
Some Equations Concerning the Sum of Divisors

Function

A. Dima

Abstract - In this article, I will consider four equations involving the sum of divisors
function, σ, and I will prove that for the first two there are infinitely many solutions, while
for the other two I will provide some particular solutions. I will also study some properties
regarding two sequences of numbers.
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1 Introduction

Equations involving the sum of divisors function, σ, date back to Euclid (300 B.C.), who
studied the perfect numbers i.e. numbers which satisfy the equation σ(n) = 2 · n. This
equation was lately generalized to σ(n) = k ·n, where k is a positive integer. In this work,
I will study equations of the type σ(n) = k · n, where k is a positive rational number of
specific form.

2 Preliminaries

If p is a prime number, we will denote by vp(n) the largest exponent of p appearing in
the prime factor decomposition of n ∈ Z∗. We will also denote by γm(n), where m is a
positive integer coprime with n, the order of n in the multiplicative group of the units of
Z
mZ

and by (n
p
) the Legendre symbol of n with respect to the prime p.

We will make use of the following theorems ( [1]):

Theorem 2.1 (Lifting The Exponent Lemma-First Form) Let x and y be two in-
tegers, n a positive integer and p be an odd prime such that p | x − y, but p ∤ x · y.
Then

vp(x
n − yn) = vp(x− y) + vp(n). (1)

Theorem 2.2 (Lifting The Exponent Lemma-Second Form) Let x and y be two
integers, n an odd positive integer and p be an odd prime such that p | x+ y, but p ∤ x · y.
Then

vp(x
n + yn) = vp(x+ y) + vp(n). (2)
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Theorem 2.3 (Lifting The Exponent Lemma-Third Form) Let x and y be two
odd integers and n a positive integer such that 4 | x− y.
Then

v2(x
n − yn) = v2(x− y) + v2(n). (3)

Theorem 2.4 (Lifting The Exponent Lemma-Fourth Form) Let x and y be two
odd integers and n an even positive integer. Then

v2(x
n − yn) = v2(x− y) + v2(x+ y) + v2(n)− 1. (4)

Lemma 2.5 Let p be an odd prime, a an odd positive integer and b ≥ 2 a positive integer.
If pa + 1 = 2b then a = 1 and p = 2b − 1 is a Mersenne prime.
Proof. Suppose by contradiction that a ≥ 3. Then a = q · c, where q is an odd prime and
c is an odd positive integer. The equation becomes

pq·c + 1 = 2b =⇒ (p+ 1) · (pq·c−1 − pq·c−2 + · · ·+ 1) = 2b. (5)

Since p, c and q are odd, we get that pq·c−1 − pq·c−2 + · · ·+ 1 is odd, so q · c = 1, which is
false. □

3 Four Equations Involving σ

The first equation in x, y and n which I will consider is

σ(n) =
x

2y
· n (6)

where x, y and n are positive integers, x odd, x > 2y and 2y | n.

Proposition 3.1 Equation 6 has infinitely many solutions with n of the form n = 2y+α ·
pα1, where α, α1 are positive integers and p is an odd prime number.

Proof. Equation 6 becomes

(2y+α+1 − 1) · (1 + p+ · · ·+ pα1) = 2α · x · pα1 . (7)

Since the right hand side is an even positive integer, we get that α1 is odd.

Case I: 2y+α+1 − 1 = pα1 and 1 + p+ · · ·+ pα1 = x · 2α

We show that there are no solutions in this case. Suppose, by contradiction, that there
exists a solution. By Lemma 2.5, we get that α1 = 1, which implies that 1+p = 2y+α+1 =
x · 2α. But x is an odd integer and we get the desired contradiction.

Case II: 2y+α+1 − 1 = x · pα1 and 1 + p+ · · ·+ pα1 = 2α

We get that 2α · (p − 1) = pα1+1 − 1. Using the fourth form of “Lifting The Exponent
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Lemma”, we obtain α+ v2(p− 1) = v2(p
α1+1− 1) = v2(p− 1)+ v2(p+1)+ v2(α1+1)− 1,

so α = v2(p+ 1) + v2(α1 + 1)− 1.
We write: p + 1 = 2r · r′, where r and r′ are positive integers with r′ odd and

α1 + 1 = 2s · s′, where s, s′ are positive integers with s′ odd.
So α = r+s−1, from where we obtain: 2α = 2r+s−1 ≥ 1+pα1 = 1+(2r ·r′−1)2

s·s′−1 >
(2r−1)2

s·s′−1 ≥ (2r−1)2
s−1 ≥ 2(r−1)·s. Consequently, r+ s− 1 > (r− 1) · s =⇒ r · (s− 1) <

2s− 1 =⇒ s = 1 or r = 1 or r = 2.

Case 1: s = 1

This implies that α1 = 2s′ − 1, α = r =⇒ 2r = 1+ p+ · · ·+ pα1 = 2r · r′ + · · ·+ pα1 =⇒
r′ = α1 = 1 and p = 2α− 1 =⇒ p is a Mersenne prime and 2y+α+1− 1 = x · (2α− 1) =⇒
2y+1 ≡ 1 (mod p) =⇒ α = γp(2) | y + 1.

