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1 Introduction

Consider two n-dimensional complex Galois representations, n and p over a number ﬁeg
K, which we note are continuous homomorphisms from Gal(K/K) — GL,(C), where K
is an algebraic closure of K.

Definition 1.1 Let Yk s denote the set of finite places of K. If p and n are complex
Galois representations over K, which are both unramified at v € Xk ¢, let trp(Frob,) be
the trace of Frobenius of p at v, and similarly for n. We define the matching density
d(p,n) to be the Dirichlet density of the set V = {v € X s : trp(Frob,) = trn(Frob,)}.

If p and 7 are isomorphic representations, then we can see d(p,n) = 1, so we only consider
matching densities of representations which are not isomorphic. The above definition has
been used to show previous results on Galois representations. In Serre’s article [6], he con-
structs Galois representations of matching density 7/8, and in [§], Walji constructs pairs
of representations with matching densities 3/4, 3/5 and 17/32. Furthermore in [9], Walji
shows the set of all possible matching densities of n-dimensional Galois representations
over Q, and all n, is dense in [0, 1].

For a number field K, we must have that any complex Galois representation over K
has finite image. To see this, note GL,(C) is equipped with a Lie group topology, so we
may take u to be a small open neigbourhood of the identity, I,,, such that u contains no
nontrivial subgroup. Consider p, a representation of a profinite group G. Then p~!(u)
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is an open neighbourhood of the identity in G, and thus contains an open and normal
subgroup H. The set
U x+ H

forms an open cover for the compact group G, and thus G/H is finite, and since H C
Ker(p), we have Im(p) finite.

Definition 1.2 We will call two n-dimensional complex Galois representations p, and
p2 over a finite extension L/K factor equivalent if there exist epimorphisms ny,1n, and
monomorphisms oy and py, such that

ni: Ga(K/K) — Gal(L/K) (1)
v;: Gal(L/K) — GL,(C) (2)
Pi O 1 = Pi- (3)

Note this is a stronger condition than having two n-dimensional representations n and
p factoring through extensions K; and K, such that Gal(L,/K>) = Gal(Ly/K). In [9],
Walji gives an example of two representations p and p’ factoring through Gal(K;/Q) =
Gal(K3/Q) = SLy(F3). These are isomorphic as representations of SLy(F3), however
K, # K, and as representations of Gal(Q/Q), n and p are not isomorphic. Since we

are only considering factor equivalent representations, we use the following theorem to

treat our factor equivalent Galois representations as representations of a finite group
G = Gal(L/K).

Theorem 1.3 (Chebotarev Density Theorem). Let L be a finite Galois extension of a
number field K, with Galois group G := Gal(L/K). Let C C G be a conjugacy class, and
let S be the set of primes p of K, unramified in L with Frob, € C, then d(S) = %, where
d(S) is the Dirichlet Density of S.

Definition 1.4 For a complex representation p, we take x,(g) : G — C such that

Xo(9) = trp(g) (4)

to be the character from G to C arising from the representation p.

Remark 1.5 Although characters arise from representations, they may not be group
homomorphisms. Indeed, for n > 2, x,(i) = n if p is an n-dimensional complex repre-
sentation, showing x, does not preserve identity. However, one can see characters are
constant on conjugacy classes. We exploit this in the proofs of Theorems [2.3] and

Lemma 1.6 If p and n are two Galois representations over K that are factor equivalent
by an extension L/K with finite Galois group Gal(L/K) = G: take their corresponding
representations of G to be p' and ', then

a0, p) #{g € G,x;;(éq) = xr(9)}
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where d(n, p) is as defined in|[1.1]

Therefore, to bound the matching density of two factor equivalent Galois representations,
it suffices to bound the matching density of faithful representations of the finite group
through which they factor. Now we discuss the motivations behind this paper.

