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1 Introduction

Consider two n-dimensional complex Galois representations, η and ρ over a number field
K, which we note are continuous homomorphisms from Gal(K/K) → GLn(C), where K
is an algebraic closure of K.

Definition 1.1 Let ΣK,f denote the set of finite places of K. If ρ and η are complex
Galois representations over K, which are both unramified at v ∈ ΣK,f , let tr ρ(Frobv) be
the trace of Frobenius of ρ at v, and similarly for η. We define the matching density
d(ρ, η) to be the Dirichlet density of the set V = {v ∈ ΣK,f : tr ρ(Frobv) = tr η(Frobv)}.

If ρ and η are isomorphic representations, then we can see d(ρ, η) = 1, so we only consider
matching densities of representations which are not isomorphic. The above definition has
been used to show previous results on Galois representations. In Serre’s article [6], he con-
structs Galois representations of matching density 7/8, and in [8], Walji constructs pairs
of representations with matching densities 3/4, 3/5 and 17/32. Furthermore in [9], Walji
shows the set of all possible matching densities of n-dimensional Galois representations
over Q, and all n, is dense in [0, 1].

For a number field K, we must have that any complex Galois representation over K
has finite image. To see this, note GLn(C) is equipped with a Lie group topology, so we
may take u to be a small open neigbourhood of the identity, In, such that u contains no
nontrivial subgroup. Consider ρ, a representation of a profinite group G. Then ρ−1(u)
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is an open neighbourhood of the identity in G, and thus contains an open and normal
subgroup H. The set ⋃

x∈G

x+H

forms an open cover for the compact group G, and thus G/H is finite, and since H ⊆
Ker(ρ), we have Im(ρ) finite.

Definition 1.2 We will call two n-dimensional complex Galois representations ρ1 and
ρ2 over a finite extension L/K factor equivalent if there exist epimorphisms η1, η2, and
monomorphisms φ1 and φ2, such that

ηi : Gal(K/K) → Gal(L/K) (1)

φi : Gal(L/K) → GLn(C) (2)

φi ◦ ηi = ρi. (3)

Note this is a stronger condition than having two n-dimensional representations η and
ρ factoring through extensions K1 and K2 such that Gal(L1/K2) ∼= Gal(L2/K). In [9],
Walji gives an example of two representations ρ and ρ′ factoring through Gal(K1/Q) ∼=
Gal(K2/Q) ∼= SL2(F3). These are isomorphic as representations of SL2(F3), however
K1 ̸= K2 and as representations of Gal(Q/Q), η and ρ are not isomorphic. Since we

are only considering factor equivalent representations, we use the following theorem to
treat our factor equivalent Galois representations as representations of a finite group
G ∼= Gal(L/K).

Theorem 1.3 (Chebotarev Density Theorem). Let L be a finite Galois extension of a
number field K, with Galois group G := Gal(L/K). Let C ⊆ G be a conjugacy class, and
let S be the set of primes p of K, unramified in L with Frobp ∈ C, then d(S) = #C

#G
, where

d(S) is the Dirichlet Density of S.

Definition 1.4 For a complex representation ρ, we take χρ(g) : G → C such that

χρ(g) = trρ(g) (4)

to be the character from G to C arising from the representation ρ.

Remark 1.5 Although characters arise from representations, they may not be group
homomorphisms. Indeed, for n ≥ 2, χρ(i) = n if ρ is an n-dimensional complex repre-
sentation, showing χρ does not preserve identity. However, one can see characters are
constant on conjugacy classes. We exploit this in the proofs of Theorems 2.3 and 3.11.

Lemma 1.6 If ρ and η are two Galois representations over K that are factor equivalent
by an extension L/K with finite Galois group Gal(L/K) ∼= G: take their corresponding
representations of G to be ρ′ and η′, then

d(η, ρ) =
#{g ∈ G,χρ′(g) = χη′(g)}

#G
,
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where d(η, ρ) is as defined in 1.1.

Therefore, to bound the matching density of two factor equivalent Galois representations,
it suffices to bound the matching density of faithful representations of the finite group
through which they factor. Now we discuss the motivations behind this paper.

