Geometry of a Family of Cubic Polynomials

C. Frayer and J. Wallace

Abstract - Let \(P_a \) be the family of complex-valued polynomials of the form \(p(z) = (z - a)(z - r_1)(z - r_2) \) with \(a \in [0, 1] \) and \(|r_1| = |r_2| = 1 \). The Gauss-Lucas Theorem implies that the critical points of a polynomial in \(P_a \) lie in the unit disk. This paper characterizes the location and structure of these critical points. We show that the unit disk contains a ‘desert’ region, the open disk \(\{ z \in \mathbb{C} : |z - \frac{2}{3}a| = \frac{1}{3} \} \), in which critical points of polynomials in \(P_a \) do not occur. Furthermore, almost every \(c \) inside the unit disk and outside of the desert region is the critical point of a unique polynomial in \(P_a \).

Keywords: geometry of polynomials; critical points; Gauss-Lucas Theorem

Mathematics Subject Classification (2010): 30C15

1 Introduction

The Gauss-Lucas Theorem implies that the critical points of a complex-valued polynomial lie in the convex hull of its roots [4]. Several recent papers [1], [2], [3], [5] have explored the geometry of complex-valued polynomials with three roots. Critical points of polynomials of the form \(p(z) = (z - 1)(z - r_1)(z - r_2) \) with \(|r_1| = |r_2| = 1 \) are investigated in [1]. For such a polynomial, the Gauss-Lucas Theorem guarantees that its critical points lie in the unit disk. In this case, there is more to say. It is shown in [1] that no critical point occurs in the ‘desert’ region \(\{ z \in \mathbb{C} : |z - \frac{2}{3}| < \frac{1}{3} \} \), and a critical point of such a polynomial almost always determines the polynomial uniquely. Furthermore, an underlying structure relates the critical points of such a polynomial. If one critical point lies on the circle \(C = \{ z \in \mathbb{C} : |z - \frac{1}{2}| < \frac{1}{2} \} \), then the other critical point lies on \(C \). Otherwise the critical points lie on opposite sides of \(C \).

For \(a \in [0, 1] \), a natural generalization of [1] is to investigate the family of polynomials \(P_a = \{ p : \mathbb{C} \to \mathbb{C} \mid p(z) = (z - a)(z - r_1)(z - r_2), |r_1| = |r_2| = 1, a \in [0, 1] \} \).

Critical points of polynomials in \(P_0 \) are characterized in [3]. Similar to [1], the unit disk contains a desert, \(\{ z \in \mathbb{C} : |z| < \frac{1}{3} \} \), in which critical points do not occur, and a critical point almost always determines a polynomial uniquely. This paper completes the generalization by investigating critical points of polynomials in \(P_a \) for \(a \in (0, 1) \). We used GeoGebra to visualize the critical points of polynomials in \(P_a \). In Figure [1] we set \(r_1 \) and \(r_2 \) in motion around the unit circle and traced the trajectories of the critical points in grey. Similar to [1] and [3], the unit disk contains a desert region in which critical points do not occur, and almost every \(c \) inside the unit disk and outside the desert region is the critical point of a unique polynomial in \(P_a \) (see our Theorem [1]).
Figure 1: Setting r_1 and r_2 in motion around the unit circle and tracing the trajectories of the critical points in grey allows us to visualize the desert region.

2 Critical Points

We begin by introducing some notation. For $a \in [0, 1]$, define the circle $A_b = \{z \in \mathbb{C} : |z - (1 - b)a| = b, b \geq 0\}$. When necessary, we express the a dependence of A_b as A_b^a. Observe that A_1 is the unit circle and $A_0 = \{a\}$. Furthermore, for $a \in [0, 1)$, a given z in the unit disk lies on a unique A_b with $b \geq 0$. When $a = 1$, all the circles A_b^1 contain the point $z = 1$. In this case, each $z \neq 1$ in the unit disk lies on a unique A_b^1 with $b > 0$.

A polynomial of the form $p(z) = (z - a)(z - r_1)(z - r_2)$ has two critical points. To characterize these critical points, we investigate how they are related to their associated roots. If c is a critical point of $p(z)$, then

$$0 = p'(c) = 3c^2 - 2(a + r_1 + r_2)c + r_1r_2 + ar_1 + ar_2$$

and it follows that

$$0 = r_2[r_1 - (2c - a)] - [(2c - a)r_1 - (3c^2 - 2ac)].$$

(1)

If $r_1 \neq 2c - a$, (1) becomes

$$r_2 = \frac{(2c - a)r_1 - (3c^2 - 2ac)}{r_1 - (2c - a)}$$

(2)

and when $r_1 = 2c - a$, (1) implies $c = a$.

