Geometry of a Family of Cubic Polynomials

C. Frayer and J. Wallace

Abstract

Let P_{a} be the family of complex-valued polynomials of the form $p(z)=(z-$ $a)\left(z-r_{1}\right)\left(z-r_{2}\right)$ with $a \in[0,1]$ and $\left|r_{1}\right|=\left|r_{2}\right|=1$. The Gauss-Lucas Theorem implies that the critical points of a polynomial in P_{a} lie in the unit disk. This paper characterizes the location and structure of these critical points. We show that the unit disk contains a 'desert' region, the open disk $\left\{z \in \mathbb{C}:\left|z-\frac{2}{3} a\right|=\frac{1}{3}\right\}$, in which critical points of polynomials in P_{a} do not occur. Furthermore, almost every c inside the unit disk and outside of the desert region is the critical point of a unique polynomial in P_{a}.

Keywords : geometry of polynomials; critical points; Gauss-Lucas Theorem
Mathematics Subject Classification (2010) : 30C15

1 Introduction

The Gauss-Lucas Theorem implies that the critical points of a complex-valued polynomial lie in the convex hull of its roots [4]. Several recent papers [1], 2], [3], [5] have explored the geometry of complex-valued polynomials with three roots. Critical points of polynomials of the form $p(z)=(z-1)\left(z-r_{1}\right)\left(z-r_{2}\right)$ with $\left|r_{1}\right|=\left|r_{2}\right|=1$ are investigated in [1]. For such a polynomial, the Gauss-Lucas Theorem guarantees that its critical points lie in the unit disk. In this case, there is more to say. It is shown in [1] that no critical point occurs in the 'desert' region $\left\{z \in \mathbb{C}:\left|z-\frac{2}{3}\right|<\frac{1}{3}\right\}$, and a critical point of such a polynomial almost always determines the polynomial uniquely. Furthermore, an underlying structure relates the critical points of such a polynomial. If one critical point lies on the circle $C=\left\{z \in \mathbb{C}:\left|z-\frac{1}{2}\right|<\frac{1}{2}\right\}$, then the other critical point lies on C. Otherwise the critical points lie on opposite sides of C.

For $a \in[0,1]$, a natural generalization of [1] is to investigate the family of polynomials

$$
P_{a}=\left\{p: \mathbb{C} \rightarrow \mathbb{C}\left|p(z)=(z-a)\left(z-r_{1}\right)\left(z-r_{2}\right),\left|r_{1}\right|=\left|r_{2}\right|=1, a \in[0,1]\right\}\right.
$$

Critical points of polynomials in P_{0} are characterized in [3]. Similar to [1], the unit disk contains a desert, $\left\{z \in \mathbb{C}:|z|<\frac{1}{3}\right\}$, in which critical points do not occur, and a critical point almost always determines a polynomial uniquely. This paper completes the generalization by investigating critical points of polynomials in P_{a} for $a \in(0,1)$. We used GeoGebra to visualize the critical points of polynomials in P_{a}. In Figure 1, we set r_{1} and r_{2} in motion around the unit circle and traced the trajectories of the critical points in grey. Similar to [1] and [3], the unit disk contains a desert region in which critical points do not occur, and almost every c inside the unit disk and outside the desert region is the critical point of a unique polynomial in P_{a} (see our Theorem 4.1).

Figure 1: Setting r_{1} and r_{2} in motion around the unit circle and tracing the trajectories of the critical points in grey allows us to visualize the desert region.

2 Critical Points

We begin by introducing some notation. For $a \in[0,1]$, define the circle $A_{b}=\{z \in \mathbb{C}$: $|z-(1-b) a|=b, b \geq 0\}$. When necessary, we express the a dependence of A_{b} as A_{b}^{a}. Observe that A_{1} is the unit circle and $A_{0}=\{a\}$. Furthermore, for $a \in[0,1)$, a given z in the unit disk lies on a unique A_{b} with $b \geq 0$. When $a=1$, all the circles A_{b}^{1} contain the point $z=1$. In this case, each $z \neq 1$ in the unit disk lies on a unique A_{b}^{1} with $b>0$.

