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Abstract - Let Pa be the family of complex-valued polynomials of the form p(z) = (z −
a)(z − r1)(z − r2) with a ∈ [0, 1] and |r1| = |r2| = 1. The Gauss-Lucas Theorem implies
that the critical points of a polynomial in Pa lie in the unit disk. This paper characterizes
the location and structure of these critical points. We show that the unit disk contains a
‘desert’ region, the open disk {z ∈ C : |z − 2

3a| =
1
3}, in which critical points of polynomials

in Pa do not occur. Furthermore, almost every c inside the unit disk and outside of the
desert region is the critical point of a unique polynomial in Pa.
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1 Introduction

The Gauss-Lucas Theorem implies that the critical points of a complex-valued polynomial
lie in the convex hull of its roots [4]. Several recent papers [1], [2], [3], [5] have explored the
geometry of complex-valued polynomials with three roots. Critical points of polynomials
of the form p(z) = (z − 1)(z − r1)(z − r2) with |r1| = |r2| = 1 are investigated in [1]. For
such a polynomial, the Gauss-Lucas Theorem guarantees that its critical points lie in the
unit disk. In this case, there is more to say. It is shown in [1] that no critical point occurs
in the ‘desert’ region

{
z ∈ C : |z − 2

3
| < 1

3

}
, and a critical point of such a polynomial

almost always determines the polynomial uniquely. Furthermore, an underlying structure
relates the critical points of such a polynomial. If one critical point lies on the circle
C =

{
z ∈ C : |z − 1

2
| < 1

2

}
, then the other critical point lies on C. Otherwise the critical

points lie on opposite sides of C.
For a ∈ [0, 1], a natural generalization of [1] is to investigate the family of polynomials

Pa = {p : C→ C | p(z) = (z − a)(z − r1)(z − r2), |r1| = |r2| = 1, a ∈ [0, 1]} .
Critical points of polynomials in P0 are characterized in [3]. Similar to [1], the unit
disk contains a desert,

{
z ∈ C : |z| < 1

3

}
, in which critical points do not occur, and a

critical point almost always determines a polynomial uniquely. This paper completes the
generalization by investigating critical points of polynomials in Pa for a ∈ (0, 1). We used
GeoGebra to visualize the critical points of polynomials in Pa. In Figure 1, we set r1 and
r2 in motion around the unit circle and traced the trajectories of the critical points in
grey. Similar to [1] and [3], the unit disk contains a desert region in which critical points
do not occur, and almost every c inside the unit disk and outside the desert region is the
critical point of a unique polynomial in Pa (see our Theorem 4.1).
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Figure 1: Setting r1 and r2 in motion around the unit circle and tracing the trajectories
of the critical points in grey allows us to visualize the desert region.

2 Critical Points

We begin by introducing some notation. For a ∈ [0, 1], define the circle Ab = {z ∈ C :
|z − (1 − b)a| = b, b ≥ 0}. When necessary, we express the a dependence of Ab as Aab .
Observe that A1 is the unit circle and A0 = {a}. Furthermore, for a ∈ [0, 1), a given z in
the unit disk lies on a unique Ab with b ≥ 0. When a = 1, all the circles A1

b contain the
point z = 1. In this case, each z 6= 1 in the unit disk lies on a unique A1

b with b > 0.
A polynomial of the form p(z) = (z − a)(z − r1)(z − r2) has two critical points. To

characterize these critical points, we investigate how they are related to their associated
roots. If c is a critical point of p(z), then

0 = p′(c) = 3c2 − 2(a+ r1 + r2)c+ r1r2 + ar1 + ar2

and it follows that

0 = r2[r1 − (2c− a)]− [(2c− a)r1 − (3c2 − 2ac)]. (1)

If r1 6= 2c− a, (1) becomes

r2 =
(2c− a)r1 − (3c2 − 2ac)

r1 − (2c− a)
(2)

and when r1 = 2c− a, (1) implies c = a.

Definition 2.1 Given c 6= a, we define

fc(z) =
(2c− a)z − (3c2 − 2ac)

z − (2c− a)
(3)

and Sc = fc(A1).
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Observe that fc is a linear fractional transformation with fc(r1) = r2. Furthermore,
for c 6= a, direct calculation shows (fc)

−1 = fc. Therefore, fc(r2) = r1 and we have
established the following result.

Theorem 2.2 A polynomial p(z) = (z− a)(z− r1)(z− r2) has a critical point at c if and
only if fc(r1) = r2.