Definition 2.1 Given $c \neq a$, we define

$$f_c(z) = \frac{(2c - a)z - (3c^2 - 2ac)}{z - (2c - a)}$$

(3)

and $S_c = f_c(A_1)$.
Observe that f_c is a linear fractional transformation with $f_c(r_1) = r_2$. Furthermore, for $c \neq a$, direct calculation shows $(f_c)^{-1} = f_c$. Therefore, $f_c(r_2) = r_1$ and we have established the following result.

Theorem 2.2 A polynomial $p(z) = (z - a)(z - r_1)(z - r_2)$ has a critical point at c if and only if $f_c(r_1) = r_2$.

To gain intuition, we recall Gauss’s physical interpretation relating roots and critical points of a polynomial [4]. The critical points of a polynomial are the equilibrium points of a force field. The field is generated by particles placed at the roots of the polynomial, the particles having masses equal to the multiplicity of the roots and attracting with a force inversely proportional to the distance from the particle. With this in mind, when a critical point of a polynomial in P_a occurs at a repeated root on the unit circle, the second critical point is forced to be as close as possible to the root at $z = a$, and hence lie on the boundary of the desert region.

![Figure 2](image_url)

Figure 2: The polynomial $p(z) = (z - a)(z - c)^2 \in P_a$ has critical points $c \in A_1$ and $c_2 \in A_{1/3}$. Observe that c_2 is in the convex hull of $\{c, a\}$.

Example 2.3 Suppose $p \in P_a$ has a critical point $c \in A_1$. The Gauss-Lucas Theorem implies that c is a repeated root of p. Therefore, $p(z) = (z - a)(z - c)^2$ is the only polynomial in P_a with a critical point at $c \in A_1$. Furthermore,

$$p'(z) = (z - c)(3z - (2a + c))$$

so the other critical point of $p(z)$ satisfies $3c_2 - (2a + c) = 0$. Therefore, as $3c_2 - 2a = c$ implies $|c_2 - \frac{2}{3}| = \frac{1}{3}$, it follows that $c_2 \in A_{1/3}$. See Figure 2.

This example provides us with a conjecture. We hypothesize that no polynomial in P_a will have a critical point strictly inside $A_{1/3}$ (See Theorem 4.1). Proving this hypothesis requires a better understanding of S_c.

[1] Gauss's physical interpretation

[2] Figure 2

[4] Gauss’s physical interpretation
Figure 3: If \(c \) is a critical point of \(p(z) = (z-a)(z-r_1)(z-r_2) \in P_a \), then \(\{r_1, r_2\} \subseteq S_c \cap A_1 \).

To further explore \(S_c \), recall that \(\{r_1, r_2\} \subseteq A_1 \), \(f_c(r_1) = r_2 \), \(f_c(r_2) = r_1 \), and \(S_c = f_c(A_1) \). These facts imply \(\{r_1, r_2\} \subseteq S_c \cap A_1 \). That is, if \(c \) is a critical point of \(p(z) = (z-a)(z-r_1)(z-r_2) \in P_a \), then \(\{r_1, r_2\} \subseteq S_c \cap A_1 \). See Figure 3. Lemma 2.4 investigates the cardinality of \(S_c \cap A_1 \) and is the direct extension of a result in [3, Lemma 4].

Lemma 2.4 Suppose \(c \neq a \). The circles \(S_c \) and \(A_1 \) coincide, are disjoint, or intersect in one or two distinct points.

1. If \(S_c \cap A_1 = \emptyset \), then no polynomial in \(P_a \) has a critical point at \(c \).

2. If \(S_c = A_1 \), then for each \(r \in A_1 \) there is a unique polynomial \((z-a)(z-r)(z-f_c(r)) \in P_a \) with a root at \(r \) and a critical point at \(c \).

3. Otherwise, \(S_c \cap A_1 = \{r, f_c(r)\} \) consists of two points, or one point if \(f_c(r) = r \). In this case, \((z-a)(z-r)(z-f_c(r)) \) is the unique polynomial in \(P_a \) with a critical point at \(c \).

