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Abstract - Suppose that p is an odd prime and
( ·
p

)
denotes the Legendre symbol modulo p.

If p is has the form p = n2 + 1 then one easily verifies that
(
a
p

)
=
(−a

p

)
for all a ∈ Z/pZ. We

identify various symmetry properties of sequential matrices over Z/(n2 + 1)Z regardless of
whether n2 + 1 is prime. We deduce from these results a collection of symmetries involving
the Jacobi symbol modulo n2 + 1 which generalize our above observation on the Legendre
symbol.
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1 Introduction

If n is a positive integer then the n× n sequential matrix is the unique n× n matrix over
Z belonging to the list

(
1
)
,

(
1 2
3 4

)
,

1 2 3
4 5 6
7 8 9

 ,


1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16

 , . . .

We will write Qn to denote the n × n sequential matrix. For any set Ω we shall write
Mn×n(Ω) to denote the set of all n×n matrices with entries in Ω. Further, if A ∈Mn×n(Ω)
we let Ai,j denote the entry of A in row i and column j.

Following this notation, we obtain the formula

(Qn)i,j = j + (i− 1)n (1)

for all 1 ≤ i, j ≤ n. As will be common practice throughout this article, we let m = n2 +1
and interpret Qn as a matrix over Z/mZ. As such, any time we perform arithmetic with
Qn, that arithmetic will be assumed to take place in Z/mZ.

A function ϕ : Z/mZ → {0, 1,−1} is called completely multiplicative if ϕ(ab) =
ϕ(a)ϕ(b) for all a, b ∈ Z/mZ. Examples of such functions are common objects of study
in number theory. For instance, if p is prime then the Legendre symbol

( ·
p

)
is defined by
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(
a

p

)
=


0 if a ≡ 0 mod p

1 if a is a perfect square in (Z/pZ)×

−1 if a is not a perfect square in (Z/pZ)×,

and it is well-known that a 7→
(
a
p

)
defines a completely multiplicative function on Z/pZ.

If Ω′ is another set and f : Ω → Ω′ is any map, then for each A ∈ Mn×n(Ω) we shall
define f(A) so that f(A)i,j = f(Ai,j). The goal of this article is to study the symmetry
properties of ϕ(Qn) for multiplicative functions ϕ. In the next section, we shall present
our main results concerning those symmetry properties. Our work requires identifying a
certain group which is isomorphic to the dihedral group of eight elements. In Section 3,
we apply our main results to the Jacobi symbol, a generalization of the Legendre symbol
defined above.

2 Main Results

For this section, we shall fix n ∈ Z with n ≥ 2 and let m = n2 + 1. Many objects we
define depend on n, however, in order to prevent our notation from becoming excessively
cumbersome, we shall often suppress that dependency in our notation.

As noted in the introduction, our goal is to study symmetry properties of ϕ(Qn) when
ϕ is a completely multiplicative function. In order to make that agenda more precise, we
let

X = {(i, j) : 1 ≤ i ≤ n, 1 ≤ j ≤ n}

and define two maps τ, ρ : X → X by

τ(i, j) = (j, i) and ρ(i, j) = (j, n− i+ 1). (2)

One easily verifies that τ and ρ are both bijections, and therefore, each defines an element
of the group SX of permutations of X. In this interpretation, τ has order 2 while ρ has
order 4 in SX . In fact, we obtain the following important observation.

Theorem 2.1 If τ and ρ are given as in (2) then {1, ρ, ρ2, ρ3, τ, τρ, τρ2, τρ3} forms a
subgroup of SX which is isomorphic to the dihedral group of eight elements.

Proof. Let D = {1, ρ, ρ2, ρ3, τ, τρ, τρ2, τρ3} and note that τ clearly has order 2 in SX .
Additionally, we find that

ρ2(i, j) = ρ(j, n− i+ 1) = (n− i+ 1, n− j + 1) (3)

which implies that

ρ4(i, j) = ρ2(n− i+ 1, n− j + 1) = (n− (n− i+ 1) + 1, n− (n− j + 1) + 1) = (i, j).
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Clearly (3) does not define the identity map, so ρ must have order 4 in SX . Next, we note
that

τρ(i, j) = τ(j, n− i+ 1) = (n− i+ 1, j)

and also that

ρ3τ(i, j) = ρ3(j, i) = ρ2(i, n− j + 1) = (n− i+ 1, n− (n− j + 1) + 1) = (n− i+ 1, j).

We have now established that τρ = ρ3τ . Combining this observation with the fact that
τ has order 2 and ρ has order 4, we obtain quickly that D is closed under function
composition. Further observing that ρ−1 = ρ3 while all other elements of D are their own
inverses in SX , we have established that D is a subgroup of SX .

Certainly D is a non-Abelian group of order 8, so it must be isomorphic to the dihedral
group or the quaternion group. It cannot be latter as the quaternion group has 6 elements
of order 4 while D only has 2. �

We shall now write DX for the subgroup of SX described in Theorem 2.1. For any set
Ω, there is a useful action of DX on Mn×n(Ω) given by

σ(A)i,j = Aσ(i,j).

This means, in particular, that

τ(A)i,j = Aj,i and ρ(A)i,j = Aj,n−i+1. (4)

Clearly τ(A) = AT so that τ flips a matrix across its main diagonal. Although it is less
obvious from (4), a brief examination reveals that ρ rotates a matrix counter-clockwise
by 90◦. For example, if n = 2 then

ρ

(
1 2
3 4

)
=

(
2 4
1 3

)
.

