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Abstract - Voter turnout in U.S. elections tends to fluctuate, with multiple factors influ-
encing a prospective voter’s participation. In this investigation, we focus on how a registered
voter might change their inclination to participate in an election based on their perception
of others’ political views within their community. We present an agent-based model (ABM)
designed to explore community-based driving mechanisms of voter turnout and election
outcomes. By conducting a sensitivity analysis, we examine which of our model inputs—
including factors such as party-affiliation breakdown or the degree to which voters tend to
communicate in echo chambers—have the greatest impact on voter turnout and the ex-
tent to which election results accurately represent the majority opinion in the electorate.
We find that within our model framework, turnout rates depend heavily on party affilia-
tion heterogeneity as well as how strongly a voter is influenced to vote or abstain by their
politically-based interactions within their community. Additionally, we find that it is possi-
ble for an unexpected winner to emerge victorious due to an increase in mobilization among
minority party members under certain conditions.
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1 Introduction

Controversial candidates and an increasingly polarized political system have fueled a re-
cent surge in voter turnout across elections in the United States. 62.8% of the voting age
population participated in the 2020 presidential election, with similar surges in turnout
observed in modern midterm elections. However, the U.S. still trails many other coun-
tries in the Organization for Economic Cooperation and Development (an organization of
countries committed to democratic values working to develop and coordinate economic
and social policies) in terms of voter engagement, ranking 31st among 50 countries for
voter turnout among voting age citizens in recent national elections [1]. As such, much
research has been conducted in an effort to understand what factors drive voters to the
polls. In this investigation, we seek to answer questions about community influences on
voter apathy through the use of an agent-based modeling framework.
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Agent-based models (ABMs) are simulations in which systems are modeled as a col-
lection of autonomous individuals, or “agents” [2]. ABMs allow for a number of design
concepts that are typically difficult to incorporate under more homogeneity-based frame-
works, such as systems of differential equations. For example, ABMs treat individual
agents as autonomous entities, who make independent decisions based on uniquely as-
signed parameter values. Agents may possess the ability to interact with other agents,
sense each other’s characteristics, and/or adapt their behavior in response to what they
sense. ABMs can easily incorporate stochastic elements, allowing for random assignment
of parameter values from a given distribution, or random choice between specified behav-
ioral options. In general, individual-based simulations that allow for rich heterogeneity—
like ABMs—often permit more realistic representations of complex phenomena as com-
pared to other types of traditional mathematical modeling [3]. In particular, the complex-
ity that defines and emerges from ABMs makes them well suited to model behaviorally
charged problems such as voting and voter apathy. Our use of an ABM framework allows
us to target how an individual voter’s interactions within their community might lead
them to make a particular choice with regard to their participation in an election, namely
by controlling for certain factors and allowing others to vary at the individual level.

Within the vast world of election studies, agent-based models provide a means to
juxtapose historical data with hypothesized phenomena described in the literature. A
rich amount of political research focuses on voter motivation, voter apathy, and voter
turnout through sociological, psychological, and technological lenses, while the genre’s
agent-based models tend to examine the implications of a specific behavior or sociological
problem [4, 5, 6, 7]. Instances of this include using agent-based models to examine the
impact of candidate campaign efforts and individual voter behaviors, alongside efforts
to better understand external drivers of voting [8, 9, 10, 11]. Other research uses the
advantages of agent-based modeling to gain a better understanding of different voting
systems [12, 13], or to examine voter turnout through the lens of voter preference and
party dynamics [14, 8, 15, 16, 17]. Our work contrasts these existing simulations by fixing
assumptions about what motivates voters, and altering the extent to which these drivers
are more community- versus internally-oriented as a means of studying voter turnout
and election results, rather than exploring how electorates behave in the presence of
new factors and political theories. Additionally, compared to several other ABMs that
model voting, our results are not bound to the conditions of a singular election or voting
population, allowing for possible adaptations of our work to such specifications in the
future.

The social hypotheses underscoring several political agent-based models explore both
the types of social interaction and behavior tied to voting patterns and the role of new
factors like increased social media presence [18, 19, 7]. Alongside the substantial body
of work detailing the connections between personal identity and propensity to vote, as-
sumptions about voter motivation are often fueled by research detailing the underlying
patterns tied to voter turnout [20, 21, 22, 23]. Within this sub-field, the influence of com-
munity is recognized as a contributing factor [24, 25]. Our model highlights this influence
in comparison to voters’ unchangeable demographic characteristics in order to pinpoint
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the impacts of political interaction in a way currently underrepresented in the literature.
With the benefits of agent-based modeling and our exploratory lens, we contextualize pre-
vious work with a broader perspective on the connections between voter turnout, election
results, and a voter’s perception of the opinions of their fellow voters.

Several theories have been applied to investigate how community effects impact voter
turnout. One such framework is rational choice theory, which hypothesizes that prospec-
tive voters will turn out at the polls if they think their vote could be pivotal, rather than
being driven by the actual practice of voting. However, this theory succumbs to the “para-
dox of voter turnout,” which describes the underestimation of turnout in large elections
[26]. We turn to an alternate explanation posed for the variability in voter turnout: a
laboratory study conducted by Levine and Palfrey (2007) that explores the comparative
static effects, or predictors of the impacts of external factors, of the rational choice model
[26]. Two phenomena observed in this study are particularly relevant. The first is the
“Competition Effect,” which represents the idea that voter turnout should be higher in
elections that would be highly contested if all eligible votes were cast. The second is
the “Underdog Effect,” which details that turnout for a less popular candidate should
exceed that for a more popular candidate. The study found strong evidence that each of
these two strategic responses arise under varying experimental conditions [26]. As such,
we model voter behavior under the influence of these hypotheses separately to consider
how each may impact turnout. In effect, our model imposes the behaviors observed as
results in Levine and Palfrey’s study, reversing the direction of analysis by looking at how
community-driven factors may influence voter behavior under each of these trends.

While the ABM framework is well-suited to realistically model the nuances of voting
behavior, it is less straightforward when it comes to interpreting results. In particular,
calibrating the parameters and settings of agent-based models to existing data can be very
difficult, since individual-level data is not often available, and mechanisms incorporated
into the ABM may not map directly to observable outputs. For this investigation, we
aim to keep our model generalizable, rather than estimating the parameters to align
with a certain region or community. As such, this model is not intended to be used
for predictive purposes at this time. Rather, this ABM serves as an opportunity to
explore how various input settings can create a range of model outcomes, an essential first
step towards creating an explanatory model of community-driven voting behavior. Since
fixed values of the parameters are not prescribed, this approach necessitates a thorough
assessment of the sensitivity of the model quantities of interest to each of the inputs.
Moreover, because agent-based models have highly flexible functionality, conducting such
analyses is often computationally expensive. Still, performing a robust sensitivity analysis
is an imperative part of the model development process, as it enables us to determine
which specific factors—or factors in combination—create conditions resulting in high levels
of voter apathy. In this investigation, we follow the approach to sensitivity analysis
detailed in Borgonovo, et. al [27]. This framework highlights four key components in
an ABM-centric sensitivity analysis: factor prioritization, direction of change, interaction
quantification, and robustness analysis. Addressing each of these four priorities leaves us
better equipped to interpret our results and answer our driving questions regarding voting
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behavior.
In Section 2, we outline our model development process using the “Overview, Design

concepts, and Details” (ODD) framework for agent-based models [3, 28], and then summa-
rize the metrics that we will use to perform our sensitivity analysis. Results are presented
in Section 3, where we study the impacts of each of our community-based inputs on two
quantities of interest: overall voter turnout, as well as the discrepancy in proportion of
votes that are attributed to each candidate as compared to the party affiliations of the
electorate. Finally, we summarize our findings and discuss potential future directions for
research in Section 4.

2 Methods

2.1 Overview, Design Concepts, and Details (ODD) Protocol

In this section, we describe our model construction and methodology using the “Overview,
Design concepts, and Details” (ODD) protocol for agent-based models proposed by Rails-
back and Grimm [3, 28]. The ODD protocol is composed of seven constructs: Purpose and
patterns; Entities, state variables, and scales; Process overview and scheduling; Design
concepts; Initialization; Input data; and Submodels. These seven elements serve to con-
cisely describe the ABM independent of the algorithms and programs used to execute it.
The implementation of a standardized model description like the ODD promotes commu-
nication among scientists from different backgrounds, giving the ABM greater utility and
reproducibility [28]. We employ this framework in order to conform to standard practices
for describing components of agent-based models—which often require elements absent in
other types of models—at a level enabling replication by other researchers. Figure 1 gives
a summary of the ODD protocol, with components that are relevant to our particular
model in bold font. Each of these components are described in detail in the following
sections.

Figure 1: Summary of the Overview, Design concepts, and Details (ODD) protocol.
Components that are included in our model are listed in bold font. Figure is adapted
from [28].
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2.1.1 Purpose and Patterns

With this model, we aim to understand how an eligible voter’s perception of the political
climate in their community may impact their decision to participate in an election. Specific
questions that we wish to address include:

• Under what types of community conditions is voter turnout maximized?

• Under what types of community conditions do we observe an election outcome that
is not representative of the majority opinion in the electorate?

• How do different levels of activism displayed by voters who perceive themselves to
be in the minority party (based on their surrounding neighbors), impact both voter
turnout and election outcome?

By studying a variety of different conditions which affect community political make-up
(e.g., the amount of diversity in political opinion among neighbors, the degree to which
agents “cluster” with like-minded agents, the size of agents’ social circles, etc.), we illus-
trate how these conditions may coalesce to generate various different election outcomes.