A polynomial of the form $p(z)=(z-a)\left(z-r_{1}\right)\left(z-r_{2}\right)$ has two critical points. To characterize these critical points, we investigate how they are related to their associated roots. If c is a critical point of $p(z)$, then

$$
0=p^{\prime}(c)=3 c^{2}-2\left(a+r_{1}+r_{2}\right) c+r_{1} r_{2}+a r_{1}+a r_{2}
$$

and it follows that

$$
\begin{equation*}
0=r_{2}\left[r_{1}-(2 c-a)\right]-\left[(2 c-a) r_{1}-\left(3 c^{2}-2 a c\right)\right] . \tag{1}
\end{equation*}
$$

If $r_{1} \neq 2 c-a$, (1) becomes

$$
\begin{equation*}
r_{2}=\frac{(2 c-a) r_{1}-\left(3 c^{2}-2 a c\right)}{r_{1}-(2 c-a)} \tag{2}
\end{equation*}
$$

and when $r_{1}=2 c-a$, (1) implies $c=a$.
Definition 2.1 Given $c \neq a$, we define

$$
\begin{equation*}
f_{c}(z)=\frac{(2 c-a) z-\left(3 c^{2}-2 a c\right)}{z-(2 c-a)} \tag{3}
\end{equation*}
$$

and $S_{c}=f_{c}\left(A_{1}\right)$.

Observe that f_{c} is a linear fractional transformation with $f_{c}\left(r_{1}\right)=r_{2}$. Furthermore, for $c \neq a$, direct calculation shows $\left(f_{c}\right)^{-1}=f_{c}$. Therefore, $f_{c}\left(r_{2}\right)=r_{1}$ and we have established the following result.

Theorem 2.2 A polynomial $p(z)=(z-a)\left(z-r_{1}\right)\left(z-r_{2}\right)$ has a critical point at c if and only if $f_{c}\left(r_{1}\right)=r_{2}$.

To gain intuition, we recall Gauss's physical interpretation relating roots and critical points of a polynomial [4]. The critical points of a polynomial are the equilibrium points of a force field. The field is generated by particles placed at the roots of the polynomial, the particles having masses equal to the multiplicity of the roots and attracting with a force inversely proportional to the distance from the particle. With this in mind, when a critical point of a polynomial in P_{a} occurs at a repeated root on the unit circle, the second critical point is forced to be as close as possible to the root at $z=a$, and hence lie on the boundary of the desert region.

Figure 2: The polynomial $p(z)=(z-a)(z-c)^{2} \in P_{a}$ has critical points $c \in A_{1}$ and $c_{2} \in A_{1 / 3}$. Observe that c_{2} is in the convex hull of $\{c, a\}$.

Example 2.3 Suppose $p \in P_{a}$ has a critical point $c \in A_{1}$. The Gauss-Lucas Theorem implies that c is a repeated root of p. Therefore, $p(z)=(z-a)(z-c)^{2}$ is the only polynomial in P_{a} with a critical point at $c \in A_{1}$. Furthermore,

$$
p^{\prime}(z)=(z-c)(3 z-(2 a+c))
$$

so the other critical point of $p(z)$ satisfies $3 c_{2}-(2 a+c)=0$. Therefore, as $3 c_{2}-2 a=c$ implies $\left|c_{2}-\frac{2}{3}\right|=\frac{1}{3}$, it follows that $c_{2} \in A_{1 / 3}$. See Figure 2 .

This example provides us with a conjecture. We hypothesize that no polynomial in P_{a} will have a critical point strictly inside $A_{1 / 3}$ (See Theorem 4.1.) Proving this hypothesis requires a better understanding of S_{c}.

Figure 3: If c is a critical point of $p(z)=(z-a)\left(z-r_{1}\right)\left(z-r_{2}\right) \in P_{a}$, then $\left\{r_{1}, r_{2}\right\} \subseteq S_{c} \cap A_{1}$.