Case 2: r = 1 and s > 1

We show that this case cannot occur. We would get that p = 2r′ − 1 and α = s =⇒
2s = 1 + p+ · · ·+ p2

s·s′−1 ≥ 1 + 3s, which is false.

Case 3: r = 2 and s > 1

We show also that this case cannot occur. We would obtain that p = 4r′ − 1 and
α = s+ 1 =⇒ 2s+1 = 1 + p+ · · ·+ p2

s·s′−1 ≥ 1 + 32
s−1 ≥ 1 + 3s+1, which is again false.

Case III: 1+ p+ · · ·+ pα1 = 2α · t and 2y+α+1− 1 = pα1 ·u, where t and u are odd positive
integers, strictly bigger than 1, such that t · u = x

We will construct the infinitely many solutions in the following way: p is arbitrary and
α1 ≥ 3 is an arbitrarily odd integer. α is defined as v2(1 + p + · · · + pα1) = v2(p + 1) +
v2(α1 +1)− 1 and t is defined as t = 1+p+···+pα1

2α
. We take y = γpα1 (2) · k− α− 1, where k

is an arbitrarily large positive integer. Finally, u = 2y+α+1−1
pα1

. □

The second equation in x, y and n which I will consider is

σ(n) =
x

3y
· n (8)

where x, y and n are positive integers, 3 ∤ x, x > 3y and 3y | n.

Proposition 3.2 Equation 8 has infinitely many solutions with n of the form n = 3y+α ·
pα1, where α, α1 are positive integers and p ≥ 5 is a prime number.

Proof. The equation considered is equivalent with

(1 + 3 + · · ·+ 3y+α) · (1 + p+ · · ·+ pα1) = 3α · x · pα1 . (9)

We will only study the case 1 + 3 + · · · + 3y+α = u · pα1 and 1 + p + · · · + pα1 = t · 3α,
where t, u ≥ 2 are integers such that t · u = x.

As for the first equation considered, we will build an infinite number of solutions. We
choose p and α1 such that 3 | 1 + p + · · · + pα1 (i.e. p ≡ 1 (mod 3) and α1 ≡ 2 (mod 3)
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or p ≡ 2 (mod 3) and α1 is odd). α is defined as v3(1 + p + · · · + pα1), t is defined as
1+p+···+pα1

3α
, y = γpα1 (3) · k − α − 1, where k is an arbitrarily large positive integer and

u = 1+3+···+3α

pα1
. □

Remark 3.3 For the more general equation

σ(n) =
x

qy
· n (10)

where q ≥ 5 is a fixed prime number and x, y are positive integers with q ∤ x and x > qy,
we can similarly build an infinite number of solutions with n of the form qα+y · pα1 , where
p ≡ 1 (mod q) is a prime number.

The third equation in x, y and n which I will consider is

σ(n) =
2y

x
· n (11)

where x, y and n are positive integers, x odd and x < 2y. A solution to this equation
is n = x · q1 · · · · · qr where x = p1 · · · · · pr; q1, . . . , qr are distinct Mersenne primes and
pj = 2nj · qj − 1 are primes (here, nj are positive integers). As in [2], I will consider the
sequence An,p = 2n ·Mp− 1, where Mp = 2p− 1 is the Mersenne number associated to the
prime number p and n is a positive integer and I will study some of its properties (here
p is fixed).

Proposition 3.4 An odd prime number q divides one of the terms in the sequence if and
only if q | 2t −Mp, for some positive integer t.

Proof. q | An,p ⇐⇒ 2n · Mp ≡ 1 (mod q) ⇐⇒ Mp ≡ 2−n (mod q). We take
t = (q − 1) · s− n, where s is an arbitrarily large positive integer. □

Remark 3.5 q is among the prime divisors of the numbers 2t −Mp.

Proposition 3.6 If q is a prime number such that q ≡ 1 (mod 8) and q ≡ −1 (mod Mp),
then q doesn’t divide any of the numbers An,p.

Proof. Suppose by contradiction that there exists such a prime number q. Denote by t
the number given by the preceding proposition. Then

1 = (
2

q
)t = (

2t

q
) = (

Mp

q
) = (

q

Mp

) · (−1)
q−1
2

·Mp−1

2 = (
q

Mp

) = (
−1

Mp

) = −1

since Mp ≡ 3 (mod 4). □

Remark 3.7 From Dirichlet’s theorem concerning prime numbers in arithmetic progres-
sion and from “Chinese Remainder Theorem”, we get that there exists an infinite number
of primes q which do not divide any of the numbers in the sequence An,p.
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Proposition 3.8 If q is a prime number with (2
q
) = −1 and (Mp

q
) = 1, then q ∤ A2n+1,p

for any nonnegative integer n.