Our model represents a bipartisan political system where voters are classified as mem-
bers of either the “blue” or “red” parties. While the model construction is loosely based
upon the two-party system of the United States—with Democratic and Republican par-
ties, respectively—the model in its current form could be easily adapted to represent any
other two-party political structure. Importantly, the model setup is not intended at this
time to represent one specific area or population within the US, but rather to symbolize
a random selection of eligible U.S. voters.

From past elections in the United States, we know that voter turnout can vary dras-
tically among different communities, even in national elections that seem to affect all
communities such as presidential elections. Likewise, with each major election, we see
districts in which an underdog candidate takes the vote, despite the majority of the
electorate expressing a preference for a different candidate. Our model is intentionally
designed to generate results that are consistent with a wide range of outcomes observed
in national elections at the state and district levels—though calibration to specific data
is not yet possible, selecting our parameter ranges and settings in a way that allows us
to reproduce known results is an essential first step. Furthermore, such flexibility in the
model construction process allows us to examine which community factors may be driving
such discrepancies in election outcome.

2.1.2 Entities, State Variables, and Scales

The following entities are present in our model: agents (representing eligible voters),
grid cells (representing agent “locations” within their community), and the environment,
which controls system-level simulation settings. An agent’s “location” on the grid does
not correspond to a geographical position. Rather, it is a randomly assigned position
based on political affiliation that will be used to define an agent’s “social circle” within
the larger community, that is, within the set of all agents appearing on the grid. In
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all, 2,601 agents (situated upon 2,601 grid cells), are arrayed in a 51×51 grid, with each
agent residing at the center of their assigned grid cell. While the relative size of our agent
population is similar to that of various smaller communities like counties or neighborhoods
within the United States, this ABM is not intended to simulate a specific region or group.
Thus, its population size is chosen arbitrarily, with its grid size accommodating our chosen
number of voters. Agents remain stationary throughout the simulation, maintaining the
equally-spaced separation of agents within the grid view. We elaborate on our simulation
of community interaction in Section 2.1.4.

Each agent possesses several starting attributes that distinguish it from other agents.
As the simulation progresses, other state variables—to be described later—are calculated
and assigned based on these starting quantities.

The first of the agent state variables, party, represents the strength of the agent’s
political affiliation, which is important both to establish an agent’s baseline probability
of voting without considering community factors as well as their potential influence upon
surrounding agents. Values are assigned on a continuous scale from 0 to 1, with 0 repre-
senting the strongest possible “blue” affiliation, 1 representing the strongest possible “red”
affiliation, and 0.5 indicating a truly moderate voter. Agents are further categorized by
their party assignments, indicated by party-cat, such that all agents with party values
in the 0-0.5 range are assigned party-cat = “blue,” and all other agents are assigned
party-cat = “red.” In order to illustrate the diversity of political opinions in the user
interface, each agent’s grid-cell is assigned a pcolor value, which is used to color the cell
according to the category and strength of the agent’s political affiliation. In the model
interface, a dark blue grid-cell corresponds to a party value close to 0, white represents a
truly moderate voter with a party value near 0.5, and dark red indicates a party value
close to 1.

Each agent is also assigned a radius—with possible radii values being dictated by an
environmental parameter mean-radius—which defines the size of their individual social
circle. That is, the magnitude of an agent’s radius dictates the number of neighboring
agents with whom they will interact throughout the simulation. Allowing for agents to
have social circles of varying sizes enables us to consider whether the size of one’s social
group may affect the degree to which community-based factors influence their decision to
vote.

Finally, each agent is assigned a demo-prob—a probability that they will vote in the
election based upon their demographic characteristics or individual identity—as a baseline
value from which their eventual voting probability will be derived. The inclusion of this
demo-prob variable is intended to help control for individual-based factors that may play
a vital role in determining an agent’s likelihood of voting—such as their education level,
party affiliation, socioeconomic status, age, race, sex, etc.—allowing us to focus specif-
ically on the community-based factors that we wish to investigate. These demo-prob

values are generated using an external logistic regression model calibrated to data from
a 2016 U.S. election survey [29], to be described in Section 2.1.5. The fixing of these
demographically-based voting probabilities in advance of the simulation is conducted in
order to control for individualized characteristics that might alter one’s voting behavior,
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as our focus throughout this investigation is solely based on how community-based fac-
tors contribute to voter apathy. Thus, in each simulation we consider snapshots of an
electorate, where agent demographics and social networks remain fixed. We enforce such
a framework to both reflect the limited timescale of our model and to account for the
impact of individual characteristics while focusing primarily on community interaction in
this study. By rendering personal demographics static yet dependent on real voter data,
we account for the complex relationships between personal lived experience and likelihood
to vote in a computationally simplistic manner. Links between personal characteristics
and different voting behavior are represented by differing demographics-based voting prob-
abilities. We assume that our electorate represents a random sample of the U.S. voter
population over a temporal period of months leading up to an election. Hence, we reflect
both the stability of our demographic factors of choice (i.e. age, race, and education level)
within such a time period while allowing them to exert influence on individual decisions
in accordance with real data.

The state variables assigned at the start of simulation are summarized in Table 1. It
should be noted that all of the settings controlled by the environment entity are static
with respect to time, and are thus characterized as parameters rather than state variables.
Further details about all state variable and parameter assignments will be provided in later
sections of the ODD protocol.

The spatial component of our model is not defined in the traditional sense. An agent’s
radius variable dictates the set of neighbors with whom they will interact, but these in-
teractions could represent both in-person as well as online social interactions. The radius
values vary among agents so as to represent the differing sizes of social circles among vot-
ers. Both the size of the grid cells and the overall environment are left unspecified, as the
view is not spatially bound to a real landscape.

Likewise, the model is not temporally bound to a specified length of time. The entire
simulation takes place in one “time” step, during which each of the voters adjusts their
likelihood of participating in the election based on interactions they have within their
specified social circle. At the conclusion of this time step, the election is conducted. In
this sense, the single time step is representative of a period of unspecified length right
before an election, when voters are likely to be discussing politics with those in their social
circles and forming a decision about whether or not they will participate in the upcoming
election.

2.1.3 Process Overview and Scheduling

In this section, we provide an overview of the execution order of the ABM. Specific details
about each of the submodels are provided in later sections—here, we simply discuss how
each of the submodels are organized with respect to scheduling. The main scheduling
overview is as follows:

1. Setup phase: Agent and grid cell starting state variables—party, party-cat,
radius, demo-prob, and pcolor—are assigned. Environment parameters
comm-effect, a, party-split, mean-radius, and degree-clustered are specified.
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State Variables
Name Entity Description Possible Values
party Agent Strength of political affil-

iation
Continuous on [0, 1]

party-cat Agent Category of party assign-
ment

blue or red

radius Agent Defines size of social cir-
cle

Continuous, with
value dependent on
mean-radius parameter

demo-prob Agent Inclination to vote based
on individual characteris-
tics

Continuous on [0, 1]

pcolor Grid Cell Visual indication of po-
litical affiliation

Dark blue, medium blue,
light blue, white, light
red, medium red, dark
red.

Environmental Parameters
Name Use in Model Description Possible Values
mean-

radius

Initialization Defines average size of an
agent’s social circle

4, 5, or 6

degree-

clustered

Initialization Prob. agent locates near
like-minded agent during
setup

0.5, 0.51, 0.52, . . . , 0.99

party-

split

Initialization Categorical party break-
down of the electorate

“Strong Blue Majority,”
“Partial Blue Majority,”
“No Majority,” “Par-
tial Red Majority,” or
“Strong Red Majority”

a Submodel Factor weighting individ-
ual versus community-
based likelihood to vote

0.1, 0.2, 0.3, . . . , 1.0

comm-prob Submodel Underlying hypothesis
for voter behavior

“Competition Effect” or
“Underdog Effect”

Table 1: Descriptions of state variables and environmental parameters.

We elaborate further on our environmental parameters in Section 2.1.4; a detailed
summary can be found in Table 1. The user interface is generated according to the
environment parameter choices.

2. Agent-update phase:

(a) Agents execute the check-neighbors submodel and determine their
similarity index, quantifying how similar the political beliefs of other agents
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within their social circle are to their own.

(b) Agents compute their comm-prob value—their probability of participating in
the election based on community factors—by using their similarity index in
combination with the comm-effect environment parameter.

(c) Agents create their vote-prob value, or overall voting probability, by com-
bining their demo-prob and comm-prob values through a linear combination
weighted by the environment parameter a.

3. Election phase: The election is conducted. Each agent “decides” whether or not
to vote by comparing their assigned vote-prob value to a random number on the
interval [0, 1]. For agents who decide to vote, their vote is cast in favor of the party
assigned to them in the party-cat variable.

4. Observation phase: Results are tallied and displayed in the user interface, includ-
ing overall voter turnout and the number of votes cast for each of the blue and red

parties.

In all agent procedures, the agents execute the given command in a randomized order,
since the order in which the agent variables are updated has no bearing on the variable
assignments.

2.1.4 Design Concepts

In what follows, we discuss the major design concepts that appear in this ABM, in order
to provide justification for all choices made during our design process. We discuss the
five concepts which are relevant to our model, selected from the larger list of 11 common
ABM concepts provided in [3, 28].

Basic Principles:
Our study of voter engagement versus voter apathy is based largely upon work con-

ducted by Levine and Palfrey [26], in which a laboratory experiment was conducted to
determine comparative effects in voter turnout. We highlight two of these effects for
inclusion in our model: the “Competition Effect” and the “Underdog Effect.”

