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1 Introduction

In this paper, we study a class of polynomials arising from a combinatorial problem of
counting the number of rook and queen paths. We let am,n and bm,n be the numbers of
paths a rook and queen (respectively) can move from (0, 0) to (m,n) on an infinite 2D
chess board. These numbers have been studied in [7] and they satisfy the recurrences

am,n = 2am−1,n + 2am,n−1 − 3am−1,n−1 (1)

and

bm,n = 2bm−1,n + 2bm,n−1 − bm−1,n−1 − 3bm−2,n−1

− 3bm−1,n−2 + 4bm−2,n−2. (2)

Motivated by these recurrences, we define a table of polynomials by replacing one of
the coefficients in the equations by a variable z. In particular, we define the table of rook
polynomials {Pm,n(z)}∞m,n=0 by the recurrence

Pm,n(z) = 2Pm−1,n(z) + 2Pm,n−1(z) + zPm−1,n−1(z)

for m,n ∈ N and (m,n) ̸= (0, 0). For simplicity, we use the standard initial condition
P0,0(z) = 1 and Pm,n(z) = 0 if m < 0 or n < 0. In the definition above, we replace the
coefficient of am−1,n−1 in (1) by z since we will see below that the main diagonal polyno-
mials, Pm,m(z), have a connection with the famous sequence of Legendre polynomials. To
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see this connection, we note from the given recurrence relation and the initial condition
that the polynomials {Pm,n(z)}∞m,n=0 are generated by

∞∑
m=0

∞∑
n=0

Pm,n(z)s
mtn =

1

1− 2s− 2t− zst
.

With the substitutions s → s/(−2), t → t/(−2), and z → −4z, we have

∞∑
m=0

∞∑
n=0

Pm,n(−4z)

(−2)m+n
smtn =

1

1 + s+ t+ zst
.

From [10, Lemma 4], we conclude that when m = n

Pm,m(−4z)

22m
= zmLm

(
2

z
− 1

)
or equivalently

Pm,m(z) = (−z)mLm

(
−8

z
− 1

)
= zmLm

(
8

z
+ 1

)
(3)

where Lm(z) is the sequence of Legendre polynomials generated by

∞∑
m=0

Lm(z)t
m =

1

(1− 2zt+ t2)1/2
.

The sequence of Legendre polynomials is a special case of the sequence of Gegenbauer
polynomials whose generating function is ([12, IV.2])

1

(1− 2zt+ t2)α
.

In the case α = 1, the function above generates the sequence of Chebyshev polynomials of
the second kind. For α > −1/2, the sequence of Gegenbauer polynomials are orthogonal
on [−1, 1] ([1, page 302]) with respect the weight function (1−z2)α−1/2. As a consequence,
the zeros of Gegenbauer polynomials lie on this interval for α > −1/2. We deduce from
(3) that the zeros of Pm,m(z) lie on the interval (−∞,−4].

Understanding the zero distribution of polynomials is an active area of research and
is of interest to many mathematicians. Given the unsolvability of the general quintic
equation, many approaches have been developed to understand the zeros of high-degree
polynomials. One such approach is the analysis of connections between the coefficients
of a polynomial and its zeros. This approach has a long history, tracing all the way
from Descartes’ rule of signs to the modern theory of linear operators preserving zeros on
circular domains by J. Borcea and P. Brändén ([4]). Another approach is to study the zeros
of polynomials in relation to recurrence relations, generating functions, and applications
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of complex analysis. For some papers in this direction, see [3, 5, 8]. Motivated by this
approach and and (2), we define the table of Queen polynomials by the recurrence

Qm,n(z) = 2Qm−1,n(z) + 2Qm,n−1(z)−Qm−1,n−1(z)− 3Qm−2,n−1(z)

− 3Qm−1,n−2(z) + zQm−2,n−2(z). (4)

and the standard initial condition Q0,0(z) = 1 and Qm,n(z) = 0 if m < 0 or n < 0.
Equivalently, this table is generated by

∞∑
m=0

∞∑
n=0

Qm,n(z)s
ntm =

1

1− 2(s+ t+ st) + 3(st+ s2t+ st2)− zs2t2
. (5)