Two-dimensional irreducible complex representations are categorized by their images
in PGL2(C), which must be isomorphic to one of D2n, A4, S4, or A5 for natural n. This
can be found with proof in [1]. In [5], it was shown that the set of matching densities
of n-dimensional Galois representations over a number field is bounded above by 1− 1

2n2 .
The Dihedral representations constructed in [6] of matching density 7/8 show this bound
is indeed sharp when n = 2. So we now ask a new question: if we restrict ourselves to two-
dimensional representations that are factor equivalent, and have a projective image other
than D2n, can we improve upon the upper-bound for the set of matching densities of these
representations? This paper will focus on representations with projective image A4 or A5.
To do this, it suffices to bound the matching densities of the faithful representations of
the finite groups that project to A4 or A5. By Schur’s lemma, [7], these groups are exactly
the cyclic central extensions of A4 and A5, respectively. The earlier parts of Section 2 and
Section 3 will focus on the construction and classification of these groups. For a shorter
description of these groups, and further work in the case of 3-dimensional representations,
see [4]. The main result of this article is the following theorem:

Theorem 1.7 Consider two complex Galois representations over a number field K, ρ
and η, both icosahedral or tetrahedral and factor equivalent, then

d(ρ, η) ≤ 5/8,

where this bound is sharp.

The structure of this paper is partitioned into three sections. The first section introduces
notation, definitions, and previous results which motivate the paper. The next two sec-
tions prove Theorem 1.7, with the Section 2 being the icosahedral case, Theorem 2.3, and
Section 3 being the tetrahedral case, Theorem 3.11. The tetrahedral case is significantly
longer than the icosahedral case: heuristically, there are fewer possible central extensions
of A5, and consequently, fewer icosahedral representations, because A5 is simple, whereas
A4 is not. For the second two sections, almost all details are included in the hope that
the reader may not have to look elsewhere in the literature.

The following definitions will be used in both Section 2 and Section 3, and so we
include them here.

Definition 1.8 For two groups G,G′, we define G ∗G′ in the following manner. If there
are subgroups H ⊂ Z(G) and H ′ ⊂ Z(G′), with H ∼= H ′, then given an isomorphism
φ : H → H ′, take ∆ = {(a, φ(a))} ≤ G×G′ (which is normal, as it lies in the center of
G×G′), and define

G ∗G′ = (G×G′)/∆.
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1.1 A Note on Group Cohomolgy

In this subsection, we provide details on the group cohomolgy that will be used implicitly
in Section 2 and explicitly in Section 3. We can generalize the notion of a central extension
of groups to that of G-modules. We call E an extension of G by a G-module N if the
following short exact sequence exists in G-Mod,

0 → N → E → G → 0.

From [2], we know that if E is to be a central extension, then the action of G on N must
be trivial. Also from [2], we know that for a fixed G action, the set of extensions of G by
N is in bijection with H2(G,N). Consider the split class in H2(G,N), where the action
of G on N is trivial: treating an element of E of this class as a group, we must have that
E ∼= G×N . In particular, we have the following definition.

Definition 1.9 A central extension of groups, E of G by N is trivial, if

E ∼= G×N

Equivalentely, take E to be a central extension of G-modules G by N , where the action
of G on N is trivial. If E lies in the split class of H2(G,N), then E is the trivial central
extension of G by N .

Consider two elements E, E ′ in the same class in H2(G,N), then E, E ′ must satisfy

0 N E G 0

0 N E ′ G 0

f

where f is necessarily a G-module isomorphism. And so we see that when treated as
groups E and E ′ must be isomorphic.

Hence in order to count the number of group central extensions of G by N , n, we may
upper bound bound this quantity by |H2(G,N)| = m. If we then explicitly construct m
non-isomorphic group central extensions of G by N , we can lower bound n by m, giving
n = m. We will see in the icosahedral case, the work is done for us, however we will have
to work through these steps explicitly in the tetrahedral case.

Definition 1.10 We say two complex representations ρ, ρ′ are twist equivalent if

ρ′ ∼= ρ⊗ χ,

where χ is a character of an abelian group.