The Competition Effect hypothesizes that prospective voters are most driven to vote
when they perceive that the outcome of the upcoming election is likely to be close. We
adapt this idea to our agent-based model by having voters define their perception of the
“closeness” of the election based on the interactions that they have within their own
social circle. For instance, a voter who believes themselves to be surrounded by voters of
the same party as themselves will become apathetic, sensing that their vote will have no
bearing on the outcome of the election. Likewise, a similar degree of apathy is observed
among voters who perceive themselves to be surrounded almost entirely by members of
the opposing party. However, if a voter perceives a nearly even split in party preference
based upon their community interactions, they will be highly motivated to vote since the
inclusion of their vote may well impact the final result.
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In contrast, the Underdog Effect models an “activist” minority party, in which voters
who believe they are in the minority among their community are highly motivated to vote
in an effort to tip the election outcome toward the candidate whom they perceive to be the
underdog. Similarly to the Competition Effect, voters who are surrounded by members
of their own party (thus perceiving themselves to be in the majority) become apathetic in
their voting behavior. In extreme cases, this imbalance—in which voter turnout is higher
among members of the minority party than in the majority party—can have the effect of
“flipping” the election outcome from the anticipated result.

The underlying hypothesis dictating voter behavior in our model is controlled by
the comm-effect environment parameter. When running the model from our NetLogo
interface, the user may select either comm-effect = “Competition Effect” or “Under-
dog Effect” during the setup phase. This choice then dictates how agents employ their
similarity index to influence their probability of voting, to be described in Section 2.1.7.

Sensing:
Within our model, agents are able to sense the political affiliations of the other agents

who reside within their predefined radius, as it is assumed that agents are likely to be
engaging in political discussions with these neighboring agents. Moreover, agents are
more strongly influenced by neighboring voters who have “extreme” opinions; i.e., values
of the party variable close to 0 (strong blue) or 1 (strong red). When an agent computes
their similarity index, which quantifies the degree to which agents within their circle
express the same opinions as themselves, neighboring agents with more extreme opinions
are weighted more heavily than those with more moderate affiliations. This choice was
made in order to reflect the fact that voters with stronger party affiliations are likely to
be more vocal in expressing their political views [30], and thus should carry more weight
than moderate neighboring agents, who are more likely to keep their views private, with
political affiliations that are therefore more difficult to sense. The specific details of this
sensing mechanism are further described in Section 2.1.7.

Interactions:
A major strength of agent-based models is their ability to characterize agent inter-

actions on a local level. In this ABM, agent interactions are defined at the local level
using each agent’s assigned radius value. The magnitude of this value translates into the
size of the agent’s “political social circle” within the larger community grid, which we we
define to contain all of the individuals with which an agent discusses politics and political
opinions. Using the check-neighbors submodel described in Section 2.1.7, agents inter-
act with their political social circles while remaining in their assigned grid square. Social
circle radii vary among agents, representing the fact that the number of politically-based
interactions should vary drastically among different voters; some voters are very politi-
cally active within their community or online, while others prefer not to discuss politics
with more than a handful of acquaintances. When making the decision about whether
or not to participate in the election, each agent is influenced only by those other voters
who reside inside their radius: i.e., those voters with whom they have interacted. Further
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details on this procedure are supplied in Section 2.1.7.

Stochasticity:
Another major benefit to using agent-based models is their ability to easily incorpo-

rate stochastic elements. In this model, we employ stochasticity to produce variation
in our results while avoiding the complexity of modeling what drives such a difference.
Specifically, we do this in several ways:

• The initial agent state variables radius and party are randomly assigned, within
the constraints imposed by the user-selected parameters party-split and
mean-radius. At this step in the model, the initialization of these attributes reflects
their independence and ensures variation in initial conditions without influencing
overall model trends.

• During the election phase, an agent’s decision to vote is based upon the comparison
of their vote-prob variable to a random number uniformly drawn from the interval
[0, 1]. This approach aligns with a frequentist perspective of probability as a “long-
term frequency”—for example, a voter with a probability of 0.73 would vote in
approximately 73% of elections. Stochasticity in the election allows us to incorporate
this view while maintaining simplicity in the submodel dictating the vote-counting
procedure.

Observation:
As discussed in Section 2.1.1, our main objective for this model is to study voter

turnout and election outcome under various different conditions. As such, for each simu-
lation, we track the number of votes cast among our 2,601 agents, in addition to tracking
how many votes were cast for each of the two parties. From this, an election outcome can
be determined.

At the completion of each simulation, the winning party and their number of votes are
displayed on the user interface. Additionally, we include a statement of the voter turnout,
displayed as a percentage of total agents.

2.1.5 Initialization

We begin the initialization process by selecting the environment’s party-split param-
eter, which dictates the balance between blue- and red-party voters in the simulation.
The model is constructed to allow for five different options of this input: “Strong Blue
Majority,” “Partial Blue Majority,” “No Majority,” “Partial Red Majority,” and “Strong
Red Majority.” To generate agent party distributions that align with each of these sce-
narios, we draw 2,601 party values at random from a beta distribution reflecting the
desired party-split. Figure 2 illustrates how our sampled party values adhere to these
distributions.
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Figure 2: Party affiliation distributions for each of the five possible party-split scenarios.

The assignment of the agent state variable demo-prob is based upon input from an
external model which was trained on data from the 2016 Cooperative Congressional Elec-
tion Survey [29]. The survey recorded information about demographic characteristics,
political ideology, and election participation for 64,600 respondents over a period of four
months surrounding the 2016 U.S. general election. Because of evidence suggesting that
inclination to vote is tied to the strength of one’s political ideology [30]—among other
factors—we train a logistic regression model on this data set with the goal of charac-
terizing the relationship between an agents’ party and demo-prob state variables and
controlling for other demographic factors that might impact an individual’s likelihood of
participating in an election. Recall that an agent’s demo-prob, or demographic-based
voting probability, is intended to represent their baseline probability of participating in
an election in the absence of community-based factors.

We employ the Akaike Information Criterion (AIC) to determine the ideal set of ex-
planatory variables for predicting voter participation in the election across all possible sets
of variables included in the 2016 CCES data set, with a goal of obtaining a model with
strong predictive capability without overfitting the data. The optimized set of explana-
tory variables includes age, sex, race, income, level of education, home ownership status,
immigration status, and party affiliation (ranked on an integer scale from 1-7, with 1
representing “Strong Democrat,” 4 representing “Moderate,” and 7 representing “Strong
Republican”). The dependent variable is a binary indicator of whether or not the partic-
ipant voted in the election. After responses indicating non-citizen status (n = 1526) and
those with missing data (n = 146) are removed, a sample of 62,928 eligible voters remains,
all of which are used to train the logistic regression model to yield a voting-probability
output. These voting probabilities, or demo-prob values, range from 0.019-0.99, with a
mean of 0.71, a median of 0.78, and a standard deviation of 0.22. We note that these
sample statistics are likely skewed higher than those for the full U.S. population, since
respondents electing to participate in the full survey would have been more likely to be
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politically engaged. The predicted likelihood of election participation is attached to each
of the respondents in our data set, and saved for later use when sampling respondents to
represent agents in our interface.

We then assign agents party values based on the specified party-split. Specifi-
cally, party values are sampled from a beta distribution parameterized by party-split,
which produces continuous values on [0, 1]. These values are mapped to the discrete set
{1, 2, . . . , 7}, which corresponds to the survey’s ideology rankings. We then select a survey
respondent from the dataset with the same discrete party value and assign the respon-
dent’s predicted voting probability, or demo-prob, to the agent. This ensures that each
agent’s demo-prob aligns with the voting likelihood of a survey respondent who shares
the same political views. The resulting party and demo-prob pairs for the 2,601 agents
in each of our five party-split scenarios are saved into text files that are read into the
model program.

After choosing the party-split setting—and the corresponding set of party and
demo-prob pairs to be employed—the values of these variables are assigned to the agents
in the grid view according to the environment’s degree-clustered setting, which controls
the extent to which agents tend to interact with like-minded individuals. The assignment
is performed in the model’s create-clusters submodel, which contains the following
sub-routines:

Procedure for create-clusters Submodel:

1. load-file-data: Values for agents’ party and demo-prob state variables are read
in from the file corresponding to the user-defined choice of the party-split param-
eter.

2. create-cluster-seeds: 26 agents (1% of the total agent population) are selected
at random as seeds for the clusters. These seed agents are assigned a party value
(and corresponding demo-prob value) at random from the full list.

3. initialize-party-subsets: The remaining party values (with attached
demo-prob values) are separated into two subsets based on their party affiliation:
blue (for party values in the interval [0, 0.5]), and red (for all other party values).

4. grow-clusters: Agents who do not currently have a party assignment are
prompted in a random order to consider their closest neighbor with a party affili-
ation. These agents then select their own party affiliation depending on the value
of the degree-clustered parameter; specifically, the value of degree-clustered
determines the probability with which the agent will select from the list that aligns
their party affiliation with that of their closest affiliated neighbor. That is, if
degree-clustered = 0.5, agents will choose their party affiliation entirely at ran-
dom; as degree-clustered increases towards 1, the agent is more and more likely
to choose a party affiliation that matches that of their closest affiliated neighbor.
Within the selected list, the agent’s party value is selected at random, if any are
remaining.
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5. assign-remainder: When either of the red or blue subset lists are exhausted,
the assign-remainder sub-routine is triggered, assigning party values (and corre-
sponding demo-prob values) to any remaining unaffiliated agents at random.