To further explore S_{c}, recall that $\left\{r_{1}, r_{2}\right\} \subseteq A_{1}, f_{c}\left(r_{1}\right)=r_{2}, f_{c}\left(r_{2}\right)=r_{1}$, and $S_{c}=$ $f_{c}\left(A_{1}\right)$. These facts imply $\left\{r_{1}, r_{2}\right\} \subseteq S_{c} \cap A_{1}$. That is, if c is a critical point of $p(z)=$ $(z-a)\left(z-r_{1}\right)\left(z-r_{2}\right) \in P_{a}$, then $\left\{r_{1}, r_{2}\right\} \subseteq S_{c} \cap A_{1}$. See Figure 3. Lemma 2.4 investigates the cardinality of $S_{c} \cap A_{1}$ and is the direct extension of a result in [3, Lemma 4].

Lemma 2.4 Suppose $c \neq a$. The circles S_{c} and A_{1} coincide, are disjoint, or intersect in one or two distinct points.

1. If $S_{c} \cap A_{1}=\varnothing$, then no polynomial in P_{a} has a critical point at c.
2. If $S_{c}=A_{1}$, then for each $r \in A_{1}$ there is a unique polynomial $(z-a)(z-r)(z-$ $\left.f_{c}(r)\right) \in P_{a}$ with a root at r and a critical point at c.
3. Otherwise, $S_{c} \cap A_{1}=\left\{r, f_{c}(r)\right\}$ consists of two points, or one point if $f_{c}(r)=r$. In this case, $(z-a)(z-r)\left(z-f_{c}(r)\right)$ is the unique polynomial in P_{a} with a critical point at c.

3 Properties of S_{c}

Suppose $c \neq a$. As

$$
f_{c}(z)=\frac{(2 c-a) z-\left(3 c^{2}-2 a c\right)}{z-(2 c-a)}
$$

is a linear fractional transformation and A_{1} is a circle, S_{c} will be a circle or a line. Furthermore, S_{c} will be a line whenever there exists a $z \in A_{1}$ with $z-(2 c-a)=0$. As $|z|=1$, this occurs when $\frac{1}{2}=\left|c-\frac{a}{2}\right|$. Therefore, S_{c} is a line if and only if $c \in A_{1 / 2}$.

To determine when $S_{c}=A_{1}$, we need an additional fact related to linear fractional transformations.

Theorem 3.1 [2] A linear fractional transformation T sends the unit circle to the unit circle if and only if

$$
T(z)=\frac{\bar{\alpha} z-\bar{\beta}}{\beta z-\alpha}
$$

for some $\alpha, \beta \in \mathbb{C}$ with $\left|\frac{\alpha}{\beta}\right| \neq 1$.
Example 3.2 When $a=0$, it is shown in [3] that $S_{c}=A_{1}$ if and only if $|c|=\sqrt{1 / 3}$ and when $a=1$, it is shown in [1] that $S_{c}=A_{1}$ if and only if $c=-\frac{1}{3}$.

Suppose $a \in(0,1)$. Applying Theorem 3.1 to (3) implies $S_{c}=A_{1}$ whenever

$$
\overline{2 c-a}=2 c-a \text { and } 3 c^{2}-2 a c=\overline{1}
$$

The left equality implies c is real, and for a real-valued c the right equation gives $c=$ $\frac{a}{3} \pm \frac{\sqrt{a^{2}+3}}{3} \in \mathbb{R}$. That is, if $c=\frac{a}{3} \pm \frac{\sqrt{a^{2}+3}}{3}$, then $S_{c}=A_{1}$.

Conversely, if $S_{c}=A_{1}$, then Theorem 3.1 implies

$$
f_{c}(z)=\frac{(2 c-a) z-\left(3 c^{2}-2 a c\right)}{z-(2 c-a)}=\frac{\bar{\alpha} z-\bar{\beta}}{\beta z-\alpha} .
$$

In this case, there exists a nonzero complex number v such that

$$
v\left((2 c-a) z-\left(3 c^{2}-2 a c\right)\right)=\bar{\alpha} z-\bar{\beta} \text { and } v(z-(2 c-a))=\beta z-\alpha .
$$

Therefore,

$$
v(2 c-a)=\bar{\alpha}=\bar{v} \overline{(2 c-a)} \text { and } v\left(3 c^{2}-2 a c\right)=\bar{\beta}=\bar{v}
$$

so

$$
\begin{equation*}
3 c^{2}-2 a c=\frac{2 c-a}{\overline{2 c-a}} \tag{4}
\end{equation*}
$$