This means that for each z ∈ C, there is a sufficiently small δ > 0 so that (4) holds for all
|s| < δ and |t| < δ. Similar to the table of rook polynomials above, we seek to understand
the generating function for the diagonal sequence Qm,m(z) and the zero distribution of
related polynomials. To achieve this goal, we first make the substitution s = x/t in (5)
to obtain the following

∞∑
m=0

∞∑
n=0

Qm,n(z)x
ntm−n =

1

1− 2(x/t+ t+ x) + 3(x+ x2/t+ xt)− zx2

=
t

t2(3x− 2) + t(−zx2 + x+ 1) + 3x2 − 2x
. (6)

Since |s| < δ and |t| < δ, we have |x|
δ
< |t| < δ. We deduce from the equation above that

the generating function
∞∑

m=0

Qm,m(z)x
m (7)

is the t0-coefficient of the Laurent series of (6) in the annulus

|x|
δ

< |t| < δ. (8)

To compute this coefficient, we apply partial fraction decomposition to write (6) as

τ1
(3x− 2)(τ1 − τ2)

· 1

t− τ1
+

τ2
(3x− 2)(τ2 − τ1)

· 1

t− τ2
. (9)

where τ1 and τ2 are the two zeros (in t) of the denominator of (6). The quadratic formula
gives

τ1 =
zx2 − x− 1 +

√
(−zx2 + x+ 1)2 − 4x(3x− 2)2

2(3x− 2)

and

τ2 =
zx2 − x− 1−

√
(−zx2 + x+ 1)2 − 4x(3x− 2)2

2(3x− 2)
.
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From (8), we have |x| < δ2. Thus for small δ, x is small and τ1 ∼ x/4 and τ2 ∼ 1/2. We
conclude that for sufficiently small δ,

τ1 < |t| < τ2

for any t in the annulus (8). With these inequalities, we apply the Laurent series expan-
sions

1

t− τ1
=

1

t

1

1− τ1/t
=

∞∑
n=0

τn1
tn+1

,

1

t− τ2
=

1

τ2

1

t/τ2 − 1
= −

∞∑
n=0

tn

τn+1
2

,

to conclude that (7), which equals the t0-coefficient in the Laurent series expansion of (9),
is

− 1

(3x− 2)(τ2 − τ1)
=

1√
(−zx2 + x+ 1)2 − 4x(3x− 2)2

=
1√

x4z2 + x3(−2z − 36) + x2(49− 2z)− 14x+ 1
.

Similar to the idea that Gegenbauer polynomials are generalization of Legendre polyno-
mial, the generating function above motivates us to define a sequence of polynomials

∞∑
m=0

Pm(z)t
m =

1

(t4z2 + t3(−2z − 36) + t2(49− 2z)− 14t+ 1)α
. (10)

We conjecture that for any α > 0, the zeros of Pm(z) lie on the interval (−∞,−9/4). In
the next section, we will show that the conjecture holds for α = 1. The method of the
proof in this paper provides us a direction in tackling the problems of finding the zero
distribution of sequence of polynomials whose denominator of the generating function is
nonlinear in z. For studies on the case this denominator is linear in z in its variations,
see [13, 8].

2 Zero Distribution of Pm(z)

The main goal of this section is to prove the theorem below.

Theorem 2.1 The zeros of the polynomials Pm(z) generated by∑
m

Pm(z)t
m =

1

t4z2 + t3(−2z − 36) + t2(49− 2z)− 14t+ 1
(11)

lie on the interval (−∞,−9/4).
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To prove Theorem 2.1, we will count the number of zeros of Pm(z) on (−∞,−9/4) and
show that this number is at least the degree of Pm(z). Theorem 2.1 will follow directly
from the Fundamental Theorem of Algebra. The theorem below provides an upper bound
for the degree of Pm(z).

Lemma 2.2 The degree of Pm(z) is at most ⌊m
2
⌋.

Proof. From (11), the sequence {Pm(z)}∞m=0 satisfies the recurrence relation

Pm(z)− 14Pm−1(z) + (49− 2z)Pm−2(z) + (−2z − 36)Pm−3(z) + z2Pm−4(z) = 0

for m ≥ 1 with initial condition P0(z) = 1 and P−m = 0. From the recurrence above and
the induction hypothesis, we have

deg(Pm(z)) ≤ max

(⌊m− 1

2

⌋
,
⌊m− 2

2

⌋
+ 1,

⌊m− 3

2

⌋
+ 1,

⌊m− 4

2

⌋
+ 2

)
=
⌊m
2

⌋
.