Two-dimensional irreducible complex representations are categorized by their images
in PGL3(C), which must be isomorphic to one of Dy,, Ay, Sy, or As for natural n. This
can be found with proof in [I]. In [5], it was shown that the set of matching densities
of n-dimensional Galois representations over a number field is bounded above by 1 — #
The Dihedral representations constructed in [6] of matching density 7/8 show this bound
is indeed sharp when n = 2. So we now ask a new question: if we restrict ourselves to two-
dimensional representations that are factor equivalent, and have a projective image other
than Ds,, can we improve upon the upper-bound for the set of matching densities of these
representations? This paper will focus on representations with projective image Ay or As.
To do this, it suffices to bound the matching densities of the faithful representations of
the finite groups that project to A4 or As. By Schur’s lemma, [7], these groups are exactly
the cyclic central extensions of A4 and Aj, respectively. The earlier parts of Section [2/ and
Section [3] will focus on the construction and classification of these groups. For a shorter
description of these groups, and further work in the case of 3-dimensional representations,
see [4]. The main result of this article is the following theorem:

Theorem 1.7 Consider two complex Galois representations over a number field K, p
and n, both icosahedral or tetrahedral and factor equivalent, then

d(p,n) <5/8,

where this bound is sharp.

The structure of this paper is partitioned into three sections. The first section introduces
notation, definitions, and previous results which motivate the paper. The next two sec-
tions prove Theorem [L.7] with the Section [2| being the icosahedral case, Theorem [2.3, and
Section [3 being the tetrahedral case, Theorem [3.11} The tetrahedral case is significantly
longer than the icosahedral case: heuristically, there are fewer possible central extensions
of A5, and consequently, fewer icosahedral representations, because Ay is simple, whereas
Ay is not. For the second two sections, almost all details are included in the hope that
the reader may not have to look elsewhere in the literature.

The following definitions will be used in both Section [2] and Section [} and so we
include them here.

Definition 1.8 For two groups G,G’, we define G x G’ in the following manner. If there
are subgroups H C Z(G) and H' C Z(G'), with H = H', then given an isomorphism
v: H— H', take A = {(a,p(a))} < G x G (which is normal, as it lies in the center of
G x G'), and define

GxG =(GxG)/A.
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1.1 A Note on Group Cohomolgy

In this subsection, we provide details on the group cohomolgy that will be used implicitly
in Section 2] and explicitly in Section[3] We can generalize the notion of a central extension
of groups to that of G-modules. We call E' an extension of G by a G-module N if the
following short exact sequence exists in G-Mod,

0O—-N—-FE—>G—=0.

From [2], we know that if E is to be a central extension, then the action of G on N must
be trivial. Also from [2], we know that for a fixed G action, the set of extensions of G by
N is in bijection with H?(G, N). Consider the split class in H*(G, N), where the action
of G on N is trivial: treating an element of F of this class as a group, we must have that
E = G x N. In particular, we have the following definition.

Definition 1.9 A central extension of groups, E of G by N is trivial, if
E=GxN

Equivalentely, take E to be a central extension of G-modules G by N, where the action
of G on N is trivial. If E lies in the split class of H*(G, N), then E is the trivial central
extension of G by N.

Consider two elements E, E’ in the same class in H(G, N), then E, E' must satisfy
> B
|
E/

where f is necessarily a G-module isomorphism. And so we see that when treated as
groups F and F’ must be isomorphic.

0 > N s G > 0

0 > N s G > 0

Hence in order to count the number of group central extensions of G' by N, n, we may
upper bound bound this quantity by |H?*(G, N)| = m. If we then explicitly construct m
non-isomorphic group central extensions of G by N, we can lower bound n by m, giving
n = m. We will see in the icosahedral case, the work is done for us, however we will have
to work through these steps explicitly in the tetrahedral case.

Definition 1.10 We say two complex representations p, p’ are twist equivalent if

prEPRX,
where x 1s a character of an abelian group.

Remark 1.11 Consider two groups G and G’ such that

N
G (@ cnj) =yel
j=1
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i.e. G and G’ differ by the direct product of finite abelian groups. Then the set of matching
densities of faithful representations of G’ is bounded above by the set of matching densities
of faithful representations of G. To see this, note the representations of G’ are twist
equivalent to representations of G, and tr(aM) = atrM, for a matrix M, and scalar «.

For the rest of this paper, unless otherwise specified, all representations are considered to
be factor equivalent, irreducible and two-dimensional complex representations.

2 Icosahedral Representations

Definition 2.1 We define an icosahedral representation to be a complex two-dimensional
representation p of a group G, satisfying

p(G)/Z(p(G)) = As.