3 Properties of \(S_c \)

Suppose \(c \neq a \). As

\[
f_c(z) = \frac{(2c-a)z - (3c^2 - 2ac)}{z - (2c-a)}
\]

is a linear fractional transformation and \(A_1 \) is a circle, \(S_c \) will be a circle or a line. Furthermore, \(S_c \) will be a line whenever there exists a \(z \in A_1 \) with \(z - (2c-a) = 0 \). As \(|z| = 1 \), this occurs when \(\frac{1}{2} = |c - \frac{a}{3}| \). Therefore, \(S_c \) is a line if and only if \(c \in A_{1/2} \).

To determine when \(S_c = A_1 \), we need an additional fact related to linear fractional transformations.
Theorem 3.1 A linear fractional transformation T sends the unit circle to the unit circle if and only if
\[T(z) = \frac{\alpha z - \beta}{\beta z - \alpha} \]
for some $\alpha, \beta \in \mathbb{C}$ with $|\frac{\alpha}{\beta}| \neq 1$.

Example 3.2 When $a = 0$, it is shown in [3] that $S_c = A_1$ if and only if $|c| = \sqrt{1/3}$ and when $a = 1$, it is shown in [1] that $S_c = A_1$ if and only if $c = -\frac{1}{3}$.

Suppose $a \in (0, 1)$. Applying Theorem 3.1 to (3) implies $S_c = A_1$ whenever
\[2c - a = 2c - a \quad \text{and} \quad 3c^2 - 2ac = 1. \]

The left equality implies c is real, and for a real-valued c the right equation gives $c = \frac{a}{3} \pm \frac{\sqrt{a^2 + 4}}{3} \in \mathbb{R}$. That is, if $c = \frac{a}{3} \pm \frac{\sqrt{a^2 + 4}}{3}$, then $S_c = A_1$.

Conversely, if $S_c = A_1$, then Theorem 3.1 implies
\[f_c(z) = \frac{(2c - a)z - (3c^2 - 2ac)}{z - (2c - a)} = \frac{\alpha z - \beta}{\beta z - \alpha}. \]

In this case, there exists a nonzero complex number v such that
\[v((2c - a)z - (3c^2 - 2ac)) = \overline{\alpha z - \beta} \quad \text{and} \quad v(z - (2c - a)) = \beta z - \alpha. \]

Therefore,
\[v(2c - a) = \overline{v(2c - a)} \quad \text{and} \quad v(3c^2 - 2ac) = \overline{v} \]
so
\[3c^2 - 2ac = \frac{2c - a}{2c - a} \quad (4) \]

Setting $c = x + iy$ in (4) and equating real and imaginary parts gives
\[2x - a = (2x - a)(3x^2 - 3y^2 - 2ax) + 4y^2(3x - a) \quad (5) \]
and
\[2y = 2y \left[(2x - a)(3x - a) - (3x^2 - 3y^2 - 2ax)\right]. \quad (6) \]

If $y \neq 0$, (6) implies
\[y^2 = \frac{1 - 3x^2 + 3ax - a^2}{3} \quad (7) \]
Substituting (7) into (5) eventually gives $0 = a(a^2 + 2 - 3ax)$ so $x = \frac{a^2 + 2}{3a}$. Substituting into (7) implies
\[y^2 = -\frac{a^4 - 5a^2 + 4}{9a^2}. \]
a contradiction. It follows that \(y = 0 \). In this case we have that \(c = x \) and from (5) we get

\[
0 = (2x - a)(3x^2 - 2ax - 1).
\]

If \(2x - a = 0 \), then \(c = \frac{a}{2} \). In this case we have \(f_c(z) = \frac{-3x^2+2ac}{2} = \frac{a^2}{4z} \) so that \(1 = |f_c(1)| = \frac{a^2}{4} \), a contradiction. Therefore \(3x^2 - 2ax - 1 = 0 \) and

\[
c = x = \frac{a}{3} \pm \frac{\sqrt{a^2+3}}{3}.
\]

To summarize, \(S_c = A_1 \) if and only if \(c = \frac{a}{3} \pm \frac{\sqrt{a^2+3}}{3} \).