6. assign-color: Finally, the grid cell for each agent is colored according to its agent’s
party value. Though the party values are continuous, grid colors are assigned
according to a discrete set of seven color options, referred to in the code as pcolor.

Upon completion of the create-clusters protocol, each agent is assigned the
party-cat designation corresponding to their party value: blue if party is in [0, 0.5],
and red otherwise. These designations will be used in the final election to determine vote
counts for each party.

The final step of the initialization process is to assign radii to each of the agents, which
will dictate how many different interactions they each have. The user-defined environment
parameter mean-radius controls the average interaction radius for the agents. This value
may be set to discrete choices of 4, 5, or 6 (corresponding to roughly 52, 80, or 114
other agents contained within a given agent’s social circle, respectively). The size of these
social circles reflects the modern impact of social media and online discourse, increasing
the everyday voter’s exposure to political ideas and sentiments within their community.
Furthermore, our simulated social circles are analogous to larger communities discussed
in Rolfe’s Voter Turnout: A Social Theory of Political Participation. Interaction circles
with the lowest setting mimic the larger of potential “regular contact” networks, while
social circles from the latter two options for mean-radius surmise groups of people whose
connections do not mandate a large degree of emotional closeness [31]. This suits our
community framework well, as people who interact politically do not necessarily need to
have a previously-established social rapport in-person or online, and allows us to draw
conclusions based off of larger, looser interactions (as opposed to analysis of person-to-
person impact). To allow for various agents to have social circles of differing size, we
vary the size of the interaction radii by assigning agents’ radius state variables randomly
from a normal distribution centered at mean-radius with standard deviation of 2

3
during

the setup phase. This choice of standard deviation ensures that nearly all of the agents
(that is, roughly 99.7%, according to the empirical rule) will have radii within the values
mean-radius±2, a range chosen to ensure that all agents have a positive number of
interactions even with our smallest mean-radius setting.

2.1.6 Input Data

The only external data utilized in this simulation is used in the initialization stage to
assign demo-prob values to agents; this procedure was discussed in Section 2.1.5.

2.1.7 Submodels

The model code contains three major submodels: create-clusters, check-neighbors,
and elect. The create-clusters submodel was described in the initialization pro-
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cedures in Section 2.1.5. Here, we provide additional details regarding the other two
procedures.

Procedure for check-neighbors Submodel:

1. Agents are selected in a random order to gather information about their neighbors.
For a given agent, let i = 1, 2, . . . , n represent the numbers of the n other agents in
their social circle, as defined by their radius value.

(a) Upon selection, an agent learns the party value of each other agent in their
circle; denote these by partyi, for i = 1, 2, . . . , n.

(b) The agent calculates a weight, wi, for each of their neighbor interactions based
upon the strength of their party affiliation. Specifically,

wi =

{
partyi, if partyi ≥ 0.5
1− partyi, if partyi < 0.5

,

for i = 1 . . . n. This calculation ensures that interactions with both blue and red
agents are treated identically with respect to weight. Moreover, neighboring
agents with “extreme” party values—those close to 0 or 1—are given higher
weights than neighboring agents with moderate party values close to 0.5.

(c) The selected agent then computes a similarity score, by adding the weights
of all agent interactions from their own party and dividing by the total of the
weights for all interactions. Let Ω denote the set of other agent numbers for
whom party-cati matches the party-cat of the querying agent. That is,

similarity =

∑
i∈Ω

wi

n∑
i=1

wi

.

(d) The agent then uses their computed similarity score to determine their
comm-prob value, or their probability of participating in the election based
on community factors. The computation method for this value is determined
by the user’s choice of the environment comm-effect parameter, which can
be set to either “Competition Effect” or “Underdog Effect” (both of which
were discussed in Section 2.1.4). For each of these community effects, we
define a function that takes the similarity score as an input and outputs
a corresponding probability of voting based on community factors. For the
Competition Effect, our function is

comm-prob = −4(similarity− 0.5)2 + 1,

which is shown in Figure 3(a). We defined this function such that voters who
have a similarity score close to 0.5 (indicating roughly equal interaction with
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members of both parties) are most incentivized to vote, while those perceiving
themselves as firmly in the majority or minority based on community interac-
tion become apathetic. Parameters in the equation were chosen to mimic this
phenomenon empirically. For the Underdog Effect, we implement the reverse
sigmoid function

comm-prob = 1− 1

1 + 6e−20(similarity−0.6)
,

shown in Figure 3(b). When determining the function’s parameters, we wanted
to ensure that a similarity score of 0.5 still corresponded to a comm-prob close to
1. This supports the idea that in this scenario, agents who perceive themselves
to be in the minority are highly incentivized to vote, while agents interacting
mainly with other like-minded agents are apathetic. The parameters used to
generate the community probability graphs in Figure 3 are chosen to mimic the
described effects from Levine and Palfrey (2007) [26], and were not varied in
any subsequent analysis. We leave the study of additional variations of these
two functions for future work.

(a) (b)

Figure 3: Community-based probability of voting as a function of similarity score under
(a) the Competition Effect, as compared to (b) the Underdog Effect.

Procedure for elect Submodel:

1. Agents are selected in a random order. For each agent:

(a) The agent computes their vote-prob, or overall probability of voting in the
election, by combining their demo-prob and comm-prob values in a weighted
linear combination using the environment parameter a. That is,

vote-prob = a · demo-prob+ (1− a) · comm-prob.

With such a weighting, an a value of 1 allows a user to study what would
happen if agents made their decision to vote based solely on their individual
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characteristics. Conversely, setting a = 0 allows a user to study what would
happen if voters were entirely swayed by their interactions with their commu-
nity members.

(b) An agent “makes a decision” whether to vote or not by comparing their
vote-prob value to a randomly-generated number on the interval [0, 1].

i. If their vote-prob exceeds the generated random number, they will cast
their vote in the election by incrementing the value of count-total—a
value documenting the number of cast votes in an election run, ranging
from 0 (reflecting an entire population of abstainees) to 2,601 (representing
a voter turnout rate of 100%)—as well as their party-specific vote total of
count-blue or count-red.

ii. Else, if their vote-prob does not exceed the chosen generated random
number, the pcolor value for their corresponding grid cell is set to black
to indicate their decision to abstain on the user interface.

2. Finally, the number of counts for the winning party, as well as the overall voter
turnout percentage (which is calculated by dividing count-total by 2,601, the
number of “registered voters” in our simulation), are displayed on the user interface.

This concludes our Overview, Design concepts, and Details (ODD) protocol.

2.2 User Interface

The model described above was implemented in NetLogo 6.3.0 [32]; all code is provided at:
https://github.com/gbrophy2/abm-voter-behavior.git. The starting user interface
is shown in Figure 4(a). In the main view, each agent’s political affiliation is indicated by a
colored patch chosen along a spectrum, with dark red representing “strongly Republican,”
white representing “moderate,” and dark blue representing “strongly Democrat.” Toggles
are provided for the five varying environment settings:

• a: Varies from 0 to 1 in increments of 0.1

• degree-clustered: Varies from 0.5 to 1 in increments of 0.01

• mean-radius: Selected from 4, 5, or 6

• comm-effect: Selected from “Competition Effect” or “Underdog Effect”

• party-split: Selected from “Strong Red Majority,” “Partial Red Majority,” “No
Majority,” “Partial Blue Majority,” or “Strong Blue Majority”

To the right of the agent view, graphs indicating the distributions of community proba-
bilities and party affiliations are provided for the given scenario; in Figure 4(a), we show
a sample setup for the choices a = 0.5, degree-clustered = 0.99, party-split = “No
Majority,” comm-effect = “Underdog Effect,” and mean-radius = 5.
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(a) (b)

Figure 4: (a) Initial user interface with model settings party-split = “No Majority,” a

= 0.5, degree-clustered = 0.99, comm-effect = “Underdog Effect,” mean-radius =
5, (b) The same user interface after running the election command, where abstaining
agents are denoted by black squares.

Figure 4(b) shows the user interface with the initialization from (a), once the simu-
lation has been run. Grid cells—or patches—for agents that abstained from the election
have been colored black to indicate their non-participation. Additionally, the final results
for the winning party and overall voter turnout are displayed on the bottom right. In this
scenario, the victory went to the red party, with an overall voter turnout of 60%.

2.3 Sensitivity Analysis Methodology

Our model output relies on five input settings and/or parameters: two categorical in-
puts (party-split and comm-effect), and three numerical inputs (mean-radius, a and
degree-clustered). Because this model has not been calibrated to existing data, values
for each of these settings that would map to real election results remain unknown. In our
presentation of results, we focus on quantifying how the model output relies on parameter
combinations chosen from across the permitted ranges. Specifically, we consider the range
and distribution of model outputs across a full sweep of the input space. For this param-
eter sweep, we vary parameter a from 0 to 1 in increments of 0.1 and degree-clustered

from 0.5 to 1 in increments of 0.1. The party-split setting is investigated for all five
categories: “Strong Red Majority,” “Partial Red Majority,” “No Majority,” “Partial Blue
Majority,” and “Strong Blue Majority.” The parameter mean-radius is permitted values
of 4, 5, and 6, while comm-effect is toggled between “Competition Effect” or “Underdog
Effect.” Each of the 1980 resulting combinations is replicated 50 times using the Behav-
iorSpace tool in NetLogo [33] and then averaged to control for stochasticity. With model
inputs and corresponding outputs from each of these runs, we can then quantify how
sensitive the model is to perturbations in the input settings using a sensitivity analysis.