Before proceeding to the proof of the upper bound for icosahedral representations, we
note the following proposition of Wang, from [10].

Proposition 2.2 Let F' be a number field, p an icosahedral Galois representation over F'
and let G denote the image of Gal(F/F) under p. Then G is generated by its commutator
subgroup Gy, and its center Z(G) = gy, which is the group of roots of unity of order
2m. Furthermore, Gy is isomorphic to As, the unique non-trival central extension of As
by Cy, with center {£I}, and

Hence each irreducible representation A of G can be expressed (uniquely) as (Ao, 1) where
AO’G = A is an irreducible representation of Gy and p = A’CQ 1s a character of Coyy,

and such that Ao(—1I) = p(—1)1. Furthermore, each such pair (Ao, p) gives an irreducible
representation of G.

Theorem 2.3 Consider two complex icosahedral Galois representations p, @, over a num-
ber field K that are factor equivalent, then

oo | Ut

d(p, ) <

Proof. Noting Proposition and that Ay =~ SLy(F5), any icosahedral representation
must factor through a group G of the form

G= SLQ(Fg)) * CQm-

To bound the matching density of factor equivalent icosahedral representations, it suffices
to bound the matching density of faithful, irreducible, two-dimensional representations of
the above group, or representations of

SLQ (]].‘_“5) X Cgm,
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with kernels

{£(L,1)}. ()

We denote the 2 two-dimensional faithful irreducible representations of SLy(F5) as X and
X', with respective characters x and x'.

size‘l 1 20 30 12 1220 12 12

X |2 2 1 o =26 V5 1 16 16
2 2 2 2
—1-v/5 —1+v5 1-v5 145
X 12 =2 -1 0 3 ‘5 1 3 +2

Table 1: Partial character table of SLy(F5)

We can see that both X and X' map —I5 to —I5. And so, for a character n of Co,,, if
we require ker(X ® n) = {£(l2, 1)}, we must have n(—1) = —1.

There are three distinct cases when calculating the matching density of representations
of groups of the above form. In the below, we take G to be SLy(F5) * Cay,.

Case 1: d( X ®@n, X' ®n).

We can uniquely identify each conjugacy class of G as the direct sum of a conjugacy
classes of SLy(F5) and Cy,,. The character table of SLy(Fs5) tells us that for a given
g c SL2 (]F5>,

x(9) # X'(9) <= Ix(9)l # IX'(9)l. (6)

From (() we can see that for any n and x € Cayp, x(g)n(x) = X'(g9)n(x) if and only if
x(9) = X'(g). Hence it suffices to count the elements in G where x and x' are equal, and
then normalize by the order of G. And so by Lemma[I.6] we have

141420430420 3
N 120 5

dX on X @n) (7)

Now we deal with the second case.

Case 2: d( X @n, X ®17).
It is important to note that given two characters n and n' of Cs,, satisfying (@, we have

d(n,n) < (8)

Consider g € X that is not in the conjugacy class of order 30 from Table 1. Then for any
X € Cgm

(X @n)(gz)=(X@n)(g,2) < nlz)=n'(z). (9)
If g lies in the conjugacy class of order 30, then for any n and n', and x € Cyy,,
(X @n)(g,2) = (X ®7)(9,7). (10)
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Combining (@, @ and (@)
90m + 60m 5

d((X ®77)7 (X ®77/)) S W = g (11)

Case 3: d( X ®@n, X' ®@17).
By (9)), we can see that given g € SLy(F5) and any n, 7' and x € Cayp,
X(9) #X'(9) = x(g)n(x) # x'(9)n' ().
Therefore, we have
3
d(X ®n),(X @1)) < ¢

Therefore, given any two representations p, ¢ of G satisfying (@), we have

d(p, ) <

co| Ut

O

Remark 2.4 If one considers 1 and 7/, the two distinct representations of Cy such that
n(—1) = =1 and 5/(—1) = (—1). Then one can see that d(n,7’) = 1, and so

5
dX@nXen)= 5 (12)

Hence the bound from Theorem [2.3]is sharp.