To gain intuition, we recall Gauss’s physical interpretation relating roots and critical
points of a polynomial [4]. The critical points of a polynomial are the equilibrium points
of a force field. The field is generated by particles placed at the roots of the polynomial,
the particles having masses equal to the multiplicity of the roots and attracting with a
force inversely proportional to the distance from the particle. With this in mind, when
a critical point of a polynomial in Pa occurs at a repeated root on the unit circle, the
second critical point is forced to be as close as possible to the root at z = a, and hence
lie on the boundary of the desert region.

Figure 2: The polynomial p(z) = (z − a)(z − c)2 ∈ Pa has critical points c ∈ A1 and
c2 ∈ A1/3. Observe that c2 is in the convex hull of {c, a}.

Example 2.3 Suppose p ∈ Pa has a critical point c ∈ A1. The Gauss-Lucas Theorem
implies that c is a repeated root of p. Therefore, p(z) = (z − a)(z − c)2 is the only
polynomial in Pa with a critical point at c ∈ A1. Furthermore,

p′(z) = (z − c)(3z − (2a+ c))

so the other critical point of p(z) satisfies 3c2 − (2a + c) = 0. Therefore, as 3c2 − 2a = c
implies

∣∣c2 − 2
3

∣∣ = 1
3
, it follows that c2 ∈ A1/3. See Figure 2.

This example provides us with a conjecture. We hypothesize that no polynomial in Pa
will have a critical point strictly inside A1/3 (See Theorem 4.1.) Proving this hypothesis
requires a better understanding of Sc.
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Figure 3: If c is a critical point of p(z) = (z−a)(z−r1)(z−r2) ∈ Pa, then {r1, r2} ⊆ Sc∩A1.

To further explore Sc, recall that {r1, r2} ⊆ A1, fc(r1) = r2, fc(r2) = r1, and Sc =
fc(A1). These facts imply {r1, r2} ⊆ Sc ∩ A1. That is, if c is a critical point of p(z) =
(z−a)(z−r1)(z−r2) ∈ Pa, then {r1, r2} ⊆ Sc∩A1. See Figure 3. Lemma 2.4 investigates
the cardinality of Sc ∩ A1 and is the direct extension of a result in [3, Lemma 4].

Lemma 2.4 Suppose c 6= a. The circles Sc and A1 coincide, are disjoint, or intersect in
one or two distinct points.

1. If Sc ∩ A1 = ∅, then no polynomial in Pa has a critical point at c.

2. If Sc = A1, then for each r ∈ A1 there is a unique polynomial (z − a)(z − r)(z −
fc(r)) ∈ Pa with a root at r and a critical point at c.

3. Otherwise, Sc ∩ A1 = {r, fc(r)} consists of two points, or one point if fc(r) = r. In
this case, (z − a)(z − r)(z − fc(r)) is the unique polynomial in Pa with a critical
point at c.

3 Properties of Sc

Suppose c 6= a. As

fc(z) =
(2c− a)z − (3c2 − 2ac)

z − (2c− a)

is a linear fractional transformation and A1 is a circle, Sc will be a circle or a line.
Furthermore, Sc will be a line whenever there exists a z ∈ A1 with z − (2c− a) = 0. As
|z| = 1, this occurs when 1

2
= |c− a

2
|. Therefore, Sc is a line if and only if c ∈ A1/2.

To determine when Sc = A1, we need an additional fact related to linear fractional
transformations.
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Theorem 3.1 [2] A linear fractional transformation T sends the unit circle to the unit
circle if and only if

T (z) =
αz − β
βz − α

for some α, β ∈ C with
∣∣∣αβ ∣∣∣ 6= 1.

Example 3.2 When a = 0, it is shown in [3] that Sc = A1 if and only if |c| =
√

1/3 and
when a = 1, it is shown in [1] that Sc = A1 if and only if c = −1

3
.

Suppose a ∈ (0, 1). Applying Theorem 3.1 to (3) implies Sc = A1 whenever

2c− a = 2c− a and 3c2 − 2ac = 1.

The left equality implies c is real, and for a real-valued c the right equation gives c =
a
3
±
√
a2+3
3
∈ R. That is, if c = a

3
±
√
a2+3
3

, then Sc = A1.
Conversely, if Sc = A1, then Theorem 3.1 implies

fc(z) =
(2c− a)z − (3c2 − 2ac)

z − (2c− a)
=
αz − β
βz − α

.

In this case, there exists a nonzero complex number v such that

v((2c− a)z − (3c2 − 2ac)) = αz − β and v(z − (2c− a)) = βz − α.