Remark 1.11 Consider two groups G and G′ such that

G⊕

(
N⊕
j=1

Cnj

)
∼= G′
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i.e. G andG′ differ by the direct product of finite abelian groups. Then the set of matching
densities of faithful representations of G′ is bounded above by the set of matching densities
of faithful representations of G. To see this, note the representations of G′ are twist
equivalent to representations of G, and tr(αM) = αtrM , for a matrix M , and scalar α.

For the rest of this paper, unless otherwise specified, all representations are considered to
be factor equivalent, irreducible and two-dimensional complex representations.

2 Icosahedral Representations

Definition 2.1 We define an icosahedral representation to be a complex two-dimensional
representation ρ of a group G, satisfying

ρ(G)/Z(ρ(G)) ∼= A5.

Before proceeding to the proof of the upper bound for icosahedral representations, we
note the following proposition of Wang, from [10].

Proposition 2.2 Let F be a number field, ρ an icosahedral Galois representation over F
and let G denote the image of Gal(F/F ) under ρ. Then G is generated by its commutator
subgroup G0, and its center Z(G) ∼= µ2m, which is the group of roots of unity of order
2m. Furthermore, G0 is isomorphic to Ã5, the unique non-trival central extension of A5

by C2, with center {±I}, and

G ∼= (G0 × C2m)/{±(I, 1)}.

Hence each irreducible representation Λ of G can be expressed (uniquely) as (Λ0, µ) where
Λ0

∣∣
G
= Λ is an irreducible representation of G0 and µ = Λ

∣∣
C2m

is a character of C2m,

and such that Λ0(−I) = µ(−1)I. Furthermore, each such pair (Λ0, ρ) gives an irreducible
representation of G.

Theorem 2.3 Consider two complex icosahedral Galois representations ρ, φ, over a num-
ber field K that are factor equivalent, then

d(ρ, φ) ≤ 5

8
.

Proof. Noting Proposition 2.2, and that Ã5
∼= SL2(F5), any icosahedral representation

must factor through a group G of the form

G ∼= SL2(F5) ∗ C2m.

To bound the matching density of factor equivalent icosahedral representations, it suffices
to bound the matching density of faithful, irreducible, two-dimensional representations of
the above group, or representations of

SL2(F5)× C2m,
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with kernels
{±(I2, 1)}. (5)

We denote the 2 two-dimensional faithful irreducible representations of SL2(F5) as X and
X ′, with respective characters χ and χ′.

size 1 1 20 30 12 12 20 12 12

X 2 −2 −1 0 −1+
√
5

2
−1−

√
5

2
1 1+

√
5

2
1−

√
5

2

X ′ 2 −2 −1 0 −1−
√
5

2
−1+

√
5

2
1 1−

√
5

2
1+

√
5

2

Table 1: Partial character table of SL2(F5)

We can see that both X and X ′ map −I2 to −I2. And so, for a character η of C2m, if
we require ker(X ⊗ η) = {±(I2, 1)}, we must have η(−1) = −1.

There are three distinct cases when calculating the matching density of representations
of groups of the above form. In the below, we take G to be SL2(F5) ∗ C2m.

Case 1: d(X ⊗ η,X ′ ⊗ η).

We can uniquely identify each conjugacy class of G as the direct sum of a conjugacy
classes of SL2(F5) and C2m. The character table of SL2(F5) tells us that for a given
g ∈ SL2(F5),

χ(g) ̸= χ′(g) ⇐⇒ |χ(g)| ≠ |χ′(g)|. (6)

From (6) we can see that for any η and x ∈ C2m, χ(g)η(x) = χ′(g)η(x) if and only if
χ(g) = χ′(g). Hence it suffices to count the elements in G where χ and χ′ are equal, and
then normalize by the order of G. And so by Lemma 1.6 we have

d(X ⊗ η,X ′ ⊗ η) =
1 + 1 + 20 + 30 + 20

120
=

3

5
. (7)

Now we deal with the second case.