For \(c \notin A_{1/2} \), \(S_c \) is a circle. By the definition of \(S_c \), \(z \in S_c \) if and only if there exists some \(w \in A_1 \) with \(f_c(w) = z \). Equivalently, \(f_c(z) = w \) implies \(|f_c(z)| = 1 \), so that

\[
\left| \frac{(2c - a)z - (3c^2 - 2ac)}{z - (2c - a)} \right| = 1.
\]

Thus, \(z \in S_c \) if and only if

\[
|z - (2c - a)| = |2c - a| \left| z - \frac{3c^2 - 2ac}{2c - a} \right|.
\]

(8)

For \(k \neq 1 \), an introductory complex analysis result [6] states that the solution set of \(|z - u| = k|z - v| \) is a circle with center \(C \) and radius \(R \) satisfying

\[
C = \frac{k^2v - u}{k^2 - 1} \quad \text{and} \quad R = |v - u| \left| \frac{k}{k^2 - 1} \right|.
\]

When \(k = |2c - a| = 1 \) in [6], \(c \in A_{1/2} \) and \(S_c \) is a line. This leads to the following lemma.

Lemma 3.3 Suppose \(c \notin A_{1/2} \). Then \(S_c \) is a circle with center \(\gamma \) and radius \(r \) given by

\[
\gamma = \frac{(2c - a)(3c^2 - 2ac) - (2c - a)}{|2c - a|^2 - 1} \quad \text{and} \quad r = \left| \frac{3c^2 - 2ac}{2c - a} - (2c - a) \right| \left| \frac{|2c - a|}{|2c - a|^2 - 1} \right|.
\]

For future use, we illustrate Lemma 3.3 with an example.

Example 3.4 For \(c = \frac{2}{3}a \), the center and radius of \(S_c \) are

\[
\gamma = \frac{3a}{9 - a^2} \quad \text{and} \quad r = \frac{a^2}{9 - a^2}.
\]

As \(|\gamma + r| = \left| \frac{3a+a^2}{9-a^2} \right| = \left| \frac{a}{3-a} \right| < 1 \), \(S_c \) is contained inside \(A_1 \). Therefore, by Lemma 2.4, no polynomial in \(P_a \) has a critical point at \(c = \frac{2}{3}a \).
According to Lemma 2.4 if S_c is tangent to A_1 at r, then c is the critical point of the unique polynomial

$$p(z) = (z - a)(z - r)^2 \in P_a.$$

Furthermore, as seen in Example 2.3, the critical points of p are $r \in A_1$ and $\frac{r + 2a}{3} \in A_{1/3}$. That is, if S_c is tangent to A_1, then $c \in A_1 \cup A_{1/3}$. Example 3.5 investigates the converse of this statement.

Example 3.5 Suppose $c \in A_1$. Then $c = e^{i\theta}$ and by Lemma 3.3 the center of S_c is

$$\gamma = \frac{(2e^{-i\theta} - a)(3e^{2i\theta} - 2ae^{i\theta}) - (2e^{i\theta} - a)}{(2e^{-i\theta} - a)(2e^{i\theta} - a) - 1}$$

$$= \frac{-3ae^{2i\theta} + (4 + 2a^2)e^{i\theta} - 3a}{3 + a^2 - 2ae^{-i\theta} - 2ae^{i\theta}}$$

$$= \frac{-3ae^{i\theta} - 3ae^{-i\theta} + 4 + 2a^2}{3 + a^2 - 4a \cos(\theta)}e^{i\theta}$$

$$= \frac{4 + 2a^2 - 6a \cos(\theta)}{3 + a^2 - 4a \cos(\theta)}c.$$

Additionally, for $a \in (0, 1)$, one can verify that $\frac{4 + 2a^2 - 6a \cos(\theta)}{3 + a^2 - 4a \cos(\theta)} > 1$. Since $c \in A_1$ and $f_c(c) = c \in S_c$, c is a point of intersection of S_c and A_1 that lies on the line connecting their centers. Therefore, S_c is externally tangent to A_1 at c.

Similar calculations show that if $c \in A_{1/3}$, then S_c is internally tangent to A_1 at $3c - 2a$. See Figure 4.

![Figure 4: Circles S_{c_1} and S_c for $c_1 \in A_{1/3}$ and $c = 3c_1 - 2a \in A_1$.](image)

We have established the following result.

Lemma 3.6 Suppose $c \in \mathbb{C}$.