Therefore,
v(2c− a) = α = v(2c− a) and v(3c2 − 2ac) = β = v

so

3c2 − 2ac =
2c− a
2c− a

. (4)

Setting c = x+ iy in (4) and equating real and imaginary parts gives

2x− a = (2x− a)(3x2 − 3y2 − 2ax) + 4y2(3x− a) (5)

and

2y = 2y
[
(2x− a)(3x− a)− (3x2 − 3y2 − 2ax)

]
. (6)

If y 6= 0, (6) implies

y2 =
1− 3x2 + 3ax− a2

3
. (7)

Substituting (7) into (5) eventually gives 0 = a(a2 + 2− 3ax) so x =
a2 + 2

3a
. Substituting

into (7) implies

y2 = −a
4 − 5a2 + 4

9a2
,
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a contradiction. It follows that y = 0. In this case we have that c = x and from (5)we get

0 = (2x− a)(3x2 − 2ax− 1).

If 2x−a = 0, then c = a
2
. In this case we have fc(z) = −3c2+2ac

2
= a2

4z
so that 1 = |fc(1)| =

a2

4
, a contradiction. Therefore 3x2 − 2ax− 1 = 0 and

c = x =
a

3
±
√
a2 + 3

3
.

To summarize, Sc = A1 if and only if c = a
3
±
√
a2+3
3

.

For c /∈ A1/2, Sc is a circle. By the definition of Sc, z ∈ Sc if and only if there exists
some w ∈ A1 with fc(w) = z. Equivalently, fc(z) = w implies |fc(z)| = 1, so that∣∣∣∣(2c− a)z − (3c2 − 2ac)

z − (2c− a)

∣∣∣∣ = 1.

Thus, z ∈ Sc if and only if

|z − (2c− a)| = |2c− a|
∣∣∣∣z − 3c2 − 2ac

2c− a

∣∣∣∣ . (8)

For k 6= 1, an introductory complex analysis result [6] states that the solution set of
|z − u| = k|z − v| is a circle with center C and radius R satisfying

C =
k2v − u
k2 − 1

and R = |v − u|
∣∣∣∣ k

k2 − 1

∣∣∣∣ .
When k = |2c−a| = 1 in (8), c ∈ A1/2 and Sc is a line. This leads to the following lemma.

Lemma 3.3 Suppose c /∈ A1/2. Then Sc is a circle with center γ and radius r given by

γ =
(2c̄− a)(3c2 − 2ac)− (2c− a)

|2c− a|2 − 1
and r =

∣∣∣∣3c2 − 2ac

2c− a
− (2c− a)

∣∣∣∣ ∣∣∣∣ |2c− a|
|2c− a|2 − 1

∣∣∣∣ .
For future use, we illustrate Lemma 3.3 with an example.

Example 3.4 For c = 2
3
a, the center and radius of Sc are

γ =
3a

9− a2
and r =

a2

9− a2
.

As |γ + r| =
∣∣∣3a+a29−a2

∣∣∣ =
∣∣ a
3−a

∣∣ < 1, Sc is contained inside A1. Therefore, by Lemma 2.4, no

polynomial in Pa has a critical point at c = 2
3
a.
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According to Lemma 2.4, if Sc is tangent to A1 at r, then c is the critical point of the
unique polynomial

p(z) = (z − a)(z − r)2 ∈ Pa.
Furthermore, as seen in Example 2.3, the critical points of p are r ∈ A1 and r+2a

3
∈ A1/3.

That is, if Sc is tangent to A1, then c ∈ A1 ∪A1/3. Example 3.5 investigates the converse
of this statement.

Example 3.5 Suppose c ∈ A1. Then c = eiθ and by Lemma 3.3 the center of Sc is

γ =
(2e−iθ − a)(3e2iθ − 2aeiθ)− (2eiθ − a)

(2e−iθ − a)(2eiθ − a)− 1

=
−3ae2iθ + (4 + 2a2)eiθ − 3a

3 + a2 − 2ae−iθ − 2aeiθ

=
−3aeiθ − 3ae−iθ + 4 + 2a2

3 + a2 − 4a cos(θ)
eiθ

=
4 + 2a2 − 6a cos(θ)

3 + a2 − 4a cos(θ)
c.

Additionally, for a ∈ (0, 1), one can verify that 4+2a2−6a cos(θ)
3+a2−4a cos(θ) > 1. Since c ∈ A1 and

fc(c) = c ∈ Sc, c is a point of intersection of Sc and A1 that lies on the line connecting
their centers. Therefore, Sc is externally tangent to A1 at c.

Similar calculations show that if c ∈ A1/3, then Sc is internally tangent to A1 at 3c−2a.
See Figure 4.

Figure 4: Circles Sc1 and Sc for c1 ∈ A1/3 and c = 3c1 − 2a ∈ A1.