□
It remains show that number of zeros of Pm(z) on (−∞,−9/4) is at least ⌊m

2
⌋. For

this reason, we assume z ∈ (−∞,−9/4). For each z ∈ (−∞,−9/4), let t1, t2, t3, and t4
be the zeros (in t) of

D(t, z) := t4z2 + t3(−2z − 36) + t2(49− 2z)− 14t+ 1. (12)

We will show that for z ∈ (−∞,−9/4), these zeros are not real. A useful concept in
proving this is the discriminant of a polynomial defined below.

Definition 2.3 The discriminant of a polynomial P (z) with lead coefficient p and degree
n is

Discz P (z) = p2n−2
∏

1≤i<j≤n

(zi − zj)
2

where zi, 1 ≤ i ≤ n, are the zeros of P (z).

From this definition, Discz P (z) = 0 if and only if P (z) has a multiple zero. In the
case, the degree of P (z) is 4, Discz P (z) > 0 if and only if either all the zeros of P (z) are
real or none of these zeros are real [10]. For further studies of discriminants of various
polynomials, see [2, 6, 9].

Lemma 2.4 For each z ∈ (−∞,−9/4), the four zeros of D(t, z) are distinct and not
real.

Proof. From a computer algebra system, the discriminant of D(t, z) as a polynomial in
t is

DisctD(t, z) = −256(z − 4)(4z − 15)2(4z + 9)2 > 0
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for z ∈ (−∞,−9/4). Thus either (i) all zeros of D(t, z) are real for all z ∈ (−∞,−9/4)
or (ii) none of zeros of D(t, z) is real for all z ∈ (−∞,−9/4). When z = −3, from (12)
we can check that the following polynomial

D(t,−3) = 9t4 − 30t3 + 55t2 − 14t+ 1

has four non-real zeros. Thus all the zeros of D(t, z) are non-real for all z ∈ (−∞,−9/4).
□

Since D(t, z) is a real polynomial (for z ∈ (−∞,−9/4)), their non-real zeros, denoted
by t1, t2, t3, and t4, form conjugate pairs. Without loss of generality, we let t1 = t2,
t3 = t4, |t1| ≤ |t3|, and t1 and t3 lie on the upper half plane. We can write these zeros
as t1 = reiθ, t2 = re−iθ, t3 = ϱeiϕ, and t4 = ϱe−iϕ where 0 < r ≤ ρ. These zeros satisfy
Vieta’s formulas

t1 + t2 + t3 + t4 =
2z + 36

z2
,

t1t2 + t1t3 + t1t4 + t2t3 + t2t4 + t3t4 =
−2z + 49

z2
,

t1t2t3 + t1t2t4 + t1t3t4 + t2t3t4 =
14

z2
,

t1t2t3t4 =
1

z2
.

The first equation is the same as

2r cos θ + 2ϱ cosϕ =
2z + 36

z2
. (13)

Similarly the second equation is equivalent to

r2 + ϱ2 + rϱe−i(θ+ϕ) + rϱei(θ−ϕ) =
−2z + 49

z2

where the left side is

r2 + ϱ2 + 2rϱ cos(θ + ϕ) + 2rϱ cos(θ − ϕ) = r2 + ϱ2 + 4rϱ cos θ cosϕ.

The third equation gives

2r2ϱ cosϕ+ 2rϱ2 cos θ =
14

z2
.

Using

rϱ = −1

z
from the fourth equation (as z < 0) we can rewrite this equation as

2r cosϕ+ 2ϱ cos θ =
−14

z
. (14)

Recall that |t1| ≤ |t3|. From these elementary symmetric equations, we can show that
this inequality is strict in the lemma below.
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Lemma 2.5 For any z ∈ (−∞,−9/4), we have |t1| = |t2| < |t3| = |t4|.

Proof. Assume, by way of contradiction, that r = ρ, then (13) and (14) yield

2z + 36

z2
=

−14

z

or equivalently
16z2 + 36z = 0

which is a contradiction since z ∈ (−∞,−9/4). □
Recall that for each z ∈ (−∞,−9/4), θ is the principal angle of t1 = t1(z). Thus we

can view θ as a function of z ∈ (−∞,−9/4).