Setting $c=x+i y$ in (4) and equating real and imaginary parts gives

$$
\begin{equation*}
2 x-a=(2 x-a)\left(3 x^{2}-3 y^{2}-2 a x\right)+4 y^{2}(3 x-a) \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
2 y=2 y\left[(2 x-a)(3 x-a)-\left(3 x^{2}-3 y^{2}-2 a x\right)\right] . \tag{6}
\end{equation*}
$$

If $y \neq 0$, (6) implies

$$
\begin{equation*}
y^{2}=\frac{1-3 x^{2}+3 a x-a^{2}}{3} . \tag{7}
\end{equation*}
$$

Substituting $\sqrt[7]{7}$ into $\sqrt[5]{5}$ eventually gives $0=a\left(a^{2}+2-3 a x\right)$ so $x=\frac{a^{2}+2}{3 a}$. Substituting into (7) implies

$$
y^{2}=-\frac{a^{4}-5 a^{2}+4}{9 a^{2}}
$$

a contradiction. It follows that $y=0$. In this case we have that $c=x$ and from (5) we get

$$
0=(2 x-a)\left(3 x^{2}-2 a x-1\right)
$$

If $2 x-a=0$, then $c=\frac{a}{2}$. In this case we have $f_{c}(z)=\frac{-3 c^{2}+2 a c}{2}=\frac{a^{2}}{4 z}$ so that $1=\left|f_{c}(1)\right|=$ $\frac{a^{2}}{4}$, a contradiction. Therefore $3 x^{2}-2 a x-1=0$ and

$$
c=x=\frac{a}{3} \pm \frac{\sqrt{a^{2}+3}}{3}
$$

To summarize, $S_{c}=A_{1}$ if and only if $c=\frac{a}{3} \pm \frac{\sqrt{a^{2}+3}}{3}$.
For $c \notin A_{1 / 2}, S_{c}$ is a circle. By the definition of $S_{c}, z \in S_{c}$ if and only if there exists some $w \in A_{1}$ with $f_{c}(w)=z$. Equivalently, $f_{c}(z)=w$ implies $\left|f_{c}(z)\right|=1$, so that

$$
\left|\frac{(2 c-a) z-\left(3 c^{2}-2 a c\right)}{z-(2 c-a)}\right|=1
$$

Thus, $z \in S_{c}$ if and only if

$$
\begin{equation*}
|z-(2 c-a)|=|2 c-a|\left|z-\frac{3 c^{2}-2 a c}{2 c-a}\right| . \tag{8}
\end{equation*}
$$

For $k \neq 1$, an introductory complex analysis result [6] states that the solution set of $|z-u|=k|z-v|$ is a circle with center C and radius R satisfying

$$
C=\frac{k^{2} v-u}{k^{2}-1} \text { and } R=|v-u|\left|\frac{k}{k^{2}-1}\right| .
$$

When $k=|2 c-a|=1$ in (8), $c \in A_{1 / 2}$ and S_{c} is a line. This leads to the following lemma.
Lemma 3.3 Suppose $c \notin A_{1 / 2}$. Then S_{c} is a circle with center γ and radius r given by

$$
\gamma=\frac{(2 \bar{c}-a)\left(3 c^{2}-2 a c\right)-(2 c-a)}{|2 c-a|^{2}-1} \text { and } r=\left|\frac{3 c^{2}-2 a c}{2 c-a}-(2 c-a)\right|\left|\frac{|2 c-a|}{|2 c-a|^{2}-1}\right|
$$

For future use, we illustrate Lemma 3.3 with an example.
Example 3.4 For $c=\frac{2}{3} a$, the center and radius of S_{c} are

$$
\gamma=\frac{3 a}{9-a^{2}} \text { and } r=\frac{a^{2}}{9-a^{2}}
$$

As $|\gamma+r|=\left|\frac{3 a+a^{2}}{9-a^{2}}\right|=\left|\frac{a}{3-a}\right|<1, S_{c}$ is contained inside A_{1}. Therefore, by Lemma 2.4 , no polynomial in P_{a} has a critical point at $c=\frac{2}{3} a$.