1. S_c is internally tangent to A_1 if and only if $c \in A_{1/3}$.

THE PUMP JOURNAL OF UNDERGRADUATE RESEARCH 2 (2019), 95–106
2. \(S_c \) is externally tangent to \(A_1 \) if and only if \(c \in A_1 \)

For \(c \in A_{1/3} \cup A_1 \), \(S_c \) is tangent to \(A_1 \) and it follows that \(|S_c \cap A_1| = 1 \). Lemmas 3.7 and 3.8 determine \(|S_c \cap A_1| \) when \(c \notin A_{1/3} \cup A_1 \).

Lemma 3.7 If \(c \in A_b \) with \(b \in (\frac{1}{3}, 1) \) and \(c \neq \frac{a+\sqrt{a^2+3}}{3} \), then \(|S_c \cap A_1| = 2 \).

Proof. Let \(c \in A_b \) with \(b \in (\frac{1}{3}, 1) \) and \(c \neq \frac{a+\sqrt{a^2+3}}{3} \). Without loss of generality, suppose to the contrary that \(|S_c \cap A_1| = 0 \) and \(S_c \) is contained inside \(A_1 \). As we drag \(c \) to \(A_1 \) along a line segment avoiding \(A_{1/3} \), \(S_c \) is continuously transformed into a circle externally tangent to \(A_1 \). By the Intermediate Value Theorem, there exists a \(c_0 \) on the line segment with \(S_{c_0} \) internally tangent to \(A_1 \). However, as \(c \) does not cross \(A_{1/3} \), this contradicts Lemma 3.6 and it follows that \(|S_c \cap A_1| = 2 \).

A similar ‘dragging’ argument shows that \(S_c \cap A_1 = \emptyset \) whenever \(c \) is contained inside \(A_{1/3} \).

Lemma 3.8 If \(c \) is contained inside \(A_{1/3} \), then \(S_c \cap A_1 = \emptyset \).

Proof. Suppose to the contrary that \(c \) is contained inside \(A_{1/3} \) with \(|S_c \cap A_1| = 2 \). As we drag \(c \) to \(\frac{2}{3}a \), the center of \(A_{1/3} \), along a line segment, it follows from Example 3.4 that \(S_c \) is continuously transformed into a circle contained inside \(A_1 \). By the Intermediate Value Theorem, there must exist a \(c_0 \) on the line segment with \(S_{c_0} \) internally tangent to \(A_1 \). However, as \(c \) does not cross \(A_{1/3} \), this contradicts Lemma 3.6 and it follows that \(S_c \cap A_1 = \emptyset \).

4 Main Result

We are now ready to characterize the critical points of polynomials in \(P_a \).

Theorem 4.1 Let \(c \in \mathbb{C} \).

1. If \(c \in A_b \) with \(b \in [0, \frac{1}{3}) \cup (1, \infty) \), then no polynomial in \(P_a \) has a critical point at \(c \).

2. If \(c \in A_b \) with \(b \in [\frac{1}{3}, 1] \) and \(c \neq \frac{a+\sqrt{a^2+3}}{3} \), then \(c \) is the critical point of exactly one polynomial in \(P_a \).

3. If \(c = \frac{a+\sqrt{a^2+3}}{3} \), then infinitely many polynomials in \(P_a \) have a critical point at \(c \).

Proof. Let \(c \in \mathbb{C} \).

1. If \(c \in A_b \) with \(b \in [0, \frac{1}{3}) \), then Lemmas 3.8 and 2.4 imply that no polynomial in \(P_b \) has a critical point at \(c \). Furthermore, if \(c \in A_b \) with \(b > 1 \), the Gauss-Lucas Theorem implies that no polynomial in \(P_a \) has a critical point outside of the unit disk.
2. If \(c \in A_b \) with \(b \in [\frac{1}{3}, 1] \) and \(c \neq \frac{a \pm \sqrt{a^2 + 3}}{3} \), then Example 3.2 and Lemmas 3.6 and 3.8 imply \(|S_c \cap A_1| \in \{1, 2\} \). Therefore, by Lemma 2.4, \(c \) is the critical point of exactly one polynomial in \(P_a \).

3. If \(c = \frac{a \pm \sqrt{a^2 + 3}}{3} \), then Example 3.2 implies \(S_c = A_1 \) and by Lemma 2.4,
\[
p(z) = (z - a)(z - r)(z - f_c(r)) \in P_a
\]
has a critical point at \(c \) for each \(r \in A_1 \).