Lemma 2.6 If t1 = reiθ, then θ(z) is a decreasing function on z ∈ (−∞,−9/4).

Proof. By the chain rule,
dθ

dz
=

dt1
dz

· dθ
dt1

.

We will show that dθ/dz ̸= 0 by showing that each term on the right side is nonzero. We
differentiate both sides of

t41z
2 + t31(−2z − 36) + t21(49− 2z)− 14t1 + 1 = 0

with respect to z and obtain

dt1
dz

= −Dz(t1, z)

Dt(t1, z)
= − 2zt41 − 2t31 − 2t21

4t31z
2 + 3t21(−2z − 36) + 2t1(49− 2z)− 14

.

We note that the denominator of the last expression is nonzero since Dt(t1, z) ̸= 0 as
t1 is a simple zero of D(t, z) by Lemma 2.4. Thus dt1/dz is a continuous function in
z ∈ (−∞,−9/4). We claim that the numerator of this expression,

2t21(zt
2
1 − t1 − 1),

is also nonzero. Indeed, if by contradiction zt21−t1−1 = 0. Then, z = t1+1
t21

. We substitute

this value of z into D(t1, z) = 0 and conclude

t41z
2 + t31(−2z − 36) + t21(49− 2z)− 14t1 + 1 = −4t1(−2 + 3t1)

2 = 0

which is a contradiction since t1 /∈ R. Thus, we can conclude dt1
dz

̸= 0 for z ∈ (−∞,−9/4).
We will show that dθ/dz is also nonzero for z in this interval. We differentiate both

sides of t1 = reiθ with respect to θ and conclude that

dt1
dθ

= eiθ(
dr

dθ
+ ir),

or equivalently
dθ

dt1
=

1

eiθ(dr
dθ

+ ir)
̸= 0.
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Note that the denominator of the last expression is nonzero since dr/dθ ∈ R and thus
dθ/dt1 is continuous on z ∈ (−∞,−9/4).

Since
dθ

dz
=

dt1
dz

· dθ
dt1

is a continuous function in z ∈ (−∞,−9/4) and it has no zero on this interval, θ(z) is
monotone on z ∈ (−∞,−9/4). Thus, to complete this lemma, we compare two values
of θ(z) at two different values of z. From a simple computer algebra, we have θ(−10) =
0.55491.. and θ(−3) = 0.206599... from which the lemma follows. □

Now that we know θ(z) is decreasing, the lemma below provides the image of the
interval (−∞,−9/4) under this map.

Lemma 2.7 The function θ(z) maps (−∞,−9/4) onto (0, π/2).

Proof. Recall that t1(z) is a zero of

D(t, z) = t4z2 + t3(−2z − 36) + t2(49− 2z)− 14t+ 1.

A simple evaluation yields

lim
z→− 9

4

D(t, z) =
1

16
(4− 28t+ 9t2)2

where the zeros of the last expression are positive real. Thus

lim
z→−9/4

θ(z) = lim
z→−9/4

Arg t1 = 0.

Next, we consider the case z → −∞. First, we note that as z approaches −∞, t1 must
approach 0, since if otherwise we will have

|t41z2| > |t31(−2z − 36) + t21(49− 2z)− 14t1 + 1|

when |z| is large. This contradicts D(t1, z) = 0 as t1 is a zero of D(t, z).
We next show that limz→−∞ |t31z| exists and equals to 0 by showing that

lim sup
z→−∞

|t31z| = 0

where the left side of the expression above is defined as

lim
x→−∞

sup{|t31z| : z ∈ (−∞, x)}.

If, by contradiction,
lim sup
z→−∞

|t31z| ≠ 0

then we have

lim sup
z→−∞

|t1z| = lim sup
z→−∞

∣∣∣∣t31zt21
∣∣∣∣ = ∞
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since limz→−∞ t1 = 0. So

lim sup
z→−∞

|t41z2| = lim sup
z→−∞

|(t31z)(t1z)| = ∞.