As detailed in [27], a robust sensitivity analysis is often omitted in agent-based mod-
eling, due to the computational expense required to perform even a simple parameter
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sweep, and the tendency of ABMs to rely not only on input parameters but also on non-
parametric elements. However, it is imperative to conduct such analyses in order to draw
meaningful conclusions from the model. Through this work, we target the four goals of
sensitivity analysis discussed in Borgonovo et. al (2022) [27]: factor prioritization, pa-
rameter interactions, robustness, and direction of change. Factor prioritization involves
determining which of our inputs contribute most to changes in our outputs. Similarly,
sensitivity analysis techniques targeting interaction analysis explore which combinations
of inputs yield the greatest impact on our output quantities when acting in combination.
Tools focusing on robustness examine the consistency of these impacts. Finally, analyzing
direction of change determines whether perturbations in input parameters yield output
changes that are positive or negative. As outlined in Figure 5, we analyze the impacts
of inputs a, degree-clustered, comm-effect, party-split, and mean-radius on two
different quantities of interest (QoIs): the overall voter turnout percentage, detailed in
Section 3.2.1, and the extent to which the party breakdown of the final election result
differs from the initial electorate split, discussed in Section 3.2.2. For the latter, we specif-
ically investigate circumstances under which this discrepancy leads to a minority party
victory. Such analysis re-contextualizes our turnout results to highlight which conditions
create the largest discrepancies between original simulation party-split and the margin
of victory for the winning party.

Figure 5: Schematic detailing the model analysis phase of the investigation.

To investigate our four goals of factor prioritization, interactions, robustness, and di-
rection of change, we use a combination of sensitivity analysis tools and plots: stochastic-
individual conditional expectation (S-ICE) plots, Sobol’ indices, and heatmaps detailing
effects of interacting parameters, each of which is briefly described here.
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Stochastic-Individual Conditional Expectation Analysis:
One-at-a-time sensitivity analysis is used to observe the individual effects of each in-

put on the quantity of interest, allowing us to qualitatively examine the robustness of the
model and the direction of change in model output with respect to each parameter. Here,
we use stochastic-individual conditional expectation (S-ICE) plots to examine the effect of
the input parameters on the quantity of interest. S-ICE plots are created by varying each
parameter across its permitted range while holding all other parameters constant [27].
For our model analysis, we vary comm-effect, party-split, and mean-radius across
each of their possible categorizations. The parameter a is examined at discrete values 0,
0.5, and 1.0, to observe the impact of heavily weighting either comm-prob or demo-prob,
or equally weighting them. Likewise, degree-clustered is discretized to values of 0.6,
0.8, and 1.0 to observe the impact of very little to extreme clustering of agents on voter
turnout. Each pair of points represent scenarios in the ABM that differ only in the value
of the perturbed parameter—to control for stochasticity, each point in our S-ICE plots
represents the aggregated mean of a set of 50 model replicates for the given parameter
set. The sign of the line’s slope indicates the direction of change in the model output
as the parameter is varied. The statistical significance of each test is determined using a
two-tailed Welch’s t-test with a significance level of α = 0.05.

Sobol’ Indices:
Global sensitivity analysis allows us to consider the sensitivity of the model output to

a large range of possible parameter combinations, an ideal analysis in scenarios where the
values of the input settings are uncertain. Sobol’ indices are a commonly used variance-
based tool for global sensitivity analysis; they decompose the variability in the model
output and attribute it to specific inputs or combinations of inputs. Additionally, the
Sobol’ indices reveal the ranking—or factor prioritization—of the inputs in order of im-
portance to the model output.

The calculation of first-order Sobol’ indices indicates which inputs have the greatest
contribution to the change in model output on their own. Specifically, the first-order
Sobol’ index for a given input quantifies how much of the variation in the model output is
due to varying that input alone, averaged over variations of all other inputs. Total-order
Sobol’ indices can also be calculated to quantify the effects of a given input when acting
in combination with all other inputs; in essence, an input’s total Sobol’ index is defined
as the sum of all sensitivity indices that involve that input, from first-order to mth-order,
where m represents the total number of inputs. A full treatment of Sobol’ indices and
their mathematical derivation can be found in [34, 35].

For this analysis, we utilize the sensitivity analysis library in Python, SALib, and its
accompanying Sobol’ indices functionality [36]. Specifically, we instantiated our NetLogo
model in Python using the pyNetLogo package [37]. Then, we used SALib to generate a
Sobol’ sample from our input space. We ran the model for each combination of parame-
ters from the sample using pyNetLogo, then calculated first and total-order Sobol’ indices
using SALib. For our model setup, Sobol’ first-order and total-order index estimates were
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found to converge for n ≥ 500; we use a sample size of n = 1, 024 for all figures presented
in our analysis.

Interaction-Based Heatmaps:
To analyze how two inputs may act in combination to produce particular outcomes

in the quantity of interest, we also include two-at-a-time interaction heatmaps. In these
figures, two quantitative parameters are varied across a discretized space, with all other
inputs held fixed. In particular, our focus is on varying a on the range [0, 1] and
degree-clustered on the range [0.5, 1], both in increments of 0.1, in tandem, for fixed
combinations of the categorical and discrete variables comm-effect and party-split.

3 Results

3.1 Individual Case Studies

To begin, we present a few single-input case studies to illustrate how changing just a
single setting in the model can strongly impact the overall voter turnout. For instance, in
Figure 6, we display the final results for a scenario in which only the party-split input
is varied (from “No Majority” on the left, to “Partial Blue Majority” in the middle, to
“Strong Blue Majority” on the right). All other inputs are held constant. When there is
a good mix of voters from both parties and no clustering, as on the left, all voters sense
a competitive atmosphere and are highly incentivized to vote, yielding an overall turnout
of 85%. On the far right, however, when the majority of voters are from the blue party,
they become apathetic in response to being surrounded by like-minded people. In this
scenario, only 48% of voters choose to participate.

(a) (b) (c)

Figure 6: Varying party-split. (a) Final user interface with party-split = “No Major-
ity,” (b) with party-split = “Partial Blue Majority,” (c) with party-split = “Strong
Blue Majority.”
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Figure 7 illustrates how the value of the degree-clustered variable impacts the ar-
rangement of the agents on the grid and their resulting choices about participation. With
degree-clustered = 0.5, the choice of each agent’s party affiliation is entirely random.
As we move towards the upper end of the spectrum (shown for degree-clustered = 0.99
on the far right), the agents increasingly cluster with other like-minded agents. Because
of this clustering, agents perceive themselves to be in the majority party, even though the
party affiliations are actually balanced in number across the entire view. Due to their mis-
taken perception, many agents choose not to participate in the election, and overall voter
turnout declines from 84% with degree-clustered = 0.5 to 55% with degree-clustered

= 0.99. Variations of both degree-clustered and party-split can greatly alter the va-
riety of similarity scores present in the electorate. While all scores fall within the range of
[0, 1], across a full parameter sweep varying all inputs we observe a mean maximum simi-
larity score of 0.65 and a mean minimum similarity score of 0.07. These cases correspond
to electorates with more socio-political homogeneity, like Figure 6(c), and electorates with
higher overall socio-political heterogeneity, like Figure 6(a), respectively.

(a) (b) (c)

Figure 7: Varying degree-clustered. (a) Final user interface with degree-clustered

= 0.5, (b) with degree-clustered = 0.75, (c) with degree-clustered = 1.0.

Finally, in Figure 8, we illustrate how the weight chosen for the linear combination
of the individual and community-based probabilities affects the final result, with the
degree-clustered variable set to its highest value of 1.0. With a = 1.0 (i.e., voters
make their decisions based entirely on individual, demographic-based choice), there is a
relatively high voter turnout. As we decrease a, the voter turnout decreases, since voters
now make their decisions based on their surrounding community, and many elect not to
vote as a result of being surrounded by like-minded people.

3.2 Sensitivity Analysis

Next, we present the results of our sensitivity analysis, using the plots and metrics dis-
cussed in Section 2.3. First, we consider overall voter turnout as our quantity of interest
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(a) (b) (c)

Figure 8: Varying a. (a) Final user interface with a = 1.0, (b) with a = 0.5, (c) with a =
0.0.

(Section 3.2.1), and then turn our attention to investigating which inputs are most likely to
cause a major discrepancy between party affiliation in the electorate and party affiliation
in actual votes cast (Section 3.2.2).

3.2.1 Voter Turnout QoI

S-ICE plots are presented for each of the five inputs in Figure 9, with regard to their impact
on overall voter turnout. In general, we observe a statistically significant downward trend
in voter turnout when switching from “Competition Effect” to “Underdog Effect,” while
keeping all other settings constant. This reflects a tendency for majority party voters
to be more apathetic in the Underdog scenario, an outcome that was observed in Table
2. Similarly, we observe a downward trend in voter turnout when we move from “No
Majority” to “Partial Majority” to “Strong Majority” party splits; the increasing number
of majority party voters yields the perception of a less competitive scenario, increasing
apathy among majority party voters. The trend in the degree-clustered plot is also
predominantly decreasing; as the tendency of voters to communicate in echo chambers
increases, voters are more likely to perceive themselves to be surrounded primarily by
members of their own party, leading to voter apathy among both parties in response to
the perception that a vote will not meaningfully impact the election outcome.

In contrast, the trend for mean-radius indicates that voter turnout tends to increase as
the average number of interactions among agents increases, due to the fact that increasing
the number of interactions among agents helps each agent to overcome the effects of any
imposed clustering. A larger number of interactions makes it more likely that an agent
will observe members of both parties within their social circle, and adjust their likelihood
of voting upward in response to this perceived level of competition.