Case 2: d(X ⊗ η,X ⊗ η′).
It is important to note that given two characters η and η′ of C2m satisfying (5), we have

d(η, η′) ≤ 1

2
. (8)

Consider g ∈ X that is not in the conjugacy class of order 30 from Table 1. Then for any
x ∈ C2m

(X ⊗ η)(g, x) = (X ⊗ η′)(g, x) ⇐⇒ η(x) = η′(x). (9)

If g lies in the conjugacy class of order 30, then for any η and η′, and x ∈ C2m,

(X ⊗ η)(g, x) = (X ⊗ η′)(g, x). (10)
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Combining (8), (9) and (10)

d((X ⊗ η), (X ⊗ η′)) ≤ 90m+ 60m

240m
=

5

8
. (11)

Case 3: d(X ⊗ η,X ′ ⊗ η′).

By (5), we can see that given g ∈ SL2(F5) and any η, η′ and x ∈ C2m,

χ(g) ̸= χ′(g) =⇒ χ(g)η(x) ̸= χ′(g)η′(x).

Therefore, we have

d((X ⊗ η), (X ′ ⊗ η′)) ≤ 3

5
.

Therefore, given any two representations ρ, φ of G satisfying (5), we have

d(ρ, φ) ≤ 5

8
.

□

Remark 2.4 If one considers η and η′, the two distinct representations of C8 such that
η(−1) = −1 and η′(−1) = (−1). Then one can see that d(η, η′) = 1

2
, and so

d(X ⊗ η,X ⊗ η′) =
5

8
. (12)

Hence the bound from Theorem 2.3 is sharp.

3 Tetrahdedral Representations

Definition 3.1 We define a tetrahedral representation to be a two-dimensional complex
representation ρ of a group G such that

ρ(G)/Z(ρ(G)) ∼= A4.

Section 3 is split into 3 subsections. In the first, we count the number of central extensions
of A4, in the second we classify these groups, and in the third we bound the matching
densities of these groups, proving the Tetrahedral case of Theorem 1.7.

3.1 Counting Central Extensions via Group Cohomology

In this section, we count the possible central extensions of A4 by Cm using group coho-
mology. We will follow the procedure described in Section 1. However first we require the
following lemma.

Lemma 3.2 , For distinct primes p, q, if the only central extension of G by Cpk is trivial,
then every central extension of G by Cpkqj is of the form H × Cpk , where H is a central
extension of G by Cqj .
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Proof. Consider H, a central extension of G by Cqj , then

0 → Cpkqj → H × Cpk → G → 0,

gives central extension H × Cpk , of G by Cpkqj

Suppose for sake of contradiction, there exists a central extension K of G by Cpkqj not
of the form H × Cpk where H is a central extension of G by Cqj . Then this is given by

0 → Cpkqj
φ→ K → G → 0.

By construction of K, we can see that

K/φ(i× Cqj) ̸∼= G× Cpk .

And therefore
0 → Cpk → K/φ(i× Cqj) → G → 0,

is a non-trivial central extension of G by Cpk , which is a contradiction, and proves our
lemma. □

Proposition 3.3 For a fixed m, there exist at most 3 non-trivial central extensions of
A4 by Cm.

Proof. The extensions we are identifying cannot be trivial since A4 admits no irreducible
two-dimensional complex representations. By Lemma 3.2, we will see it suffices to check
for m = 2i3j for i, j ∈ N≥0. We will make use of the method described in Subsection 1.1.

Consider the following short exact sequence,

0 → Ext1(H1(A4;Z), Cm)
f→ H2(A4;Cm)

g→ Hom(H2(A4;Z), Cm) → 0 (13)

whose existence is a result of the Universal Coefficient Theorem for Cohomology, which
can be found in more detail and with proof in [3].

We introduce the following two lemmas, whose proofs we omit, but can be found in
[3], allowing us to re-write (13).

Lemma 3.4 For a group T ,

Ext1Z

(⊕
i

Z/niZ, T

)
∼=
⊕
i

T/niT.

Proof. See [3]. □

Lemma 3.5
H2(A4;Z) ∼= Z/2Z

H1(A4;Z) ∼= Z/3Z
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Proof. The proof of the first equation follows from Hopf’s theorem for H2(G;Z), and
the second from H1(G;Z) ∼= Gab. □

Case 1: (2,m) = (3,m) = 1.
We use Lemmas 3.4 and 3.5 to arrive at the following short sequence.