We factor t41z
2 out of D(t1, z) and utilize lim supz→−∞ |t1z| = lim supz→−∞ |t21z| = ∞ to

get

lim sup
z→−∞

|D(t1, z)| = lim sup
z→−∞

|t41z2| ·
∣∣∣∣1− 2

t1z
− 36

t1z2
+

49

t21z
2
− 2

t21z
− 14

t21z(t1z)
+

1

t41z
2

∣∣∣∣
= lim sup

z→−∞
|t41z2| = ∞.

This contradicts D(t1, z) = 0 as t1 is a zero of D(t, z).
The equation limz→−∞ |t31z| = 0 allows us to rewrite limz→−∞ D(t1, z) as

0 = lim
z→−∞

D(t1, z) = lim
z→−∞

t41z
2 − 2zt21 + 1.

If u = lim supz→−∞ t21z, then

0 = u2 − 2u+ 1 = (u− 1)2

from which we deduce that u = 1. Similarly lim infz→−∞ t21z = 1. Thus limz→−∞ t21z = 1
from which we have

Arg

(
lim

z→−∞
t21z

)
= 0.

Since z is a negative real number, the equation above gives limz→−∞ Arg(t1) = π/2 (recall
that Arg(t1) > 0 as t1 lies in the upper half plane). We conclude the proof of this lemma.
□

Remark 2.8 From the proof of Lemma 2.7, we have

lim
z→−∞

t21z = 1

from which and the fact that t1 lies on the upper-half plane, we deduce that as z → −∞

t1 ∼
i√
−z

.

We will obtain a more precise asymptotic approximation of t1, which will be useful later
in the proof of Lemma 2.11. We let

t1 =
i√
−z

+ ϵ

where

ϵ = o

(
1√
−z

)
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and substitute this equation to D(t1, z) = 0 to conclude

0 = ϵ4z2 − 4iϵ3
√
−zz − 2ϵ3z − 36ϵ3 + 4ϵ2z + 6iϵ2

√
−z +

108iϵ2
√
−z

z

+ 49ϵ2 − 98iϵ
√
−z

z
− 108ϵ

z
− 20ϵ+

36i
√
−z

z2
+

16i
√
−z

z
+

49

z
.

We apply ϵ = o(1/
√
−z) and reduce this identity to

0 = 4ϵ2z +
16i

√
−z

z
+ o

(
ϵ2|z|+ 1√

|z|

)

from which we conclude

ϵ = ± 2e3iπ/4

(−z)3/4
+ o

(
1

|z|3/4

)
.

Consequently

t1 =
i√
−z

± 2e3iπ/4

(−z)3/4
+ o

(
1

|z|3/4

)
.

Since t1 lies in the first quadrant, we conclude that

t1 =
i√
−z

− 2e3iπ/4

(−z)3/4
+ o

(
1

|z|3/4

)
. (15)

Recall that we want to find the number of zeros of Hm(z) on the interval (−∞,−9/4).
To achieve this goal, we will provide a closed formula for the polynomial Hm(z). The
following lemma provides such a formula in terms of t1(z), t2(z), t3(z), and t4(z). For the
ease of notations, we suppress the parameter z in these variables.

Lemma 2.9 For any z ∈ (−∞,−9/4), if t1, t2, t3 and t4are the zeros of (12), then

−z2Pm(z) =
A

tm+1
1

+
B

tm+1
2

+
C

tm+1
3

+
D

tm+1
4

(16)

where

A =
1

(t1 − t2)(t1 − t3)(t1 − t4)
,

B =
1

(t2 − t1)(t2 − t3)(t2 − t4)
,

C =
1

(t3 − t1)(t3 − t2)(t3 − t4)
,

D =
1

(t4 − t1)(t4 − t2)(t4 − t3)
.
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Proof. Since t1, t2, t3, and t4 are the zeros of the denominator on the right side of (11),
we can factor this denominator and write our generating function as

∞∑
m=0

Pm(z)t
m =

1

z2(t− t1)(t− t2)(t− t3)(t− t4)
.

As t1, t2, t3, and t4 are distinct by Lemma 2.4, partial fraction decomposition yields

∞∑
m=0

Pm(z) =
1

z2

(
A

t− t1
+

B

t− t2
+

C

t− t3
+

D

t− t4

)
where A, B, C, and D are given in the statement of the lemma. We express each term
on the right side as a power series in t as follow:

A

t− t1
=

A

t1(1− t
t1
)
=

∞∑
m=0

−Atm

tm+1
1

.