Among all five inputs, parameter a is the only parameter for which we observe that
the direction of change may regularly be either positive or negative, depending on the
other settings in the model. Recall, the value a = 1 indicates that participation in the
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election depends entirely on a voter’s demographic characteristics, as dictated by their
demo-prob values that were estimated from the 2016 CCES study [29]. Thus, for a =
1, all aggregated means are clustered around the mean value produced from the logistic
regression model, since each of the other community-based factors (degree-clustered,
comm-effect, mean-radius, and party-split) have no impact on the results. For small
values of a—where the focus is almost entirely on community impact—these community-
based factors have a large impact on overall voter turnout. For input combinations yielding
a low voter turnout for a = 0, we observe an increase in voter turnout as we hold all other
parameters constant but shift a from 0 to 0.5 to 1. On the contrary, input combinations
yielding a voter input larger than the demographic-based average when a = 0 display a
downward trend in voter turnout as we increase a. This indicates that varying a has a
large impact on the variability of voter turnout outcomes, but little impact on the average
voter turnout over many simulations.

Figure 9: Stochastic-individual conditional expectation (S-ICE) plots for the five input
parameters.

Figure 10 displays the first and total-order Sobol’ indices of our input settings with
regard to the voter turnout QoI. The results of this analysis can be used to fulfill our goals
of factor prioritization as well as understanding interactions between various inputs. The
party-split parameter has the highest impact on voter turnout both individually and
in conjunction with the other inputs. On its own, party-split characterizes the number
of members of each party, impacting how agents view their community based on this
distribution alone. Voters residing within a community with a strong majority presence
are either disincentivized to vote due to the lack of competition in their environment, or
perhaps incentivized to participate if they are a member of the minority party operating
under the Underdog Effect. In combination with inputs such as a and comm-effect,
party-split has an even larger effect on voter turnout. Depending on which community
effect is set and how heavily it influences agents’ decisions to vote, the ratio of agents
affiliated with each party is very impactful.
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Figure 10: First and total-order Sobol’ indices for voter turnout quantity of interest.

The comm-effect setting is the second most influential input when considered on
its own; however, parameter a is highly influential when considered in conjunction with
other settings. For instance, scaling a from 0 (where agents make their decisions entirely
based on community factors) to 1 (where agents act on an individual basis) has the
effect of dialing the impacts of other community-based factors such as comm-effect,
degree-clustered and party-split down.

Finally, we observe that the mean-radius parameter has a very minimal impact on
voter turnout, reflected in both its first and total-order Sobol’ indices. This indicates
that varying mean-radius has little impact on our quantity of interest, allowing us to fix
the value of this parameter in later analyses to improve computational efficiency without
sacrificing a robust investigation.

Motivated by the results of our Sobol’ analysis, we now turn to investigating how
parameters and settings may act in combination to produce varied outcomes, analyzing
both input interactions and direction of change. Figure 11 showcases the results for both
of the Competition and Underdog Effects across each of the “No Majority,” “Partial
Blue Majority,” and “Strong Blue Majority” cases. Without loss of generality, we do not
include plots for “Partial Red” and “Strong Red” majorities here, since the results of voter
turnout are essentially identical to the blue party majority results. In each heatmap, we
vary the numerical parameters a and degree-clustered to quantify how they interact to
produce different voter turnout outcomes. Note that since mean-radius was not found
to be strongly influential with regard to overall voter turnout, we fix mean-radius at 5
for this heatmap analysis.

As we move from left (“No Majority”) to right (“Strong Blue Majority”) under the
Competition Effect in Figure 11(a), we see that overall voter turnout decreases. When
party affiliations are well-balanced, voters sense a competitive atmosphere and are driven
to the polls. In contrast, when one party strongly outnumbers the other, members of both
parties become apathetic, sensing that their vote will have little impact on the election
outcome. We also observe a decrease in voter turnout as degree-clustered increases.
As agents increase their tendency to aggregate in echo chambers with agents of similar

the pump journal of undergraduate research 8 (2025), 286–321 310



Figure 11: A comparison of the voter turnout QoI for the (a) Competition and (b) Un-
derdog Effects with mean-radius = 5, under varying conditions of a, degree-clustered,
and party-split.

party affiliation, they perceive less competition around them, becoming more apathetic
in alignment with the imposed Competition Effect. Additionally, we observe that this
dependency of voter turnout on degree-clustered is more impactful for low values of a,
when agents are putting a greater weight on their community interactions when choosing
whether to participate in the election. These results reinforce what was found in the Sobol’
analysis: parameters a and degree-clustered are more impactful when considered in
combination, rather than in isolation.

Figure 11(b) presents the results of the parameter interactions under the Underdog
Effect. In contrast to the Competition Effect plots, we see an overall lower voter turnout
across all three party-split scenarios, and especially so for the two scenarios in which
one party holds a clear majority. In these scenarios, voters in the majority party are
disincentivized to vote based on their community interactions. Agents in the minority
party are activated, but represent a much smaller portion of the vote due to their minority
status, resulting in a lower overall turnout. The parameters a and degree-clustered

have similar impacts on the quantity of interest as in the Competition Effect plots.
It is important to note that because our model simulates an arbitrary electorate (that

is, it is not calibrated to conform to a specific data set), we do not expect every model
outcome to map directly to an observed data point. Rather, our goal is to understand
the full distribution of model outcomes that can be produced over a wide range of pos-
sible input combinations and to ensure that our model is capable of producing the range
of outcomes that we observe in reality. To do so, we examine the distribution of voter
turnouts produced by our ABM and compare it to data collected from the 2016 U.S. gen-
eral election and the 2018 U.S. midterm election cycles. For the 2016 general election, we
report state-level voter turnout statistics, where voter turnout is defined as the percentage
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of total votes out of the eligible voting population for all 50 U.S. states and the District
of Columbia [38]. This data set gives us a rough idea of how voter turnout rates may
vary as we compare states with a strong preference for one candidate over the other to
swing states with close vote counts for each. However, because our ABM is built to look
at voting patterns on a much smaller scale (analyzing several thousand voters at a time),
we also include county level data from Pennsylvania [39, 40], a key swing state that in-
cludes heavily-conservative counties (e.g., Armstrong, Bradford, and Clearfield Counties),
liberal-leaning urban counties (e.g.. Allegheny and Philadelphia Counties), and moderate
counties that are often split nearly 50-50 in their votes cast (e.g., Northampton County),
for a better comparison based on population size. This county-level data is then reported
again for the 2018 midterm elections, to allow for any juxtaposition between elections
in which the presidency is at stake versus elections that are more local in nature, two
scenarios that tend to exhibit different voting trends. Numerical summaries for each data
set and the ABM outcomes are reported in Table 2.

Data Min Q1 Median Mean Q3 Max
2016 U.S. States 47.23 59.30 62.50 62.44 66.11 74.22
2016 PA Counties 61.16 68.77 71.77 71.04 73.95 77.77
2018 PA Counties 47.57 56.42 59.68 58.62 60.92 66.69

Model Min Q1 Median Mean Q3 Max
ABM (All Scenarios) 21.86 56.83 67.38 64.58 73.46 99.05
ABM (Competition) 37.85 63.54 71.86 69.89 74.89 99.05
ABM (Underdog) 21.86 50.13 61.23 59.27 70.07 96.85

Table 2: Comparison statistics between voter turnout in 2016 U.S. states and simulated
voter turnout from the ABM.

While it can be observed from Table 2 that our ABM outcomes exhibit larger ranges
in turnout than the state- or county-level data, we note that it may be the case that
some of the model settings used to generate these extreme outcomes are in fact not
observed in reality. For instance, we can see from Figure 11(b) that the only place in
which we see turnout in the 20-30% range for the ABM is for scenarios in which there
is a strong majority present, voters behave in accordance with the Underdog Effect, and
our a parameter is close to 0. In practice, this would mean that voters are voting almost
entirely based on community-driven factors, and all of the members of that strong majority
abstain from voting because of the Underdog Effect. This is not likely to happen in reality,
and so the fact that this outcome seems extreme compared to others is not troubling.
Likewise, we only observe ABM voter turnout outcomes close to 100% when a is close to
0, degree-clustered is set to 0.5, and there is no majority; this represents a perfectly
mixed population in which everyone is driven to vote—regardless of whether the Underdog
or Competition Effects are imposed—because everyone senses themselves to be in a 50-50
position and chooses to vote based solely on their community-based voting probability.
As with our previous example, this scenario is unlikely to occur in reality; members of the
electorate are likely to use some combination of individual drive and community factors
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to make their choice, and a perfectly mixed population is unlikely to appear. With these
extreme cases not occurring in reality, we focus on the fact that the center of our ABM
outcome distribution (focusing between the first and third quartiles) is able to produce
the full range of outcomes that we observe in real life. Further calibration of our model
parameters to specific electorates would allow us to determine realistically feasible values
for each of our parameter settings.

Patterns emerging from our sensitivity analysis may also be used to explain trends
that are occurring on an individual basis. For instance, the tendency of the Competition
Effect to produce higher overall voter turnout rates—as reflected in both Figure 11 and
Table 2—is reflected in county level data from the 2016 U.S. presidential election. For
instance, Suffolk County, New York had the largest surge in voter turnout—an increase
of 6.87%—among all 206 “pivot counties”: counties who voted for Democratic candidate
Barack Obama in 2008 and 2012 but for Donald Trump, the Republican nominee, in 2016.
According to a November 2016 voter registration report, Suffolk County had roughly
the same amount of registered Republicans and Democrats (about 300,000 each) before
the 2016 presidential election [41]. Sensing this tight race—and in turn, mimicking the
Competition Effect—voters from both parties were highly incentivized to participate in
the election, driving up overall turnout to 64.46%.