0 → 0
f→ H2(A4;Cm)

g→ 0 → 0, (14)

which tells us that the only central extension of A4 by Cm with the above divisibility
conditions is the trivial extension, and can thus be ignored.

Case 2: (2,m) = 2, (3,m) = 1
We use the same lemmas, with new divisibility conditions to arrive at the following short
exact sequence.

0 → 0
f→ H2(A4;Cm)

g→ Z/2Z → 0,

and so there exists a unique non-trivial central extension of A4 by Cm with the above
conditions on m, which we denote Um

1 . We take U1 to be an arbitrary element of the set
{Um

1 } over m ∈ N with the above divisibility conditions.

Case 3: (2,m) = 1, (3,m) = 3
We use the same lemmas, with the new divisibility conditions to arrive at the following
short exact sequence.

0 → Z/2Z f→ H2(A4;Cm)
g→ 0 → 0,

and so there exists a unique non-trivial central extension of A4 by Cm with the above
conditions. We denote it by V m

1 . Similarly as above, we take V1 to be an arbitrary
element of the set of {V m

1 } over m ∈ N with the above divisibility conditions.

Case 4: (2,m) = 2, (3,m) = 3
We use the same lemmas, with the new divisibility conditions to arrive at the following
short exact sequence.

0 → Z/2Z f→ H2(A4;Cm)
g→ Z/2Z → 0,

and so there exists 3 non-trivial central extensions of A4 by Cm with the above conditions.
We denote these Wm

1 , Wm
2 and Wm

2 . We pick W1, W2 and W3 to be elements of the sets
{Wm

1 }, {Wm
3 } and {Wm

3 }, respectively with the above divisibility conditions.

We can conclude that any tetrahedral representation must factor through one of U1,
V1, W1, W2 or W3.

However, taking m = 2i3j, we can set

W1 = U1 × C3j ,W2 = V1 × C2i ,

Since the representations of the above groups are twist equivalent to those of U1 and V1,
by Remark 1.11, finding the matching densities of their faithful irreducible representations
reduces to finding those of U1 and V1. Hence there are 3 main cases to tackle. These being
U1, V1 and W3. Now we will classify these groups. □
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3.2 Classification of Central Extensions

Proposition 3.6 For a fixed k = 3j

C2
2 ⋊φ C3j+1 = V1

acting via φ : C3j+1/C3j
∼= C3 is a central extension of A4 by C3j .

Proof. We first note that
A4

∼= C2
2 ⋊φ C3.

Consider the inclusion map f such that

f : C3j → i⋊φ C3j ⊂ C2
2 ⋊φ C3j+1 = V1.

where C3j = ker(φ). One sees that f(C3j) ⊂ Z(V1). Consider the projection map

g : C2
2 ⋊φ C3j+1 → C2

2 ⋊φ C3.

It is clear that ker(g) = (i, C3j) = Im(f), giving us

0 → C3j
f→ C2

2 ⋊φ C3j+1
g→ A4 → 0,

which is the desired central extension. □

Corollary 3.7 V1, and consequently W2 do not admit irreducible two-dimensional repre-
sentations.

Proof. By the definition of the semi-direct product, we see that C2
2 is normal in V1 and

abelian. We note the corollary of Proposition 24 in [7] stating if A is a normal abelian
subgroup of G, then the dimension of any irreducible representation of G must divide
[G : A]. We see [V1 : C2

2 ] = 3j+1, which provides the desired result for V1. Since the
representations of W2 are twist equivalent to those of V1, by Remark 1.11 we can see W2

will not admit faithful irreducible two-dimensional complex representations. □

Proposition 3.8 For i > 1, U1 = C2i ∗ SL2(F3) with ∆ = C2, is a central extension of
A4 by C2i .

Proof. First note that Z(SL2(F3)) ∼= C2 and SL2(F3)/Z(SL2(F3)) ∼= A4. Take f to be
the inclusion map

f : C2i → (C2i × C2)/C2 ⊂ C2i ∗ SL2(F3).

One can see that Im(f) ⊂ Z(U1). Take g to be the projection map

g : C2i ∗ SL2(F3) → (C2i ∗ SL2(F3))/((C2i × C2)/C2).