This completes the characterization of critical points of polynomials in \(P_a \). The unit disk contains a single desert region, \(\{z \in A_b : b \in [0, \frac{1}{3})\} \), in which critical points do not occur, and almost every \(c \) inside the unit disk and outside the desert region is the critical point of a unique polynomial in \(P_a \).

5 Structure of Critical Points

Having determined where the critical points of a polynomial in \(P_a \) are located, we now investigate how they are related to each other. This relationship involves inversion over a circle. Recall that if \(C \) is a circle centered at \(O \) with radius \(r \) and \(X \) is a point distinct from \(O \), then the inversion of \(X \) over \(C \) is the point \(Y \) on the ray \(\overrightarrow{OX} \) such that \(|OX| \cdot |OY| = r^2 \).

For motivation, we revisit the results of [1]. Polynomials of the form
\[
p(z) = (z - 1)(z - r_1)(z - r_2)
\]
with \(|r_1| = |r_2| = 1 \) have two critical points. If one critical point, \(c_1 \), lies on the circle \(A_{1/2} \), then the other critical point, \(c_2 \), also lies on \(A_{1/2} \) with \(c_2 = \overline{c_1} \). Otherwise, the critical points lie on opposite sides of \(A_{1/2} \). In this case, \(A_1 \), the unit circle, is the inversion of \(A_{1/3} \), the boundary of the desert region, across \(A_{1/2} \).

For \(a = 0 \), [3] establishes similar results with \(A^0_{\sqrt{1/3}} \) being the circle of inversion. As this structure is present for the extreme values of \(a = 0 \) and \(a = 1 \), one might expect similar results for \(a \in (0, 1) \).

Definition 5.1 For \(a \in [0, 1] \), we define \(C_I \) to be the circle
\[
\left(x - \frac{a}{2}\right)^2 + y^2 = \frac{1}{3} - \frac{a^2}{12}.
\]
Observe that when \(a = 1 \), we have \(A_{1/2} = C_I \), and when \(a = 0 \), we have \(A^0_{\sqrt{1/3}} = C_I \). However, when \(a \notin \{0, 1\} \), \(C_I \) is not an \(A_b \) circle. We claim that \(A_1 \) is the inversion of \(A_{1/3} \) across \(C_I \).

Lemma 5.2 The circles \(A_1 \) and \(A_{1/3} \) are inversions with respect to \(C_I \).
Proof. Since A_1, $A_{1/3}$, and C_I are symmetric across the real axis, it suffices to show that the two pairs of real numbers $\frac{2}{3}a + \frac{1}{3} \in A_{1/3}$ and $1 \in A_1$, and $\frac{2}{3}a - \frac{1}{3} \in A_{1/3}$ and $-1 \in A_1$ are inversions across C_I. Setting $X = \frac{2}{3}a - \frac{1}{3}$, $Y = -1$ and denoting the center and radius of C_I as $O = \left(\frac{a}{2}, 0\right)$ and $r = \sqrt{\frac{1}{3} - \frac{a^2}{12}}$ gives

$$|OX| \cdot |OY| = \left| \frac{a}{2} - \left(\frac{2}{3}a - \frac{1}{3}\right) \right| \cdot \left| \frac{a}{2} + 1 \right|$$

$$= \left(\frac{1}{3} - \frac{a}{6}\right) \left(1 + \frac{a}{2}\right)$$

$$= \frac{1}{3} - \frac{a^2}{12}$$

$$= r^2.$$

It follows that $\frac{2}{3}a - \frac{1}{3} \in A_{1/3}$ and $-1 \in A_1$ are inversions across C_I. Similar calculations verify the claim for the other set of points. Therefore, the circles A_1 and $A_{1/3}$ are inversions with respect to C_I. \qed

We are now ready to describe the structure relating critical points of polynomials in P_a.

![Diagram](image)

Figure 5: The circles A_1 and $A_{1/3}$ are inversions with respect to C_I.

Theorem 5.3 Let c_1 and c_2 be the critical points of $p \in P_a$. If $c_1 \in C_I$, then $c_2 = \overline{c_1} \in C_I$. Otherwise, c_1 and c_2 lie on opposite sides of C_I.