From similar computations for the remainder three terms, we conclude

−z2Pm(z) =
A

tm+1
1

+
B

tm+1
2

+
C

tm+1
3

+
D

tm+1
4

,

from which our lemma follows. □
We note that the first two terms on the right side of (16) are complex conjugates and

the same statement holds for the last two terms of this expression. To count the number
of real zeros of Pm(z), we will find the dominant term on the right side of (16), which is
provided by the lemma below.

Lemma 2.10 For any m ∈ N and any z ∈ (−∞,−9/4), let A,B,C,D be defined as in
Lemma 2.9. Then ∣∣∣∣ A

tm+1
1

∣∣∣∣ > ∣∣∣∣ C

tm+1
3

∣∣∣∣ .
Proof. It is equivalent to show ∣∣∣∣t3t1

∣∣∣∣m+1

>

∣∣∣∣CA
∣∣∣∣ .

From the definition of A and C in (16), the right side is∣∣∣∣CA
∣∣∣∣ = ∣∣∣∣(t1 − t2)(t1 − t4)

(t3 − t2)(t3 − t4)

∣∣∣∣ .
Since t1 = t2 and t3 = t4, we have |t1 − t4| = |t3 − t2| and consequently the right hand
side becomes ∣∣∣∣t1 − t2

t3 − t4

∣∣∣∣ = ∣∣∣∣Im(t1)

Im(t3)

∣∣∣∣ .
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Thus it remains to prove that ∣∣∣∣t3t1
∣∣∣∣m+1

>

∣∣∣∣Im(t1)

Im(t3)

∣∣∣∣ .
Since |t3| > |t1| by Lemma 2.5, it suffices to show

Im(t3) > Im(t1).

From the fact that |t3| > |t1| and t1 and t3 lie in the upper-half plane, it remains to
show sin(Arg(t3)) > sin(Arg(t1)). We recall that θ = Arg(t1) and ϕ = Arg(t3). By
the continuity of θ and ϕ as functions of z, it suffices to show sinϕ ̸= sin θ for all z ∈
(−∞,−9/4) and verify this inequality at one value of z. It is easy to check that with a
computer algebra system that at z = −5,, θ = 0.37.. and ϕ = 1.299...

To finish the proof of this lemma we will prove sin(ϕ) ̸= sin(θ). Assuming by contra-
diction that sin(ϕ) = sin(θ), which is equivalent to either ϕ = θ or ϕ = π − θ.In the first
case when ϕ = θ, Equations (13) and (14) give

−14

z
=

2z + 36

z2

which implies z = −9
4
. This contradicts z ∈ (−∞,−9

4
).

Similarly, in the the case ϕ = π − θ or equivalently cos θ = − cosϕ, we have

14

z
=

2z + 36

z2
,

which implies z = 3, a contradiction to the fact that z ∈ (−∞,−9
4
). □

Recall that we want to find the number of zeros of Pm(z) on the interval (−∞,−9/4)
and compare that number with the degree of this polynomial which is at most ⌊m/2⌋ by
Lemma 2.2. The lemma below gives a lower bound of the number of real zeros of Pm(z) on
the given interval. Theorem 2.1 follows from this lemma and the Fundamental Theorem
of Algebra.

Lemma 2.11 Pm(z) has at least ⌊m
2
⌋ zeros on the interval (−∞,−9/4).

Proof. Recall from (16) that for z ∈ (−∞,−9/4)

−z2Pm(z) = 2ℜ
(

A

tm+1
1

)
+ 2ℜ

(
C

tm+1
3

)
(17)

where, by Lemma 2.10, ∣∣∣∣ A

tm+1
1

∣∣∣∣ > ∣∣∣∣ C

tm+1
3

∣∣∣∣ .
Let

f(t1) =
A

tm+1
1

. (18)

the pump journal of undergraduate research 8 (2025), 242–257 253



-0.10 -0.05 0.05 0.10 0.15 0.20

-0.10

-0.05

0.05

0.10

0.15

0.20

Figure 1: The curve t1(z),−∞ < z < −9/4.