By the isomorphism theorems we have

Im(g) ∼= (C2i × SL2(F3))/C2i × C2) ∼= SL2(F3)/C2
∼= A4, ker(g) = (C2i × C2)/C2).
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Hence we have the central extension

0 → C2i
f→ C2i ∗ SL2(F3)

g→ A4 → 0.

We also have W2 = SL2(F3) ∗ C2i × C3j , which we can see is a central extension of A4 by
the above. □

Proposition 3.9 W3 = C2i ∗D4⋊φC3j+1 via φ : C3j+1 → C3 is a central extension of A4

by C3j2i.

Proof. We will construct this group formally to begin. First we note that Z(D4) = C2

and Z(C2i ∗D4) ∼= C2i . Consider the projection map

ϕ : D4 → C2
2

with ker(ϕ) = Z(D4). Take X, Y, Z to be the cosets of order 2 in D4/Z(D4), and identify
the cosets with representatives x, y, z. Consider the subgroups of W3

Cx
2i, C

y
2i, C

z
2i,

defined by
Cx

2i = (C2i × φ−1(X))/C2
∼= C2i × C2,

and similarly for y, z, where the above C2i = Z(W3). Take the automorphism η of order
three that satisfies

η(Cx
2i) = Cy

2i
, η(Cy

2i
) = Cz

2i , η(C
z
2i) = Cx

2i .

Let the subgroup of Aut(W3) generated by η be denoted by A. We define φ to be the map

φ : C3j+1 → C3 = A ⊂ Aut(W3).

Consider the inclusion map

f : C2i3j → C2i ⋊φ C3j ⊆ W3,

where C3j = ker(φ). One can see Im(f) = Z(G). Now consider the projection map

g : W3 → W3/ker(f) ∼= ((C2i ∗D4)/C2i)⋊φ C3
∼= C2

2 ⋊φ C3,

where C3 acts faithfully on C2
2 . Therefore, f, g gives us the desired central extension. □

Proposition 3.10 For k = 2i3j, i = 1, Q8 ⋊φ C3j+1 acting via φ : C3j+1 → C3, is a
central extension of A4 by Ck.

Proof. Note Z(Q8) = C2, and Q8/C2
∼= C2

2 . The proof of this proposition follows from
the proof of Proposition 3.9, except that we redefine f to be the inclusion map

f : C2 × C3j → Q8 ⋊φ C3j+1
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with the images f(C2×C3j) = Z(Q8)×ker(φ). Then if we take g to be the quotient map
by Z(Q8)× ker(φ), we arrive at the desired short exact sequence,

0 → C2i3j
f→ Q8 ⋊φ C3j+1

g→ A4 → 0.

□
We have constructed all of the groups which admit faithful complex irreducible tetra-

hedral representations. Now we bound the matching densities of the faithful irreducible
representations of these groups, which as previously mentioned, is sufficient to bound the
set of possible matching densities of factor equivalent tetrahedral Galois representations
over number fields.

3.3 Bounding Matching Densities

In this subsection, using the results of the previous two subsections, we prove the following
theorem.

Theorem 3.11 Consider two complex icosahedral Galois representations ρ, η, over a
number field K that are factor equivalent, then

d(ρ, η) ≤ 5

8
.

Proof. By Proposition 3.3, Corollary 3.7, and Propositions 3.8, 3.9, and 3.10, we
know that any tetrahedral representation factors through either U1 = C2i ∗ SL2(F3),
W1 = U1×C3j , W3 = C2i ∗D4⋊φC3j+1 or W 3j2

3 = Q8⋊φC3j+1 . The proof of this theorem
is partitioned into four lemmas where we bound the matching density of representations
of the finite groups mentioned above.

Lemma 3.12 Non-isomorphic representations factoring through U1 and W1 have match-
ing density of at most 5/8.

Proof. We denote the 3 two-dimensional faithful irreducible representations of SL2(F3)
as X, X ′ X ′′, with respective characters χ, χ′ and χ′′.

size 1 1 4 4 6 4 4
X 2 −2 −1 −1 0 1 1
X ′ 2 −2 ζ56 ζ6 0 ζ3 ζ23
X ′′ 2 −2 ζ6 ζ56 0 ζ23 ζ3

Table 2: Partial character table of SL2(F3)

By construction, we know that any faithful representation of U1 will be representation
of SL2(F3) sending −I2 to −I2 twisted by a character ϕ of C2i satisfying

ker(ϕ) = {±1}. (15)
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Now we consider the three cases of representations on G satisfying (15).
Case 1: d(X ⊗ ϕ,X ′ ⊗ ϕ).