Proof. Let $p \in P_a$ have critical points c_1 and c_2.

THE PUMP JOURNAL OF UNDERGRADUATE RESEARCH 2 (2019), 95–106

104
Suppose \(c_1 = x + iy \in C_I \). For \(\cos(\theta) = \frac{3x-a}{2}, r = e^{i\theta} \), and
\[
p_r(z) = (z - a)(z - r)(z - \overline{r}) \in P_a,
\]
we will verify that \(c_1 \) is a critical point of \(p_r \). Direct calculations give
\[
p_r(z) = 3z^2 - 2(a + r + \overline{r})z + r\overline{r} + ar + a\overline{r}
= 3z^2 - 2(a + 2\cos(\theta))z + 1 + 2a\cos(\theta)
= 3z^2 - 6xz + 1 + 3ax - a^2.
\]
As \(c_1 \in C_I, c_1\overline{c_1} = ax + \frac{1}{3} - \frac{1}{3}a^2 \) and it follows that
\[
p_r(z) = 3z^2 - 3(c_1 + \overline{c_1})z + 3c_1\overline{c_1} = 3(z - c_1)(z - \overline{c_1}).
\]
Therefore, \(p_r \) has critical points at \(c_1 \) and \(\overline{c_1} \in C_I \). By uniqueness, \(p_r(z) = p(z) \), and if \(c_1 \in C_I \), then \(c_2 = \overline{c_1} \in C_I \).

Suppose \(c_1 \notin C_I \). We use a dragging argument to show that \(c_1 \) and \(c_2 \) lie on opposite sides of \(C_I \). Without loss of generality, suppose to the contrary that \(c_1 \) and \(c_2 \) lie strictly inside \(C_I \). As we drag \(c_1 \) along a line segment, contained strictly inside \(C_I \), to a point on \(A_{1/3} \), Example [2,3] and the uniqueness from Theorem [4,1] implies that \(c_2 \) travels along a continuous path to \(A_1 \). By the Intermediate Value Theorem, \(c_2 \) must cross \(C_I \) at some point \(c_{2,t_0} \). By the first part of this theorem, \(c_{2,t_0} = c_{1,t_0} \in C_I \) which contradicts the fact that \(c_1 \) is strictly inside \(C_I \). Therefore, \(c_1 \) and \(c_2 \) lie on opposite sides of \(C_I \).

As an interesting observation, we note that for \(r = e^{i\theta}, p_r(z) = (z - a)(z - r)(z - \overline{r}) \) will not always have critical points on \(C_I \). As \(r \) moves around the unit circle, there are threshold values of \(\theta \) where the critical points move from \(C_I \) to the real axis. For
\[
\theta_{\pm} = \arccos \left(\frac{a \pm \sqrt{12 - 3a^2}}{4} \right),
\]
the set of points \(\{a, e^{i\theta+}, e^{-i\theta+}\} \) and \(\{a, e^{i\theta-}, e^{-i\theta-}\} \) form equilateral triangles. With this observation in mind, direct calculations give: If \(\theta \in [\theta_-, \theta_+] \), then \(p_r(z) \) has critical points on \(C_I \); If \(\theta \in (0, \theta_-) \cup (\theta_+, \pi) \), then \(p_r(z) \) has real-valued critical points not on \(C_I \).

This completes the characterization of critical points of polynomials in \(P_a \). Our results can be extended to polynomials of the form
\[
p(z) = (z - a)^k(z - r_1)^m(z - r_2)^n
\]
with \(|r_1| = |r_2| = 1 \) and \(\{k, m, n\} \subseteq \mathbb{N} \) with \(m = n \). Similar to \(P_a \), the unit disk contains a desert region bounded by \(A_{\frac{k}{2m+n}} \) and a critical point almost always determines a polynomial uniquely. However, many open questions remain. For example, what happens when \(m \neq n \)?
Acknowledgments

The authors wish to express their gratitude to the anonymous referee for excellent suggestions that improved the paper.

References

Christopher Frayer
University of Wisconsin - Platteville
1 University Plaza
Platteville, WI
E-mail: frayerc@uwplatt.edu

Jamison Wallace
University of Wisconsin - Platteville
1 University Plaza
Platteville, WI
E-mail: tibbettsj@uwplatt.edu

Received: May 9, 2019 Accepted: May 31, 2019
Communicated by Serban Raianu