3 Tetrahdedral Representations

Definition 3.1 We define a tetrahedral representation to be a two-dimensional complex
representation p of a group G such that

p(G)/Z(p(G)) = Ay,

Section [3|is split into 3 subsections. In the first, we count the number of central extensions
of A4, in the second we classify these groups, and in the third we bound the matching
densities of these groups, proving the Tetrahedral case of Theorem [1.7]

3.1 Counting Central Extensions via Group Cohomology

In this section, we count the possible central extensions of A4 by C,, using group coho-
mology. We will follow the procedure described in Section [I However first we require the
following lemma.

Lemma 3.2 , For distinct primes p, q, if the only central extension of G' by Cy is trivial,
then every central extension of G by Cyrei ts of the form H x C,., where H is a central
extension of G by C.
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Proof. Consider H, a central extension of G by Cy;, then
0—>Opkqj—>HXCpk—>G—>O,

gives central extension H x Cpr, of G by Cpr,i

Suppose for sake of contradiction, there exists a central extension K of G by C),; not
of the form H x C,» where H is a central extension of G by Cy;. Then this is given by

0= Cpy = K — G —0,
By construction of K, we can see that
K/p(i x Cp) 2 G x Cp.

And therefore
0= Cp — K/p(i x Cp) = G — 0,

is a non-trivial central extension of G' by Cpk, which is a contradiction, and proves our
lemma. ]

Proposition 3.3 For a fixed m, there exist at most 3 non-trivial central extensions of

Proof. The extensions we are identifying cannot be trivial since A, admits no irreducible
two-dimensional complex representations. By Lemma [3.2] we will see it suffices to check
for m = 23/ for 7,7 € N5o. We will make use of the method described in Subsection .

Consider the following short exact sequence,
0 — Ext!(Hy(As; Z),C) 5 HX(Ay: Cr) % Hom(Hy(Au; Z),C) — 0 (13)

whose existence is a result of the Universal Coefficient Theorem for Cohomology, which
can be found in more detail and with proof in [3].

We introduce the following two lemmas, whose proofs we omit, but can be found in
[3], allowing us to re-write ((13)).

Lemma 3.4 For a group T,

Ext} (EB Z/niZ,T> ~ P T1/niT.
Proof. See [3]. O

Lemma 3.5
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Proof. The proof of the first equation follows from Hopf’s theorem for Hy(G;Z), and
the second from H,(G; Z) = G. O

Case 1: (2,m) = (3,m) = 1.
We use Lemmas [3.4] and [3.5] to arrive at the following short sequence.

0— 0L HY Ay C) 50— 0, (14)

which tells us that the only central extension of A, by C,, with the above divisibility
conditions is the trivial extension, and can thus be ignored.

Case 2: (2,m)=2,(3,m) =1
We use the same lemmas, with new divisibility conditions to arrive at the following short
exact sequence.
002 H2(Ay;C) S 2)2Z — 0,
and so there exists a unique non-trivial central extension of A, by C,, with the above
conditions on m, which we denote U]". We take U; to be an arbitrary element of the set
{U7"} over m € N with the above divisibility conditions.

Case 3: (2,m) =1, (3,m) =3
We use the same lemmas, with the new divisibility conditions to arrive at the following
short exact sequence.

0— Z/2Z 5 H2(Ay; C) 5 0 — 0,
and so there exists a unique non-trivial central extension of A, by C,, with the above

conditions. We denote it by V/™. Similarly as above, we take V; to be an arbitrary
element of the set of {V"} over m € N with the above divisibility conditions.

Case 4: (2,m) =2, (3,m) =3
We use the same lemmas, with the new divisibility conditions to arrive at the following
short exact sequence.

0—2/2Z 5 H2(Ay; C) % 2)2Z — 0,

and so there exists 3 non-trivial central extensions of A4 by C,, with the above conditions.
We denote these W™, W3 and WJ*. We pick Wy, W5 and W3 to be elements of the sets
{Wih, {Wir} and {W3"}, respectively with the above divisibility conditions.

We can conclude that any tetrahedral representation must factor through one of Uy,
Vi, Wi, Wy or Wi,
However, taking m = 2¢37, we can set
Wl = Ul X ng,WQ = ‘/1 X 022',

Since the representations of the above groups are twist equivalent to those of U; and Vi,
by Remark[I.11], finding the matching densities of their faithful irreducible representations
reduces to finding those of U; and V;. Hence there are 3 main cases to tackle. These being
Ui, Vi and W3, Now we will classify these groups. 0
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3.2 Classification of Central Extensions

Proposition 3.6 For a fived k = 3/
022 Ao C3j+1 =V
acting via ¢ : C3j+1/C35 = C3 is a central extension of Ay by Cs;j.