Note that the image of any element of C2i satisfying (15) under ϕ will be a 2i−1th root
of unity. By examining Table 2, we can see that for any g ∈ SL2(F3) not in the conjugacy
class of order 6, then for two distinct X, X ′ or X ′′,

χ′(g)/χ′′(g) = 1, or eikπ/3

where (k, 3) = 1. Hence we can see

χ(g) ̸= χ′(g) =⇒ χ(g)ϕ(x) ̸= χ′(g)ϕ(x). (16)

Which tells us

d(X ⊗ ϕ,X ′ ⊗ ϕ) ≤ 1

4
.

Now we deal with the second case.

Case 2: d(X ⊗ ϕ,X ⊗ ϕ′).

It is important to note that given two characters ϕ and ϕ′ of C2i satisfying (15), we
have

d(ϕ, ϕ′) ≤ 1

2
. (17)

Consider g ∈ X that is not the conjugacy class 4. Then we have

X ⊗ ϕ(g, x) = X ⊗ ϕ′(g, x) ⇐⇒ ϕ(x) = ϕ′(x). (18)

If g lies in a conjugacy class of order 4, then for any ϕ and ϕ′, and x ∈ C2i ,

X ⊗ ϕ(g, x) = X ⊗ ϕ′(g, x). (19)

Viewing Cases (17), (18) and (19) together, we see

d(X ⊗ ϕ,X ⊗ ϕ′) ≤ (9)2i + (6)2i

(24)2i
=

5

8
. (20)

Case 3: d(X ⊗ ϕ,X ′ ⊗ ϕ′).

By (15), we can see that given g ∈ SL2(F3) and any ϕ, ϕ′ and x ∈ C2i ,

χ(g) ̸= χ′(g) =⇒ χ(g)ϕ(x) ̸= χ′(g)ϕ′(x).

Therefore, we have

d(X ⊗ ϕ,X ′ ⊗ ϕ′) ≤ 1

3
and further, given any two representations ρ, φ of U1 satisfying (15), we have

d(ρ, φ) ≤ 5

8
.

Hence we have found the upper bound for the representations factoring through groups
of the form C2i ∗ SL2(F3). By Remark 1.11, we have also found the upper bound for
matching densities factoring through W1 to be 5/8. □
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Definition 3.13 We say a subset S of a finite group G has relative density α if #S
#G

= α.

In the case where S is a subgroup of G, then the relative density is equal to [S : G].

Lemma 3.14 Two non-isomorphic faithful representations of W3 have matching density
of less than 5/8.

Proof. We note that the faithful and irreducible two-dimensional representations of
C4 ∗D4 ⋊φ C9 have matching density of at most 5/8. Every faithful and irreducible two-
dimensional representation ρ of G = C2i ∗D4⋊φC3j+1 , satisfies the following relation with
representations of

H = C4 ∗D4 ⋊φ C9,

ρ(G)/ρ(C2i−2 × C3j−1) = ρ′(H)

for the unique subgroup of the form C2i−2 ×C3j−1 lying in Z(G) and a faithful irreducible
representation ρ′ of H. Now consider two faithful and irreducible two-dimensional repre-
sentations of G, ρ and η. There are three cases.

Case 1: Given ρ and η as described above, their associated ρ′ and η′ are not equal,
however, ρ(x) = η(x) where ⟨x⟩ = C2i−2 × C3j−1 ⊂ Z(G).

If the above holds, consider a conjugacy class Y of G that projects to a conjugacy
class X of H, then we can see

χρ(Y ) = χη(Y ) ⇐⇒ χρ′(X) = χη′(X).

By assumption, d(ρ′, η′) ≤ 5/8 and therefore d(ρ, η) ≤ 5/8.

Case 2: For ρ and η, the associated ρ′ and η′ are not equal, and ρ(x) ̸= η(x), for x
as defined in the previous case.