We have established the following result.

Lemma 3.6 Suppose c ∈ C.

1. Sc is internally tangent to A1 if and only if c ∈ A1/3.
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2. Sc is externally tangent to A1 if and only if c ∈ A1

For c ∈ A1/3 ∪ A1, Sc is tangent to A1 and it follows that |Sc ∩ A1| = 1. Lemmas 3.7
and 3.8 determine |Sc ∩ A1| when c /∈ A1/3 ∪ A1.

Lemma 3.7 If c ∈ Ab with b ∈ (1
3
, 1) and c 6= a±

√
a2+3
3

, then |Sc ∩ A1| = 2.

Proof. Let c ∈ Ab with b ∈ (1
3
, 1) and c 6= a±

√
a2+3
3

. Without loss of generality, suppose
to the contrary that |Sc ∩ A1| = 0 and Sc is contained inside A1. As we drag c to A1

along a line segment avoiding A1/3, Sc is continuously transformed into a circle externally
tangent to A1. By the Intermediate Value Theorem, there exists a c0 on the line segment
with Sc0 internally tangent to A1. However, as c does not cross A1/3, this contradicts
Lemma 3.6 and it follows that |Sc ∩ A1| = 2. �

A similar ‘dragging’ argument shows that Sc ∩ A1 = ∅ whenever c is contained inside
A1/3.

Lemma 3.8 If c is contained inside A1/3, then Sc ∩ A1 = ∅.

Proof. Suppose to the contrary that c is contained inside A1/3 with |Sc ∩ A1| = 2. As
we drag c to 2

3
a, the center of A1/3, along a line segment, it follows from Example 3.4

that Sc is continuously transformed into a circle contained inside A1. By the Intermediate
Value Theorem, there must exist a c0 on the line segment with Sc0 internally tangent to
A1. However, as c does not cross A1/3, this contradicts Lemma 3.6 and it follows that
Sc ∩ A1 = ∅. �

4 Main Result

We are now ready to characterize the critical points of polynomials in Pa.

Theorem 4.1 Let c ∈ C.

1. If c ∈ Ab with b ∈ [0, 1
3
)∪ (1,∞), then no polynomial in Pa has a critical point at c.

2. If c ∈ Ab with b ∈ [1
3
, 1] and c 6= a±

√
a2+3
3

, then c is the critical point of exactly one
polynomial in Pa.

3. If c = a±
√
a2+3
3

, then infinitely many polynomials in Pa have a critical point at c.

Proof. Let c ∈ C.

1. If c ∈ Ab with b ∈ [0, 1
3
), then Lemmas 3.8 and 2.4 imply that no polynomial in

Pa has a critical point at c. Furthermore, if c ∈ Ab with b > 1, the Gauss-Lucas
Theorem implies that no polynomial in Pa has a critical point outside of the unit
disk.
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2. If c ∈ Ab with b ∈ [1
3
, 1] and c 6= a±

√
a2+3
3

, then Example 3.2 and Lemmas 3.6 and 3.8
imply |Sc ∩A1| ∈ {1, 2}. Therefore, by Lemma 2.4, c is the critical point of exactly
one polynomial in Pa.

3. If c = a±
√
a2+3
3

, then Example 3.2 implies Sc = A1 and by Lemma 2.4,

p(z) = (z − a)(z − r)(z − fc(r)) ∈ Pa

has a critical point at c for each r ∈ A1.

�
This completes the characterization of critical points of polynomials in Pa. The unit

disk contains a single desert region, {z ∈ Ab : b ∈ [0, 1
3
)}, in which critical points do not

occur, and almost every c inside the unit disk and outside the desert region is the critical
point of a unique polynomial in Pa.

5 Structure of Critical Points

Having determined where the critical points of a polynomial in Pa are located, we now
investigate how they are related to each other. This relationship involves inversion over a
circle. Recall that if C is a circle centered at O with radius r and X is a point distinct from

O, then the inversion of X over C is the point Y on the ray
−−→
OX such that |OX|·|OY | = r2.

For motivation, we revisit the results of [1]. Polynomials of the form

p(z) = (z − 1)(z − r1)(z − r2)

with |r1| = |r2| = 1 have two critical points. If one critical point, c1, lies on the circle A1
1/2,

then the other critical point, c2, also lies on A1
1/2 with c2 = c1. Otherwise, the critical

points lie on opposite sides of A1
1/2. In this case, A1

1, the unit circle, is the inversion of

A1
1/3, the boundary of the desert region, across A1

1/2.

For a = 0, [3] establishes similar results with A0√
1/3

being the circle of inversion. As

this structure is present for the extreme values of a = 0 and a = 1, one might expect
similar results for a ∈ (0, 1).