From the Implicit Function Theorem, the function t1(z), z ∈ (−∞,−9/4) produces a
smooth curve in the complex plane (see Figure 1) and hence so is f(t1(z)). We deduce from
(17) that at the value of z where f(t1(z)) ∈ R+ or f(t1(z)) ∈ R− we have −z2Pm(z) > 0
or −z2Pm(z) < 0 respectively. By the Intermediate Value theorem, there is a zero of
Pm(z) when there is a change in sign of −z2Pm(z). Thus, to count the number of zeros of
Pm(z) on (−∞,−9/4), we can count number of times the curve f(t1(z)), z ∈ (−∞,−9/4),
intersects the real axis. To count this number, we compute the change in argument of
this curve. From (18) we have

∆arg−∞<z<−9/4 f(t1(z)) = ∆arg−∞<z<−9/4A− (m+ 1)∆arg−∞<z<−9/4 t1(z). (19)

We deduce from Lemma 2.7 that

∆arg−∞<z<−9/4 t1(z) = −π/2.

To measure the change in argument of A, we claim that A /∈ iR+ for all z ∈ (−∞,−9/4)
from which we can conclude that the change in argument is

lim
z→−9/4

ArgA− lim
z→−∞

ArgA. (20)

Indeed, we write

t1 = a+ bi,

t2 = a− bi,

t3 = c+ di,

t4 = c− di,

and obtain from procedural computations that

A =
1

(t1 − t2)(t1 − t3)(t1 − t4)
=

1

(2bi)(a2 − b2 + c2 + d2 − 2ac+ 2abi− 2bci)
.
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If by contradiction A ∈ iR+, then the fact that b > 0 (as t1 lies in the first quadrant)
gives

a2 − b2 + c2 + d2 − 2ac+ 2abi− 2bci ∈ R−.

which implies b(a − c) = 0. In the first case when b = 0, the real part of the expression
above is (a− c)2 + d2 > 0. In the second case when a− c = 0, this real part is d2 − b2 > 0
by Lemma 2.5. Thus we obtain a contradiction in both cases.

We now compute (20). To compute the first term in this expression, we note from

D(t,−9/4) =
1

16

(
9t2 − 28t+ 4

)2
,

the equation D(t1(z), z) = 0, and Lemma 2.5, that

lim
z→−9/4

t1(z) = lim
z→−9/4

t2(z) =
2

9

(
7− 2

√
10
)

and

lim
z→−9/4

t3(z) = lim
z→−9/4

t4(z) =
2

9

(
7 + 2

√
10
)
.

We recall from Lemma 2.10 that

A =
1

(t1 − t2)(t1 − t3)(t1 − t4)
.

As z → −9/4 we have
(t1 − t3)(t1 − t4) → R+

while
Arg(t1 − t2) = π/2

since t2 = t1 and t1 lies in the upper half plane. These equations imply that

lim
z→−9/4

ArgA = −π

2
. (21)

We will next compute the second term of (20). We note that the denominator of A is
Dt(t1, z)/z

2 since
D(t, z) = z2(t− t1)(t− t2)(t− t3)(t− t4).

Thus
lim

z→−∞
Arg(A) = − lim

z→−∞
ArgDt(t1, z)

where from (12)

Dt(t1, z) = 4t31z
2 − 6t21z − 108t21 − 4t1z + 98t1 − 14.

We substitute (15) to the right side of this equation to obtain the following asymptotics
as z → ∞

Dt(t1, z) ∼ 16(−z)1/4e3iπ/4
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and consequently
lim

z→−∞
Arg(A) = −3π/4.

We conclude from (21) and the fact that A /∈ iR that

∆ arg−∞<z<−9/4A = π/4.

Consequently, from (19)

∆arg−∞<z<−9/4 f(t1(z)) =
π

4
+

(m+ 1)π

2
=

mπ

2
+

3π

4
.

We recall that that at the values of z ∈ (−∞,−9/4) where f(t1(z)) ∈ R+ or f(t1(z)) ∈
R− we have −z2Hm(z) > 0 or −z2Hm(z) < 0 respectively. By the Intermediate Value
Theorem, there is at least a zero of Hm(z) between two consecutive values of z where
f(t1(z)) changes from R+ to R− or vice versa. Since the change of argument of f(t1(z))
is mπ/2 + 3π/4 there are at least ⌊m

2
⌋ such changes. Thus we obtain at least ⌊m

2
⌋ zeros

of Pm(z) on (−∞,−9/4) and the lemma follows. □
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