If the above holds, consider a conjugacy class Y of G that projects to a conjugacy
class X of H, if χρ′(X) ̸= χη′(X), then they must differ by an element not contained in
the kernel of the quotient of G → G/(C2i−2 × C3j−1). Hence

χρ′(X) ̸= χη′(X) =⇒ χρ(Y ) ̸= χη(Y ).

Hence ρ and η differ on a set of relative density of at least 3/8. Hence d(ρ, η) ≤ 5/8.

Case 3: ρ and η are not isomorphic, however ρ′ = η′.

If the above holds, we must have that ρ(x) ̸= η(x) and so

0 ̸= χρ′(X) = χη′(X) =⇒ χρ(aX) ̸= χη(aX),

where a is a generator of C2i−2×C3j−1 . However χρ and χη will be equal on all elements that
map to 0, which is a subset of relative density less than 1/4. Hence d(ρ, η) ≤ 1

3
+ 2

3
(1
4
) < 5

8
.

□
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Lemma 3.15 Two non-isomorphic faithful representations of W 3j2
1 have matching den-

sity less than 5/8.

Proof. Take H = G/C3j and consider two faithful irreducible two-dimensional com-
plex representations of G. Note in the same manner as above, ρ of G corresponds to a
representation ρ′ of H if

ρ(G)/ρ(C3j) = ρ′(H),

and similarly for η. Once again, take x to be a generator of the group of order 3j contained
within Z(G). Note for any 2 irreducible representations of Q8 ⋊φ C9, they have matching
density of at most 1/3.

Case 1: Given ρ and η as described above, their associated ρ′ and η′ are not isomor-
phic, and ρ(x) = η(x) where ⟨x⟩ = C3j ⊂ Z(G).

If the above holds, consider a conjugacy class Y of G that projects to a conjugacy
class X of H, then we can see

χρ(Y ) = χη(Y ) ⇐⇒ χρ′(X) = χη′(X).

By assumption, d(ρ′, η′) ≤ 1/3 and therefore d(ρ, η) ≤ 1/3.

Case 2: For ρ and η, the associated ρ′ and η′ are not isomorphic, and further the
image of ρ(x) ̸= η(x).

If the above holds, consider a conjugacy class Y of G that projects to a conjugacy class
X of H, if χρ′(X) ̸= χη′(X), then their images must differ by an element not contained
in the kernel of the quotient of G → G/C3j . Hence

χρ′(X) ̸= χη′(X) =⇒ χρ(Y ) ̸= χη(Y ).

Hence ρ and η differ on a set of relative density of at least 2/3. Hence d(ρ, η) ≤ 1/3.

Case 3: ρ and η are not isomorphic, however ρ′ = η′.

If the above holds, we must have that ρ(x) ̸= η(x) and so

0 ̸= χρ′(X) = χη′(X) =⇒ χρ(aX) ̸= χη(aX),

where a is a generator of C2i−2×C3j−1 . However χρ and χη will be equal on all elements that
map to 0, which is a subset of relative mass less than 1/4. Hence d(ρ, η) ≤ 1

3
+ 2

3
(1
4
) < 5

8
.

□

Lemmas 3.12, 3.14, 3.15, Proposition 3.3, and Remark 1.11 show us that if ρ, and
η are two non-isomorphic representations of a group that projects to A4, they attain a
matching density of at most 5/8, which proves the desired result. □

Remark 3.16 The bound above is sharp, and there exist tetrahedral representations
with matching density equal to 5/8.

Proof. Consider the table below, note ρ and η are faithful, and have matching density
of 5/8, proving our bound is sharp. □
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size 1 1 6 4 4 1 1 6 4 4 4 4 4 4
ρ 2 −2 0 ζ56 ζ6 −2i 2i 0 ζ23 ζ3 ζ34ζ3 ζ34ζ

2
3 ζ4ζ3 ζ4ζ

2
3

η 2 −2 0 ζ56 ζ6 2i −2i 0 ζ23 ζ3 ζ4ζ3 ζ4ζ
2
3 ζ34ζ3 ζ34ζ

2
3

Table 3: Partial character table of C4 ∗ SL2F3.
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