due to the last graphical relation in Figure 4. There-
fore,

P

( )
= P

( )
.

The invariance of the polynomial P under the move Ω5a holds, as proved below.

P

( )
= qn−1P

( )
− qnP

( )

= qn−1P

( )
− qnP

( )

= P

( )
.

Since we have proved that P is invariant under the moves Ω1a,Ω1b,Ω2a and Ω3a,
which is a generating set of all oriented versions of the Reidemeister moves, we have that
P is invariant under all of the moves Ω1,Ω2 and Ω3. Moreover, since we also proved that
P is invariant under the moves Ω4a,Ω4e and Ω5a, we can conclude that P is invariant
under all the moves Ω4 and Ω5 involving 4-valent vertices of type In-In-Out-Out.

We proceed now to prove the invariance of P under the moves Ω4 involving a vertex
of type In-Out-In-Out that are in our generating set; these are the moves Ω4j and Ω4l.
We show the proof of the invariance under the move Ω4j only, as the proof of invariance
under the move Ω4l follow similarly. In the first step below, we apply the skein relation
to resolve the vertex. In the second and third steps we use that P is invariant under
the moves Ω2. In the last equality, we use the skein relation involving a vertex of type
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In-Out-In-Out, this time reading the relation backwards.

P

( )
= P

( )
+ P

( )
= P

( )
+ P

( )

= P

( )
+ P

( )
= P

( )
.

It remains to verify the invariance of the polynomial P under the move Ω5g:

P

( )
= P

( )
+ P

( )
= P

( )
+ P

( )

= P

( )
+ P

( )
= P

( )
.

In the first and fourth equalities above, we used the skein relation for the In-Out-In-Out
vertices, while in the second and third equalities, we used that P is invariant under the
moves Ω1.

We have proved the following statement.

Theorem 4.1 If D and D′ are 4-valent diagrams representing rigid-vertex isotopic bal-
anced-oriented, knotted 4-valent graphs, then P (D) = P (D′). Hence, the polynomial P is
a rigid-vertex isotopy invariant for balanced-oriented, knotted 4-valent graphs.

With the above result in hand, we can now define the corresponding polynomial for a
knotted, balanced-oriented, 4-valent graph L, as follows:

P (L) := P (D),

where D is any diagram representing L.
The mirror-image of a knotted graph L is obtained by reflecting L across a plane in

3-space. We denote the mirror image of L by L̃. If D is a diagram of L, then by changing
the over-crossings in D into under-crossings, and changing the under-crossings in D into
over-crossings, we obtain a diagram of L̃. Moreover, if L is an oriented knotted graph, the
positive/negative crossings in D become negative/positive crossings in D̃, the diagram of
L̃.

Proposition 4.2 The polynomial P (L̃) of the mirror image L̃ of L can be obtained from
P (L) by interchanging q and q−1.

Proof. The statement follows at once from the skein relations for positive and negative
crossings depicted in Figure 3, and how the diagrams D and D̃ of L and respectively L̃
differ. □
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