According to Lemma 2.4, if S_{c} is tangent to A_{1} at r, then c is the critical point of the unique polynomial

$$
p(z)=(z-a)(z-r)^{2} \in P_{a} .
$$

Furthermore, as seen in Example 2.3, the critical points of p are $r \in A_{1}$ and $\frac{r+2 a}{3} \in A_{1 / 3}$. That is, if S_{c} is tangent to A_{1}, then $c \in A_{1} \cup A_{1 / 3}$. Example 3.5 investigates the converse of this statement.

Example 3.5 Suppose $c \in A_{1}$. Then $c=e^{i \theta}$ and by Lemma 3.3 the center of S_{c} is

$$
\begin{aligned}
\gamma & =\frac{\left(2 e^{-i \theta}-a\right)\left(3 e^{2 i \theta}-2 a e^{i \theta}\right)-\left(2 e^{i \theta}-a\right)}{\left(2 e^{-i \theta}-a\right)\left(2 e^{i \theta}-a\right)-1} \\
& =\frac{-3 a e^{2 i \theta}+\left(4+2 a^{2}\right) e^{i \theta}-3 a}{3+a^{2}-2 a e^{-i \theta}-2 a e^{i \theta}} \\
& =\frac{-3 a e^{i \theta}-3 a e^{-i \theta}+4+2 a^{2}}{3+a^{2}-4 a \cos (\theta)} e^{i \theta} \\
& =\frac{4+2 a^{2}-6 a \cos (\theta)}{3+a^{2}-4 a \cos (\theta)} c .
\end{aligned}
$$

Additionally, for $a \in(0,1)$, one can verify that $\frac{4+2 a^{2}-6 a \cos (\theta)}{3+a^{2}-4 a \cos (\theta)}>1$. Since $c \in A_{1}$ and $f_{c}(c)=c \in S_{c}, c$ is a point of intersection of S_{c} and A_{1} that lies on the line connecting their centers. Therefore, S_{c} is externally tangent to A_{1} at c.

Similar calculations show that if $c \in A_{1 / 3}$, then S_{c} is internally tangent to A_{1} at $3 c-2 a$. See Figure 4.

Figure 4: Circles $S_{c_{1}}$ and S_{c} for $c_{1} \in A_{1 / 3}$ and $c=3 c_{1}-2 a \in A_{1}$.
We have established the following result.
Lemma 3.6 Suppose $c \in \mathbb{C}$.

1. S_{c} is internally tangent to A_{1} if and only if $c \in A_{1 / 3}$.
2. S_{c} is externally tangent to A_{1} if and only if $c \in A_{1}$

For $c \in A_{1 / 3} \cup A_{1}, S_{c}$ is tangent to A_{1} and it follows that $\left|S_{c} \cap A_{1}\right|=1$. Lemmas 3.7 and 3.8 determine $\left|S_{c} \cap A_{1}\right|$ when $c \notin A_{1 / 3} \cup A_{1}$.

Lemma 3.7 If $c \in A_{b}$ with $b \in\left(\frac{1}{3}, 1\right)$ and $c \neq \frac{a \pm \sqrt{a^{2}+3}}{3}$, then $\left|S_{c} \cap A_{1}\right|=2$.
Proof. Let $c \in A_{b}$ with $b \in\left(\frac{1}{3}, 1\right)$ and $c \neq \frac{a \pm \sqrt{a^{2}+3}}{3}$. Without loss of generality, suppose to the contrary that $\left|S_{c} \cap A_{1}\right|=0$ and S_{c} is contained inside A_{1}. As we drag c to A_{1} along a line segment avoiding $A_{1 / 3}, S_{c}$ is continuously transformed into a circle externally tangent to A_{1}. By the Intermediate Value Theorem, there exists a c_{0} on the line segment with $S_{c_{0}}$ internally tangent to A_{1}. However, as c does not cross $A_{1 / 3}$, this contradicts Lemma 3.6 and it follows that $\left|S_{c} \cap A_{1}\right|=2$.

A similar 'dragging' argument shows that $S_{c} \cap A_{1}=\emptyset$ whenever c is contained inside $A_{1 / 3}$.