Proof. We fix n. Then q | A2n+1,p ⇐⇒ (2n+1 ·Mp)
2 ≡ 2Mp (mod q) =⇒ (2Mp

q
) = 1,

which is a contradiction with the hypotheses. □

Proposition 3.9 Let q be a prime number and suppose that there exists a positive integer
l such that q | Al,p. Let n0 be the smallest such positive integer. Then q | An,p ⇐⇒ n ≡ n0

(mod e), where e = γq(2).

Proof. q | An0,p ⇐⇒ Mp ≡ 2−n0 (mod q)
q | An,p ⇐⇒ 2n ·Mp ≡ 1 (mod q) ⇐⇒ 2n−n0 ≡ 1 (mod q) ⇐⇒ e | n− n0. □

Proposition 3.10 There exists an infinite number of primes that divide the numbers in
the sequence An,p.

Proof. We suppose, by contradiction, that there are a finite number of odd primes,
q1, . . . , qk that divide the numbers in the sequence. Then
2n ·Mp − 1 =

∏k
j=1 q

ej,n
j , for any positive integer n. So 2n ·Mp ≡ 1 (mod

∏
ej,n>0 qj).

Let N = l.c.m.(q1 − 1, . . . , qk − 1) · a, where a is a positive integer such that N > p.
Then 2N ≡ 1 (mod

∏
qj) and 0 ≡ 2N−p · Mp − 1 ≡ −2N−p (mod

∏
ej,N−p>0 qj) =⇒∏

ej,N−p>0 qj | 2N−p, which cannot be true. □

Remark 3.11 If An,p is a prime number for some fixed n ≥ 3, then 2 is not a primitive
root modulo An,p, because An,p ≡ −1 (mod 8).

The last equation in x, y and n which we will consider is

σ(n) =
3y

x
· n (12)

where x, y and n are positive integers with 3 ∤ x and x < 3y. A particular solution to this
equation is n = 2 ·x, where x = 2 ·3y−1−1 is an odd prime. As for the preceding equation,
we will consider the sequence Xn = 2 · 3n − 1 and we will study some of its properties.

Proposition 3.12 A prime q divides one of the terms in the sequence if and only if
q | 3t − 2, for some positive integer t.

Proof. q | Xn ⇐⇒ 2 · 3n ≡ 1 (mod q) ⇐⇒ 2 ≡ 3−n (mod q)
We take t = (q − 1) · s− n, where s is a positive integer chosen such that t > 0. □

Remark 3.13 q stands among the prime divisors of the numbers 3t − 2.

Proposition 3.14 If q is a prime number such that
q ≡ 11 (mod 24) or q ≡ 13 (mod 24), then q does not divide any of the numbers in the
sequence Xn.

Proof. For such a prime q, we have that (2
q
) = −1 and (3

q
) = 1 =⇒ 2 ̸≡ 3n (mod q) □
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Remark 3.15 From Dirichlet’s theorem concerning prime numbers in arithmetic pro-
gression and from “Chinese Remainder Theorem”, we get that there are infinitely many
primes that do not divide any of the numbers in the sequence Xn.

Proposition 3.16 If q is a prime with q ≡ 7 (mod 24) or q ≡ 17 (mod 24), then q ∤
X2n+1 for any nonnegative integer n.

Proof. For such a prime q, we get that (6
q
) = −1.

But q | X2n+1 ⇐⇒ (6 · 3n)2 ≡ 6 (mod q), which is a contradiction. □

Proposition 3.17 If q is a prime number such that q | X2n for some positive integer n,
then q ≡ ±1 (mod 8).

Proof. q | X2n ⇐⇒ (2 · 3n)2 ≡ 2 (mod q) =⇒ (2
q
) = 1

The conclusion now follows. □

Proposition 3.18 Suppose that there exists a positive integer l such that q | Xl, where q
is a prime number. If n0 is the smallest such positive integer, then q | Xn ⇐⇒ n ≡ n0

(mod f), where f = γq(3).

Proof. q | Xn0 ⇐⇒ 2 · 3n0 ≡ 1 (mod q)
Now, q | Xn ⇐⇒ 2 · 3n ≡ 1 (mod q) ⇐⇒ 2 · 3n ≡ 2 · 3n0 (mod q) ⇐⇒ 3n−n0 ≡ 1
(mod q). The conclusion follows. □

Proposition 3.19 There exists an infinite number of primes that divide the terms of the
sequence Xn.

Proof. Suppose by contradiction that there are only finitely many odd primes, q1, . . . , qk
that divide the numbers in this sequence. Then
2 · 3n − 1 =

∏k
j=1 q

ej,n
j =⇒ 2 · 3n ≡ 1 (mod

∏
ej,n>0 qj).

Let N = l.c.m.(q1 − 1, . . . , qk − 1). Then 3N ≡ 1 (mod
∏

j qj) =⇒ 2 · 3N − 1 ≡ 1
(mod

∏
ej,N>0 qj) contradiction! □

4 Conclusions

The four equations considered are not fully resolved. I believe that there are also other
solutions to each of them.
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