3.2.2 Discrepancy in Party Proportion QoI

We now consider another quantity of interest which tracks the change from the initial
percentage of a party in the electorate—or total agent population—to that party’s share
of the votes in the election. We subsequently refer to this output as the “discrepancy
in party proportion.” For example, a shift in the red party from occupying 30% of the
electorate to 55% of the votes in the election leads to a discrepancy in party proportion
of +0.25. The corresponding shift in the blue party is then 70% to 45%, resulting in a
−0.25 change. Because these shifts are equal and opposite, we can follow the change in
composition of both parties throughout model simulations by measuring the change in
one. Considering this output allows us to target “upset” cases where the minority party
wins the election due to substantial apathy among majority party voters.

We first repeat our Sobol’ analysis using this new quantity of interest. The results
of this analysis are presented in Figure 12. While party-split is the only input with a
significant first-order Sobol’ index, we observe that it is in input interactions where most
of our model output sensitivity resides. When considering the total-order Sobol’ indices,
party-split, comm-effect, and a emerge as the most influential inputs. This result is
unsurprising, as the combination of party-split and comm-effect dictates how voters
are motivated in response to the overall ratios of party affiliations in their community, with
a dictating how much weight they place on this perception when making their decision
to vote. Once again, we observe that mean-radius—as well as degree-clustered—are
relatively uninfluential. We once again fix mean-radius at 5 for the remainder of this
analysis.

Finally, we present heatmaps detailing how the remaining four inputs interact to pro-
duce various outcomes. Without loss of generality, we present the results for the “No Ma-
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Figure 12: First and total-order Sobol’ indices for party discrepancy quantity of interest.

jority,” “Partial Blue Majority,” and “Strong Blue Majority” scenarios, with the quantity
of interest being the discrepancy in party proportion for the red party.

Figure 13: A comparison of the party discrepancy QoI for the (a) Competition and (b) Un-
derdog Effects with mean-radius = 5, under varying conditions of a,degree-clustered,
and party-split.

Figure 13 shows the discrepancy in party proportion for the Competition Effect (top)
and the Underdog Effect (bottom), across the three party-split choices. Cells with
strikethroughs represent scenarios in which the minority candidate wins the election; that
is, the discrepancy in party proportion is large enough to tip the election in favor of
the candidate with whom fewer members of the electorate favor. It is clear that within
the Competition Effect scenarios, the discrepancy in party proportion QoI is relatively
insensitive to degree-clustered, a, and party-split. However, for the Underdog Effect,
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we observe the potential for extreme discrepancy in scenarios in which there is a clear
majority for one party. In particular, for small values of a—indicating that voters place a
high weight on their community interactions—and categories of either “Partial Majority”
or “Strong Majority” for party-split, the outcome of the election is likely to favor the
minority candidate, due to extreme apathy among majority party voters.

Such a “flipped” election outcome has been observed in reality in regions that mimic
the Underdog Effect. For example, in 2016, Lee County, Iowa experienced 58.76% voter
turnout in the 2016 presidential election [42]. At a rate 9.98% lower than their 2012
presidential voter turnout, Lee County saw the highest decline in voter turnout from 2012
to 2016 of all 206 pivot counties (that is, counties that voted for Barack Obama in 2008
and 2012, and then voted for Donald Trump in 2016). Voter registration reports from
November 2016 show that Lee County had a roughly 2:1 ratio of registered Democrats to
registered Republicans [43]; however, only 39% of electoral ballots selected the Democratic
nominee for president compared to 55% for the Republican candidate [44]. Our model’s
ability to reproduce such outcomes—in which an area with a strong Democratic majority
votes in favor of the Republican candidate—is further evidence of the flexibility of our
framework.

4 Conclusion

In this work, we have presented an agent-based model developed to understand how an
eligible voter’s perception of the political climate in their community may impact their
decision to participate in an election. By controlling for individualistic characteristics
that may motivate voters using data from the 2016 CCES survey [29] while allowing
various community-based factors to vary (e.g., the degree to which voters cluster by
party affiliation, the initial party affiliation breakdown in the community, the level of
activism within the minority party, etc.), we determine the conditions under which voter
turnout would surge or decline, as well as identify combinations of settings that are likely
to lead to an election with an outcome that differs from the majority opinion in the
electorate. We remark that this model is intended to be used on a generalized scale; it
was not calibrated to match data from a particular region, and care should be taken when
drawing conclusions. Specifically, we considered the cost of model complexity as a major
factor—the goal was to focus on a few settings and understand which inputs may play
the largest role in driving voter apathy. While many other factors (or other levels of the
existing factors) could be incorporated, these may come at the cost of obfuscating the
major driving mechanisms of the model output. Thus, this model serves as a first step
towards a deeper investigation into community-based drivers of voter apathy.

Through a robust sensitivity analysis, we discovered that our quantities of interest were
highly influenced by the initial breakdown in party affiliation among eligible voters in the
community, as well as the type of motivating community effect imposed (“Competition”
versus “Underdog,”) and the degree to which voters weight their community interactions
against their individualistic characteristics when making their decision to vote or abstain.
In particular, these three factors are important not just in isolation, but even more so when
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considered in combination. For instance, we find that in order for a “flipped” election to
occur within our modeling framework—that is, for the election winner to be the minority
candidate—we must observe a scenario in which voters in the minority party are very
active (“Underdog Effect”), the party affiliation breakdown is highly skewed toward one
party over the other, and eligible voters place a large emphasis on their interactions with
those in their community when determining their inclination to vote.

While our model was developed as a first step towards investigating which combina-
tions of community-based factors might be most influential in determining the level of
voter apathy in a community, much more could now be done to place this in a specific
context. Selecting a specific region and calibrating the model settings to match data
and insights from that region would allow for more robust model validation and enable
meaningful insight into the major driving mechanisms of voter apathy in that region. For
instance, it may be the case that in a given community, one party is more “vulnerable” to
community interactions—in the sense that they are more likely to be swayed to vote or
abstain based on their interactions with those around them—while the other party may
contain individuals that are more likely to make their decision based on their own core
values. This type of discrepancy could be accounted for by allowing the a parameter,
which serves as the weight in the linear combination combining demographic and com-
munity factors, to vary among parties or even different demographic characteristics such
as age or education. Similarly, knowing the political history of a particular community
may give insight into past patterns of mobilization of the minority party, which could
allow a user to better understand what kind of community effect should be imposed; as
with parameter a, this community effect could also be altered on an party-wide or even
individualized basis. Additionally, while the party variable is currently modeled as a
continuous variable on the interval [0, 1], this is a simplification that assumes a member
of the electorate lands at the same location on the political spectrum for all political
issues. In reality, it is often the case that voters have more complex and multidimensional
political stances; for instance, a voter may consider themselves conservative with respect
to fiscal matters but lean more liberal when it comes to social policies. In future itera-
tions of the model, the party variable could be adapted to model this multidimensional
political framework, particularly if researchers were interested in studying multiple genres
of political issues simultaneously. Finally, another factor driving voting behavior that our
model could incorporate in the future is political polarization. To account for a growing
ideological divide in the current political climate in our model, one could introduce an ad-
ditional option for party-split where agents’ party values are sampled from a bimodal
distribution skewed toward more “extreme” opinions. While our model as it currently
stands is intended to be very generalized in order to allow for the determination of large-
scale effects in a simplistic environment, further adaptations such as those discussed here
would be necessary to ground the model in a particular regional context.

Additionally, we note that our model was developed specifically to target questions
about community influence of voter apathy. However, this model could also be adapted
to explore other related questions of interest. For example, an interesting next step might
be to allow for eligible voters to change not only their decision about whether to vote

the pump journal of undergraduate research 8 (2025), 286–321 316



or abstain, but to actually change their party affiliation based on interactions with those
in their community. Indeed, recent research suggests that extreme voters may be more
likely to become more moderate over time, as opposed to moderate voters becoming
more extreme in their preferences. An extension of this model to incorporate multiple
time steps in which voters with extreme stances gradually drift towards the moderate
viewpoint could make the simulation more realistic [45]. Additionally, while the model
interface currently assumes that all of the agents in the model are participating in the
same election, including district lines within the interface—such that voters are casting
their votes for different sets of candidates while still possibly interacting with voters from
the other side of the divide—might provide an interesting look into how gerrymandering
plays a role in voter apathy. Larger abstractions from our current framework, potentially
through the use of differing demographic datasets, could include redefining the political
structure to analyze apathy in multiparty systems, culturally extending our basis away
from the United States. Further model analysis of the impact of factors like social or
mainstream media, grassroots campaigns, and voter suppression tactics could also help
contextualize the current political climate. An investigation into any of these adaptations
and their ensuing effects on voter apathy would be a welcome addition to the literature.
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[9] , I. Moya, M. Chica, J.L. Sáez-Lozano, Ó. Cordón, Simulating the influence of terror
management strategies on the voter ideological distance using agent-based modeling,
Telemat. Inform., 63, (2021).

[10] A. Di Benedetto, C.E. Wieners, H.A. Dijkstra, H.T. Stoof, Media preference increases
polarization in an agent-based election model, Physica A Stat. Mech. Appl., 626,
(2023).

[11] J.K. Madsen, T.D. Pilditch, A method for evaluating cognitively informed micro-
targeted campaign strategies: an agent-based model proof of principle, PLOS ONE,
13 (2018), 1–14.