Lemma 3.8 If c is contained inside $A_{1 / 3}$, then $S_{c} \cap A_{1}=\emptyset$.
Proof. Suppose to the contrary that c is contained inside $A_{1 / 3}$ with $\left|S_{c} \cap A_{1}\right|=2$. As we drag c to $\frac{2}{3} a$, the center of $A_{1 / 3}$, along a line segment, it follows from Example 3.4 that S_{c} is continuously transformed into a circle contained inside A_{1}. By the Intermediate Value Theorem, there must exist a c_{0} on the line segment with $S_{c_{0}}$ internally tangent to A_{1}. However, as c does not cross $A_{1 / 3}$, this contradicts Lemma 3.6 and it follows that $S_{c} \cap A_{1}=\emptyset$.

4 Main Result

We are now ready to characterize the critical points of polynomials in P_{a}.
Theorem 4.1 Let $c \in \mathbb{C}$.

1. If $c \in A_{b}$ with $b \in\left[0, \frac{1}{3}\right) \cup(1, \infty)$, then no polynomial in P_{a} has a critical point at c.
2. If $c \in A_{b}$ with $b \in\left[\frac{1}{3}, 1\right]$ and $c \neq \frac{a \pm \sqrt{a^{2}+3}}{3}$, then c is the critical point of exactly one polynomial in P_{a}.
3. If $c=\frac{a \pm \sqrt{a^{2}+3}}{3}$, then infinitely many polynomials in P_{a} have a critical point at c.

Proof. Let $c \in \mathbb{C}$.

1. If $c \in A_{b}$ with $b \in\left[0, \frac{1}{3}\right)$, then Lemmas 3.8 and 2.4 imply that no polynomial in P_{a} has a critical point at c. Furthermore, if $c \in A_{b}$ with $b>1$, the Gauss-Lucas Theorem implies that no polynomial in P_{a} has a critical point outside of the unit disk.
2. If $c \in A_{b}$ with $b \in\left[\frac{1}{3}, 1\right]$ and $c \neq \frac{a \pm \sqrt{a^{2}+3}}{3}$, then Example 3.2 and Lemmas 3.6 and 3.8 imply $\left|S_{c} \cap A_{1}\right| \in\{1,2\}$. Therefore, by Lemma $2.4, c$ is the critical point of exactly one polynomial in P_{a}.
3. If $c=\frac{a \pm \sqrt{a^{2}+3}}{3}$, then Example 3.2 implies $S_{c}=A_{1}$ and by Lemma 2.4 ,

$$
p(z)=(z-a)(z-r)\left(z-f_{c}(r)\right) \in P_{a}
$$

has a critical point at c for each $r \in A_{1}$.

This completes the characterization of critical points of polynomials in P_{a}. The unit disk contains a single desert region, $\left\{z \in A_{b}: b \in\left[0, \frac{1}{3}\right)\right\}$, in which critical points do not occur, and almost every c inside the unit disk and outside the desert region is the critical point of a unique polynomial in P_{a}.

5 Structure of Critical Points

Having determined where the critical points of a polynomial in P_{a} are located, we now investigate how they are related to each other. This relationship involves inversion over a circle. Recall that if C is a circle centered at O with radius r and X is a point distinct from O, then the inversion of X over C is the point Y on the ray $\overrightarrow{O X}$ such that $|O X| \cdot|O Y|=r^{2}$.

For motivation, we revisit the results of [1]. Polynomials of the form

$$
p(z)=(z-1)\left(z-r_{1}\right)\left(z-r_{2}\right)
$$

with $\left|r_{1}\right|=\left|r_{2}\right|=1$ have two critical points. If one critical point, c_{1}, lies on the circle $A_{1 / 2}^{1}$, then the other critical point, c_{2}, also lies on $A_{1 / 2}^{1}$ with $c_{2}=\overline{c_{1}}$. Otherwise, the critical points lie on opposite sides of $A_{1 / 2}^{1}$. In this case, A_{1}^{1}, the unit circle, is the inversion of $A_{1 / 3}^{1}$, the boundary of the desert region, across $A_{1 / 2}^{1}$.