Proof. We first note that
A4 = 022 Ny Cg.

Consider the inclusion map f such that
f:Cs —ix,Cs CC5 Xy, Coyrnr = Vi,
where C3; = ker(¢). One sees that f(Cs) C Z(V;). Consider the projection map
g:C5 %, Caie1 — C X, Cs.
It is clear that ker(g) = (i, C3;) = Im(f), giving us
0= Cy L C2 x, Cin 5 Ay — 0,
which is the desired central extension. 0J

Corollary 3.7 Vi, and consequently Wy do not admit irreducible two-dimensional repre-
sentations.

Proof. By the definition of the semi-direct product, we see that C? is normal in V; and
abelian. We note the corollary of Proposition 24 in [7] stating if A is a normal abelian
subgroup of G, then the dimension of any irreducible representation of G must divide
(G : A]. We see [V] : C2] = 3/ which provides the desired result for Vi. Since the
representations of Wy are twist equivalent to those of V;, by Remark we can see Wy
will not admit faithful irreducible two-dimensional complex representations. O

Proposition 3.8 Fori > 1, Uy = Cyi * SLy(F3) with A = Cy, is a central extension of
A4 by ng‘.

Proof. First note that Z(SLy(F3)) = Cy and SLy(F3)/Z(SLy(F3)) = Ay. Take f to be
the inclusion map
f : 022‘ — (CQz X Cg)/CQ C ng‘ * SLQ(]Fg)

One can see that Im(f) C Z(U;). Take g to be the projection map
g : Coi % SLy(F3) — (Coi x SLa(F3))/((Coi x Ca)/Cs).
By the isomorphism theorems we have
Im(g) = (Cyi x SLa(F3))/Cyi x Cy) = SLa(F3)/Cy = Ay, ker(g) = (Cyi x Cy)/Cs).
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Hence we have the central extension
0— Cgi i> 027; * SLQ(]F3) i) A4 — 0.

We also have Wy = SLy(IF3) % Coi x Cs;, which we can see is a central extension of A, by
the above. 0

Proposition 3.9 W3 = Cy; x Dy X, Csi+1 via ¢ : Cyi41 — C is a central extension of Ag
by C3j2i .

Proof. We will construct this group formally to begin. First we note that Z(D,) = Cs
and Z(Cyi * Dy) = Cyi. Consider the projection map

¢:Dy— C3

with ker(¢) = Z(Dy). Take X, Y, Z to be the cosets of order 2 in Dy/Z(D,), and identify
the cosets with representatives x,y, z. Consider the subgroups of Wj

X Yy z
C2z‘> CQi’ 02i>

defined by
CQIZ = (CQz X g071<X))/02 = Cgi X CQ,

and similarly for y, z, where the above Cyi = Z(W3). Take the automorphism 7 of order
three that satisfies

Let the subgroup of Aut(WW3) generated by 1 be denoted by A. We define ¢ to be the map
@ : C3+1 — C3 = A C Aut(Ws).
Consider the inclusion map
J i Coigi — Coi ¥, Cs; C Wi,
where C3; = ker(¢). One can see Im(f) = Z(G). Now consider the projection map
g: Wa — Wa/ker(f) 22 ((Cyi x Dy)/Cyi) X1, C3 2 C3 %, Cs,
where C3 acts faithfully on C3. Therefore, f,g gives us the desired central extension. [

Proposition 3.10 For k = 237, i = 1, Qs X, C3i+1 acting via ¢ : Cze1 — Cs, is a
central extension of Ay by Ck.

Proof. Note Z(Qg) = Cy, and Qg/Cy = C%. The proof of this proposition follows from
the proof of Proposition [3.9, except that we redefine f to be the inclusion map

f : 02 X ng — Qg th 03j+1
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with the images f(Cy x C35) = Z(Qs) X ker(y). Then if we take g to be the quotient map
by Z(Qs) x ker(y), we arrive at the desired short exact sequence,

0— 021'33' i> Qg Xy 03j+1 i) A4 — 0.