[12] A. Mitra, Agent-based simulation of district-based elections with heterogenous pop-
ulations, Proceedings of the 2023 International Conference on Autonomous Agents
and Multiagent Systems, (2023), 2730-2732.

[13] F. Palombi, S. Toti, Voting behavior in proportional elections from agent-based mod-
els, Phys. Procedia, 62 (2015), 42–47.

[14] L. Qiu, R. Phang, Agent-based modeling in political decision-making, Oxford Univer-
sity Press, 2020.

[15] M. Gao, Z. Wang, K. Wang, C. Liu, S. Tang, Forecasting elections with agent-based
modeling: two live experiments, PLOS ONE, 17 (2022), 1–11.

[16] E. Fieldhouse, L. Lessard-Phillips, B. Edmonds, Cascade or echo chamber? a complex
agent-based simulation of voter turnout, Party Pol., 22 (2016), 241–256.

[17] S.S. Gera, Modeling the effects on voter turnout: an agent based approach, Ph.D.
Thesis, (2018).

[18] J. Bara, O. Lev, P. Turrini, Predicting voting outcomes in the presence of communi-
ties, echo chambers and multiple parties, Artif. Intell., 312 (2022).

[19] F. Justwan, B. Baumgaertner, J.E. Carlisle, A.K. Clark, M. Clark, Social media
echo chambers and satisfaction with democracy among democrats and republicans
in the aftermath of the 2016 US elections, J. Elect. Public Opin. Parties, 28 (2018),
424–442.

[20] M.E. Olsen, Social participation and voting turnout: a multivariate analysis, Am.
Sociol. Rev., 37 (1972), 317–333.

the pump journal of undergraduate research 8 (2025), 286–321 318



[21] H. Evrenk, C.-Y. Sher, Social interactions in voting behavior: distinguishing between
strategic voting and the bandwagon effect, Public Choice, 162 (2015), 405–423.

[22] A.S. Gerber, T. Rogers, Descriptive social norms and motivation to vote: everybody’s
voting and so should you, JOP, 71 (2009), 178–191.

[23] V.A. Bali, L.J. Robison, R. Winder, What motivates people to vote? the role of
selfishness, duty, and social motives when voting, SAGE Open, 10 (2020).

[24] J. Harder, J.A. Krosnick, Why do people vote? a psychological analysis of the causes
of voter turnout, J. Soc. Issues, 64 2008), 525–549.

[25] A.C. Goldberg, P. Sciarini, Voter turnout in direct democracy: a joint analysis of
individual, referendum and community factors, Eur. J. Polit. Res., 62 (2023), 25–46.

[26] D.K. Levine, T.R. Palfrey, The paradox of voter participation? a laboratory study,
APSR, 101 (2007), 143–158.

[27] E. Borgonovo, M. Pangallo, J. Rivkin, L. Rizzo, N. Siggelkow, Sensitivity analysis
of agent-based models: a new protocol, Comput. Math. Organ. Theory, 28 (2022),
52–94.

[28] V. Grimm, S. Railsback, C.E. Vincenot, U. Berger, C. Gallagher, D.L. DeAngelis,
B. Edmonds, J. Ge, J. Giske, J. Groeneveld, A.S.A. Johnston, A. Milles, J. Nabe-
Nielsen, J.G. Polhill, V. Radchuk, M.S. Rohwader, R.A. Stillman, J.C. Thiele, D.
Ayllon, The ODD protocol for describing agent-based and other simulation models:
a second update to improve clarity, replication, and structural realism, JASSS, 23
(2020).

[29] S. Ansolabehere, B.F. Schaffner, CCES Common Content, 2016, (2017).

[30] Pew Research Center, Beyond red vs. blue: the political typology, avail-
able online at the URL: https://www.pewresearch.org/politics/2021/11/09/
beyond-red-vs-blue-the-political-typology-2/.

[31] M. Rolfe, Voter turnout: a social theory of political participation, political economy
of institutions and decisions, Cambridge University Press, 2012.

[32] U. Wilensky, NetLogo, Center for Connected Learning and Computer-Based Model-
ing, available online at the URL: http://ccl.northwestern.edu/netlogo/.

[33] NetLogo 6.4.0 User Manual, BehaviorSpace guide, available online at the URL:
https://ccl.northwestern.edu/netlogo/docs/behaviorspace.html.

[34] A. Saltelli, K. Chan, E. Scott, Sensitivity Analysis, Wiley, 2009.

[35] R. Smith, Uncertainty quantification: theory, implementation, and applications,
SIAM Computational Science and Engineering, 2014.

[36] J. Herman, W. Usher, SALib: an open-source Python library for sensitivity analysis,
J. Open Source Softw., 2 (2017).

[37] J.H. Kwakkel, M. Jaxa-Rozen, pyNetLogo, available online at the URL: https:
//pynetlogo.readthedocs.io/en/latest/.

the pump journal of undergraduate research 8 (2025), 286–321 319

https://www.pewresearch.org/ politics/2021/11/09/beyond-red-vs-blue-the-political-typology-2/
https://www.pewresearch.org/ politics/2021/11/09/beyond-red-vs-blue-the-political-typology-2/
http://ccl.northwestern.edu/netlogo/
https://ccl.northwestern.edu/netlogo/docs/behaviorspace.html
https://pynetlogo.readthedocs.io/en/latest/
https://pynetlogo.readthedocs.io/en/latest/


[38] U.S. Census Bureau, Table 4a: reported voting and registration, for states, available
online at the URL: https://www.census.gov/data/tables/time-series/demo/

voting-and-registration/p20-580.html.

[39] Commonwealth of Pennsylvania, Voting and election reports, avail-
able online at the URL: https://www.pa.gov/en/agencies/dos/

resources/voting-and-elections-resources/election-reports.html#

accordion-ea923da40b-item-b01fb1423f.

[40] Department of State, 2016 presidential election statewide official returns, avail-
able online at the URL: https://www.electionreturns.pa.gov/_ENR/General/
SummaryResults?ElectionID=54&ElectionType=G&IsActive=0.

[41] New York State Board of Elections, Enrollment by county, available online at the
URL: https://www.elections.ny.gov/EnrollmentCounty.html.

[42] Ballotpedia, Voter turnout in the 206 pivot counties that voted Obama-Obama-
Trump, available online at the URL: https://ballotpedia.org/Voter_turnout_
in_the_206_Pivot_Counties_that_voted_Obama-Obama-Trump.

[43] Iowa Secretary of State’s Office, Voter registration totals by county, available online
at the URL: https://sos.iowa.gov/elections/voterreg/county.html#2016.

[44] Associated Press, Iowa 2016 presidential election results, available online at the URL:
https://www.politico.com/2016-election/results/map/president/iowa/.

[45] N. Klein, O. Stavrova, Respondents with more extreme views show moderation of
opinions in multi-year surveys in the USA and the Netherlands, Commun. Psychol.,
1 (2023).

Grace A. Brophy
Hamilton College
198 College Hill Rd
Clinton, NY 13323
E-mail: gbrophy@hamilton.edu

Audrey R. Rips-Goodwin
University of Kansas
1450 Jayhawk Blvd
Lawrence, KS 66045
E-mail: audrey.rips@ku.edu

Lucy A. Wilson
Bryn Mawr College
101 N Merion Ave
Bryn Mawr, PA 19010
E-mail: lawilson@brynmawr.edu

the pump journal of undergraduate research 8 (2025), 286–321 320

https://www.census.gov/data/tables/time-series/demo/voting-and-registration/p20-580.html
https://www.census.gov/data/tables/time-series/demo/voting-and-registration/p20-580.html
https://www.pa.gov/en/agencies/dos/resources/voting-and-elections-resources/election-reports.html#accordion-ea923da40b-item-b01fb1423f
https://www.pa.gov/en/agencies/dos/resources/voting-and-elections-resources/election-reports.html#accordion-ea923da40b-item-b01fb1423f
https://www.pa.gov/en/agencies/dos/resources/voting-and-elections-resources/election-reports.html#accordion-ea923da40b-item-b01fb1423f
https://www.electionreturns.pa.gov/_ENR/General/SummaryResults?ElectionID=54&ElectionType=G&IsActive=0
https://www.electionreturns.pa.gov/_ENR/General/SummaryResults?ElectionID=54&ElectionType=G&IsActive=0
https://www.elections.ny.gov/EnrollmentCounty.html
https://ballotpedia.org/Voter_turnout_in_the_206_Pivot_Counties_that_voted_Obama-Obama-Trump
https://ballotpedia.org/Voter_turnout_in_the_206_Pivot_Counties_that_voted_Obama-Obama-Trump
https://sos.iowa.gov/elections/voterreg/county.html#2016
https://www.politico.com/2016-election/results/map/president/iowa/


Allison L. Lewis
Lafayette College
730 High St.
Easton, PA 18042
E-mail: lewisall@lafayette.edu

Received: March 23, 2025 Accepted: June 16, 2025
Communicated by Alex Chen

the pump journal of undergraduate research 8 (2025), 286–321 321


	Introduction
	Methods
	Overview, Design Concepts, and Details (ODD) Protocol
	Purpose and Patterns
	Entities, State Variables, and Scales
	Process Overview and Scheduling
	Design Concepts
	Initialization
	Input Data
	Submodels

	User Interface
	Sensitivity Analysis Methodology

	Results
	Individual Case Studies
	Sensitivity Analysis
	Voter Turnout QoI
	Discrepancy in Party Proportion QoI


	Conclusion