For $a=0$, [3] establishes similar results with $A_{\sqrt{1 / 3}}$ being the circle of inversion. As this structure is present for the extreme values of $a=0$ and $a=1$, one might expect similar results for $a \in(0,1)$.

Definition 5.1 For $a \in[0,1]$, we define C_{I} to be the circle

$$
\left(x-\frac{a}{2}\right)^{2}+y^{2}=\frac{1}{3}-\frac{a^{2}}{12} .
$$

Observe that when $a=1$, we have $A_{1 / 2}^{1}=C_{I}$, and when $a=0$, we have $A_{\sqrt{1 / 3}}=C_{I}$. However, when $a \notin\{0,1\}, C_{I}$ is not an A_{b} circle. We claim that A_{1} is the inversion of $A_{1 / 3}$ across C_{I}.

Lemma 5.2 The circles A_{1} and $A_{1 / 3}$ are inversions with respect to C_{I}.

Proof. Since $A_{1}, A_{1 / 3}$, and C_{I} are symmetric across the real axis, it suffices to show that the two pairs of real numbers $\frac{2}{3} a+\frac{1}{3} \in A_{1 / 3}$ and $1 \in A_{1}$, and $\frac{2}{3} a-\frac{1}{3} \in A_{1 / 3}$ and $-1 \in A_{1}$ are inversions across C_{I}. Setting $X=\frac{2}{3} a-\frac{1}{3}, Y=-1$ and denoting the center and radius of C_{I} as $O=\left(\frac{a}{2}, 0\right)$ and $r=\sqrt{\frac{1}{3}-\frac{a^{2}}{12}}$ gives

$$
\begin{aligned}
|O X| \cdot|O Y| & =\left|\frac{a}{2}-\left(\frac{2}{3} a-\frac{1}{3}\right)\right| \cdot\left|\frac{a}{2}+1\right| \\
& =\left(\frac{1}{3}-\frac{a}{6}\right)\left(1+\frac{a}{2}\right) \\
& =\frac{1}{3}-\frac{a^{2}}{12} \\
& =r^{2} .
\end{aligned}
$$

It follows that $\frac{2}{3} a-\frac{1}{3} \in A_{1 / 3}$ and $-1 \in A_{1}$ are inversions across C_{I}. Similar calculations verify the claim for the other set of points. Therefore, the circles A_{1} and $A_{1 / 3}$ are inversions with respect to C_{I}.

We are now ready to describe the structure relating critical points of polynomials in P_{a}.

Figure 5: The circles A_{1} and $A_{1 / 3}$ are inversions with respect to C_{I}.

Theorem 5.3 Let c_{1} and c_{2} be the critical points of $p \in P_{a}$. If $c_{1} \in C_{I}$, then $c_{2}=\overline{c_{1}} \in C_{I}$. Otherwise, c_{1} and c_{2} lie on opposite sides of C_{I}.

Proof. Let $p \in P_{a}$ have critical points c_{1} and c_{2}.

Suppose $c_{1}=x+i y \in C_{I}$. For $\cos (\theta)=\frac{3 x-a}{2}, r=e^{i \theta}$, and

$$
p_{r}(z)=(z-a)(z-r)(z-\bar{r}) \in P_{a},
$$

we will verify that c_{1} is a critical point of p_{r}. Direct calculations give

$$
\begin{aligned}
p_{r}(z) & =3 z^{2}-2(a+r+\bar{r}) z+r \bar{r}+a r+a \bar{r} \\
& =3 z^{2}-2(a+2 \cos (\theta)) z+1+2 a \cos (\theta) \\
& =3 z^{2}-6 x z+1+3 a x-a^{2} .
\end{aligned}
$$

As $c_{1} \in C_{I}, c_{1} \overline{c_{1}}=a x+\frac{1}{3}-\frac{1}{3} a^{2}$ and it follows that

$$
p_{r}(z)=3 z^{2}-3\left(c_{1}+\overline{c_{1}}\right) z+3 c_{1} \overline{c_{1}}=3\left(z-c_{1}\right)\left(z-\overline{c_{1}}\right) .
$$

Therefore, p_{r} has critical points at c_{1} and $\overline{c_{1}} \in C_{I}$. By uniqueness, $p_{r}(z)=p(z)$, and if $c_{1} \in C_{I}$, then $c_{2}=\overline{c_{1}} \in C_{I}$.