O

We have constructed all of the groups which admit faithful complex irreducible tetra-

hedral representations. Now we bound the matching densities of the faithful irreducible

representations of these groups, which as previously mentioned, is sufficient to bound the

set of possible matching densities of factor equivalent tetrahedral Galois representations
over number fields.

3.3 Bounding Matching Densities

In this subsection, using the results of the previous two subsections, we prove the following
theorem.

Theorem 3.11 Consider two complex icosahedral Galois representations p, n, over a
number field K that are factor equivalent, then

5
d(p.1) < ¢
Proof. By Proposition [3.3] Corollary and Propositions and [3.10, we
know that any tetrahedral representation factors through either U; = Cyi * SLy(F3),
Wi = Uy x Cs5, W3 = Cyix Dy X, Csi1 or Wi'2 = Qg 3, Cs541. The proof of this theorem
is partitioned into four lemmas where we bound the matching density of representations
of the finite groups mentioned above.

Lemma 3.12 Non-isomorphic representations factoring through Uy and Wy have match-
ing density of at most 5/8.

Proof. We denote the 3 two-dimensional faithful irreducible representations of SLy(IF3)
as X, X' X", with respective characters y, x’ and x”.

size|]1 1 4 46 4 4
X2 -2-1-10 11
X2 =2 ¢ G 0 G
X"2 =2 G ¢ 0 & G

Table 2: Partial character table of SLy(Fs)

By construction, we know that any faithful representation of U; will be representation
of SLy(F3) sending —1I5 to —I, twisted by a character ¢ of Cy: satisfying

ker(¢) = {£1}. (15)
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Now we consider the three cases of representations on G satisfying .
Case 1: d( X ® ¢, X' ® ¢).

Note that the image of any element of Cy: satisfying under ¢ will be a 271th root
of unity. By examining Table 2, we can see that for any g € SLy(IF3) not in the conjugacy
class of order 6, then for two distinct X, X’ or X",

X'(9)/xX"(g) =1, or /3

where (k,3) = 1. Hence we can see

x(9) # X' (9) = x(9)o(x) # X' (9)p(x). (16)

Which tells us
dX®¢, X' ®¢) <

o |

Now we deal with the second case.
Case 2: d( X ® ¢, X ® ¢).

It is important to note that given two characters ¢ and ¢’ of Cyi satisfying , we
have

16.6) < 5 (17)
Consider g € X that is not the conjugacy class 4. Then we have
X®dlgz)=X®¢(9,2) < o(x) = ¢ (a). (18)
If g lies in a conjugacy class of order 4, then for any ¢ and ¢', and = € Cy;,
X®d(g,z) =X ®¢(g,2). (19)
Viewing Cases , and together, we see
d<x®¢,X®¢'>gM=§. (20)

(24)2i 8
Case 3: d( X ® ¢, X' @ ¢').
By , we can see that given g € SLy(F3) and any ¢, ¢' and = € Cy,
x(9) # X'(9) = x(9)¢(x) # x'(9)¢ ().

Therefore, we have
dX ®¢, X' ®¢) <

Wl =

atisfying , we have

and further, given any two representations p, ¢ of U

wn

5
d <2
(p.p) < 3

Hence we have found the upper bound for the representations factoring through groups
of the form Cy * SLy(F3). By Remark we have also found the upper bound for
matching densities factoring through W; to be 5/8. O
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Definition 3.13 We say a subset S of a finite group G has relative density o if i—g =aq.
In the case where S is a subgroup of G, then the relative density is equal to [S : G].

Lemma 3.14 Two non-isomorphic faithful representations of W3 have matching density
of less than 5/8.

Proof. We note that the faithful and irreducible two-dimensional representations of
Cy * Dy x, Cy have matching density of at most 5/8. Every faithful and irreducible two-
dimensional representation p of G' = Cyi ¥ Dy X, Csi+1, satisfies the following relation with

representations of
H:C4*D4 >4<p09,

p(G)/p(Coiz x Cy5-1) = p/(H)

for the unique subgroup of the form Cyi-2 x Cs;-1 lying in Z(G) and a faithful irreducible
representation p' of H. Now consider two faithful and irreducible two-dimensional repre-
sentations of GG, p and 7. There are three cases.