Definition 5.1 For a ∈ [0, 1], we define CI to be the circle(
x− a

2

)2
+ y2 =

1

3
− a2

12
.

Observe that when a = 1, we have A1
1/2 = CI , and when a = 0, we have A0√

1/3
= CI .

However, when a /∈ {0, 1}, CI is not an Ab circle. We claim that A1 is the inversion of
A1/3 across CI .

Lemma 5.2 The circles A1 and A1/3 are inversions with respect to CI .
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Proof. Since A1, A1/3, and CI are symmetric across the real axis, it suffices to show
that the two pairs of real numbers 2

3
a + 1

3
∈ A1/3 and 1 ∈ A1, and 2

3
a − 1

3
∈ A1/3 and

−1 ∈ A1 are inversions across CI . Setting X = 2
3
a− 1

3
, Y = −1 and denoting the center

and radius of CI as O =
(
a
2
, 0
)

and r =

√
1

3
− a2

12
gives

|OX| · |OY | =
∣∣∣∣a2 −

(
2

3
a− 1

3

)∣∣∣∣ · ∣∣∣a2 + 1
∣∣∣

=

(
1

3
− a

6

)(
1 +

a

2

)
=

1

3
− a2

12
= r2.

It follows that 2
3
a− 1

3
∈ A1/3 and −1 ∈ A1 are inversions across CI . Similar calculations

verify the claim for the other set of points. Therefore, the circles A1 and A1/3 are inversions
with respect to CI . �

We are now ready to describe the structure relating critical points of polynomials in
Pa.

Figure 5: The circles A1 and A1/3 are inversions with respect to CI .

Theorem 5.3 Let c1 and c2 be the critical points of p ∈ Pa. If c1 ∈ CI , then c2 = c1 ∈ CI .
Otherwise, c1 and c2 lie on opposite sides of CI .

Proof. Let p ∈ Pa have critical points c1 and c2.
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Suppose c1 = x+ iy ∈ CI . For cos(θ) = 3x−a
2

, r = eiθ, and

pr(z) = (z − a)(z − r)(z − r) ∈ Pa,

we will verify that c1 is a critical point of pr. Direct calculations give

pr(z) = 3z2 − 2(a+ r + r)z + rr + ar + ar

= 3z2 − 2(a+ 2 cos(θ))z + 1 + 2a cos(θ)

= 3z2 − 6xz + 1 + 3ax− a2.

As c1 ∈ CI , c1c1 = ax+ 1
3
− 1

3
a2 and it follows that

pr(z) = 3z2 − 3(c1 + c1)z + 3c1c1 = 3(z − c1)(z − c1).

Therefore, pr has critical points at c1 and c1 ∈ CI . By uniqueness, pr(z) = p(z), and if
c1 ∈ CI , then c2 = c1 ∈ CI .

Suppose c1 /∈ CI . We use a dragging argument to show that c1 and c2 lie on opposite
sides of CI . Without loss of generality, suppose to the contrary that c1 and c2 lie strictly
inside CI . As we drag c1 along a line segment, contained strictly inside CI , to a point on
A1/3, Example 2.3 and the uniqueness from Theorem 4.1 implies that c2 travels along a
continuous path to A1. By the Intermediate Value Theorem, c2 must cross CI at some
point c2,t0 . By the first part of this theorem, c2,t0 = c1,t0 ∈ CI which contradicts the fact
that c1 is strictly inside CI . Therefore, c1 and c2 lie on opposite sides of CI .

�
As an interesting observation, we note that for r = eiθ, pr(z) = (z − a)(z − r)(z − r)

will not always have critical points on CI . As r moves around the unit circle, there are
threshold values of θ where the critical points move from CI to the real axis. For

θ± = arccos

(
a±
√

12− 3a2

4

)
,

the set of points {a, eiθ+ , e−iθ+} and {a, eiθ− , e−iθ−} form equilateral triangles. With
this observation in mind, direct calculations give: If θ ∈ [θ−, θ+], then pr(z) has critical
points on CI ; If θ ∈ (0, θ−) ∪ (θ+, π), then pr(z) has real-valued critical points not on CI .

This completes the characterization of critical points of polynomials in Pa. Our results
can be extended to polynomials of the form

p(z) = (z − a)k(z − r1)m(z − r2)n

with |r1| = |r2| = 1 and {k,m, n} ⊆ N with m = n. Similar to Pa, the unit disk
contains a desert region bounded by A k

2m+k
and a critical point almost always determines a

polynomial uniquely. However, many open questions remain. For example, what happens
when m 6= n?
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