Suppose $c_{1} \notin C_{I}$. We use a dragging argument to show that c_{1} and c_{2} lie on opposite sides of C_{I}. Without loss of generality, suppose to the contrary that c_{1} and c_{2} lie strictly inside C_{I}. As we drag c_{1} along a line segment, contained strictly inside C_{I}, to a point on $A_{1 / 3}$, Example 2.3 and the uniqueness from Theorem 4.1 implies that c_{2} travels along a continuous path to A_{1}. By the Intermediate Value Theorem, c_{2} must cross C_{I} at some point $c_{2, t_{0}}$. By the first part of this theorem, $\overline{c_{2, t_{0}}}=c_{1, t_{0}} \in C_{I}$ which contradicts the fact that c_{1} is strictly inside C_{I}. Therefore, c_{1} and c_{2} lie on opposite sides of C_{I}.

As an interesting observation, we note that for $r=e^{i \theta}, p_{r}(z)=(z-a)(z-r)(z-\bar{r})$ will not always have critical points on C_{I}. As r moves around the unit circle, there are threshold values of θ where the critical points move from C_{I} to the real axis. For

$$
\theta_{ \pm}=\arccos \left(\frac{a \pm \sqrt{12-3 a^{2}}}{4}\right)
$$

the set of points $\left\{a, e^{i \theta_{+}}, e^{-i \theta_{+}}\right\}$and $\left\{a, e^{i \theta_{-}}, e^{-i \theta_{-}}\right\}$form equilateral triangles. With this observation in mind, direct calculations give: If $\theta \in\left[\theta_{-}, \theta_{+}\right]$, then $p_{r}(z)$ has critical points on C_{I}; If $\theta \in\left(0, \theta_{-}\right) \cup\left(\theta_{+}, \pi\right)$, then $p_{r}(z)$ has real-valued critical points not on C_{I}.

This completes the characterization of critical points of polynomials in P_{a}. Our results can be extended to polynomials of the form

$$
p(z)=(z-a)^{k}\left(z-r_{1}\right)^{m}\left(z-r_{2}\right)^{n}
$$

with $\left|r_{1}\right|=\left|r_{2}\right|=1$ and $\{k, m, n\} \subseteq \mathbb{N}$ with $m=n$. Similar to P_{a}, the unit disk contains a desert region bounded by $A_{\frac{k}{2 m+k}}$ and a critical point almost always determines a polynomial uniquely. However, many open questions remain. For example, what happens when $m \neq n$?

Acknowledgments

The authors wish to express their gratitude to the anonymous referee for excellent suggestions that improved the paper.

References

[1] C. Frayer, M. Kwon, C. Schafhauser, J.A. Swenson, The Geometry of Cubic Polynomials, Math. Magazine, 87 (2014), 113-124.
[2] C. Frayer, Geometry of Polynomials with Three Roots, Missouri Journal of Mathematical Sciences, 29 (2017), 161-175.
[3] C. Felton, C. Frayer, Geometry of a Family of Complex-Valued Polynomials, preprint.
[4] M. Marden, Geometry of Polynomials, American Mathematical Society, 1966.
[5] S. Northshield, Geometry of Cubic Polynomials, Math. Magazine, 86 (2013), 136-143.
[6] M. Partenskii, The Circle of Apollonius and Its Applications in Introductory Physics, The Physics Teacher, 46 (2008), 104-108
[7] E. Saff, A. Snider, Fundamentals of Complex Analysis for Mathematics, Science, and Engineering, Prentice-Hall, 1993.

Christopher Frayer
University of Wisconsin - Platteville
1 University Plaza
Platteville, WI
E-mail: frayerc@uwplatt.edu

Jamison Wallace
University of Wisconsin - Platteville
1 University Plaza
Platteville, WI
E-mail: tibbettsj@uwplatt.edu

Received: May 9, 2019 Accepted: May 31, 2019
Communicated by Serban Raianu