Case 1: Given p and 7 as described above, their associated p’ and 7’ are not equal,
however, p(z) = n(x) where (x) = Cyi—2 x Csi-1 C Z(G).

If the above holds, consider a conjugacy class Y of G that projects to a conjugacy
class X of H, then we can see

Xp(y) = Xn(y) — Xp’(X) = Xn’(X)‘
By assumption, d(p’,n’) < 5/8 and therefore d(p,n) < 5/8.

Case 2: For p and 7, the associated p’ and 1’ are not equal, and p(z) # n(x), for x
as defined in the previous case.

If the above holds, consider a conjugacy class Y of GG that projects to a conjugacy
class X of H, if x,(X) # x»y(X), then they must differ by an element not contained in
the kernel of the quotient of G — G/(Cai—2 x C3;-1). Hence

X (X) 7 X (X) == x(Y) # Xy (V)
Hence p and 7 differ on a set of relative density of at least 3/8. Hence d(p,n) < 5/8.
Case 3: p and 7 are not isomorphic, however p' =7/
If the above holds, we must have that p(x) # n(z) and so
07 xp (X) = X (X) = Xp(aX) # xp(aX),

where a is a generator of Cyi—2 xC3-1. However x, and x,, will be equal on all elements that
map to 0, which is a subset of relative density less than 1/4. Hence d(p,n) < $+2(3) < 2.
O

THE PUMP JOURNAL OF UNDERGRADUATE RESEARCH 9 (2026), 1-16 14



Lemma 3.15 Two non-isomorphic faithful representations of I/ij2 have matching den-
sity less than 5/8.

Proof. Take H = G/C5; and consider two faithful irreducible two-dimensional com-
plex representations of G. Note in the same manner as above, p of G corresponds to a
representation p’ of H if

p(G)/p(Cai) = p'(H),
and similarly for . Once again, take x to be a generator of the group of order 3/ contained
within Z(G). Note for any 2 irreducible representations of Qg X, Cy, they have matching
density of at most 1/3.

Case 1: Given p and 7 as described above, their associated p’ and 7’ are not isomor-
phic, and p(z) = n(z) where (z) = Cy; C Z(G).

If the above holds, consider a conjugacy class Y of GG that projects to a conjugacy
class X of H, then we can see

Xp(Y) = Xn(Y) — Xp’(X) = Xn’(X>'
By assumption, d(p’,n') < 1/3 and therefore d(p,n) < 1/3.
Case 2: For p and 7, the associated p’ and 7’ are not isomorphic, and further the
image of p(z) # n(z).

If the above holds, consider a conjugacy class Y of GG that projects to a conjugacy class
X of H, if x,(X) # x,y(X), then their images must differ by an element not contained
in the kernel of the quotient of G — G/C3;. Hence

X (X) 7# X (X) = %, (Y) 7 xa(Y).
Hence p and 7 differ on a set of relative density of at least 2/3. Hence d(p,n) < 1/3.
Case 3: p and 7 are not isomorphic, however p/ = 7'.
If the above holds, we must have that p(x) # n(z) and so
07 Xp (X) = X (X) = Xp(aX) # xp(aX),

where a is a generator of Cyi—2 xC3i-1. However x, and ,, will be equal on all elements that
map to 0, which is a subset of relative mass less than 1/4. Hence d(p,n) < 5+ 2(3) < 2.
O

Lemmas [3.12] [3.14] [3.15] Proposition [3.3] and Remark show us that if p, and
7 are two non-isomorphic representations of a group that projects to A4, they attain a
matching density of at most 5/8, which proves the desired result. O

Remark 3.16 The bound above is sharp, and there exist tetrahedral representations
with matching density equal to 5/8.

Proof. Consider the table below, note p and n are faithful, and have matching density
of 5/8, proving our bound is sharp. O
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size ‘ 1 1 6 4 4 1 1 6 4 4 4 4 4 4
p 12 =20 ¢ G —20 200 G G GG GG GG G
no12 =20 ¢ G 2 -2 0 G G GG GG GG gd

Table 3: Partial character table of Cy % SLylF5.
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