Along with our knowledge that τ(A) = AT , we find that τρ flips a matrix across its
vertical center line as in the example

τρ

(
1 2
3 4

)
=

(
2 1
4 3

)
.

All elements of DX can be described in a similar way:
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Element σ ∈ DX Description of σ(A)

1 Identity Map

ρ 90◦ counter-clockwise rotation

ρ2 180◦ counter-clockwise rotation

ρ3 270◦ counter-clockwise rotation

τ Flip across the main diagonal

τρ Flip across the vertical center line

τρ2 Flip across the cross diagonal

τρ3 Flip across the horizontal center line

A matrix fixed by some element of DX is often considered to have a symmetry property.
For example, in classical linear algebra, students are taught that A is called symmetric
if τ(A) = A. Additionally, A is called centro-symmetric if ρ2(A) = A and Hankel-
symmetric if τρ2(A) = A. Such symmetries have been studied extensively in various
contexts (see [1–4], for example). In the case of the n × n sequential matrix, our main
result asserts that the rotation maps can be described by some simple arithmetic in Z/mZ.

Theorem 2.2 If n is a positive integer and m = n2 + 1 then ρ(Qn) = nQn.

Proof. Let i and j be integers such that 1 ≤ i, j ≤ n. According to (4) and (1), we find
that

ρ(Qn)i,j = (Qn)j,n−i+1 = n− i+ 1 + (j − 1)n = −i+ 1 + jn = jn+ (i− 1)(−1).

We also know that n2 ≡ −1 mod m, so in Z/mZ we have that

ρ(Qn)i,j = jn+ (i− 1)n2 = n(j + (i− 1)n) = n(Qn)i,j = (nQn)i,j.

This equality holds for all 1 ≤ i, j ≤ n so that ρ(Qn) = nQn as required. �
Certainly we have that n2 ≡ −1 mod m. Furthermore, multiplication by n commutes

with all elements of DX , and hence, we obtain the following list of values of σ(Qn) for all
non-identity elements σ ∈ DX .

ρ(Qn) = nQn, ρ2(Qn) = −Qn, ρ3(Qn) = −nQn

τ(Qn) = QT
n , τρ(Qn) = nQT

n , τρ2(Qn) = −QT
n , τρ3(Qn) = −nQT

n .

As we noted above, our plan is to study the symmetry properties of ϕ(Qn), where
ϕ : Z/mZ → {0, 1,−1} is a completely multiplicative function. Thanks to Theorem 2.2,
we obtain a corollary which addresses this issue in relation to the rotation maps.
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Corollary 2.3 Suppose that n is a positive integer and m = n2 + 1. If ϕ : Z/mZ →
{0, 1,−1} is a completely multiplicative function then ϕ(ρ(Qn)) = ϕ(n)ϕ(Qn).

It is worth noting that the expression σ(ϕ(A)) makes sense for all σ ∈ DX and all
A ∈ Mn×n(Z/mZ), and moreover, σ(ϕ(A)) = ϕ(σ(A)). As a result, we may interpret
Corollary 2.3 as a statement about symmetry properties of ϕ(Qn). These observations
also enable us to deduce information about ϕ(σ(Qn)) for other points σ ∈ DX . For
instance, we find that

ϕ(ρ2(Qn)) = ϕ(−1)ϕ(Qn) and ϕ(ρ3(Qn)) = ϕ(−1)ϕ(n)ϕ(Qn).

These assertions could also be concluded directly from Theorem 2.2 in conjunction with
our above list of values of σ(Qn).

3 The Jacobi Symbol

If p is an odd prime and a ∈ Z recall that the Legendre symbol
(
a
p

)
is defined so that

(
a

p

)
=


0 if a ≡ 0 mod p

1 if a is a perfect square in (Z/pZ)×

−1 if a is not a perfect square in (Z/pZ)×.

Certainly a 7→
(
a
p

)
is well-defined on Z/pZ, and moreover, this map defines a completely

multiplicative function. That is, for all a, b ∈ Z/pZ we have that(
ab

p

)
=

(
a

p

)(
b

p

)
.

For each odd integer m > 2, write

m =
K∏
k=1

pk

for its factorization into (not necessarily distinct) primes. If a ∈ Z we define the Jacobi
symbol

(
a
m

)
by (

a

m

)
=

K∏
k=1

(
a

pk

)
.

Like the Legendre symbol that it generalizes, the Jacobi symbol is a completely multi-
plicative function which is well-defined on Z/mZ. For the purposes of applying Corollary
2.3, we are particularly interested in the case where m = n2 + 1 for some positive even
integer n. If A is a matrix with entries in Z/mZ then we shall write

(
A
m

)
for the matrix

obtained by applying the Jacobi symbol to each entry.
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Theorem 3.1 If n is a positive even integer and m = n2 + 1 then(
ρ(Qn)

m

)
=

{(
Qn

m

)
if n ≡ 0 mod 4

−
(
Qn

m

)
if n ≡ 2 mod 4.

(5)

Proof. Define the map f : Z/mZ → Z/mZ by f(a) = na, and since n is relatively
prime to m, we note that f is a permutation of Z/mZ. Then according to Zolotarev’s
Lemma [5], we have (

n

m

)
= sgn(f), (6)

where sgn(f) denotes the signature of f , i.e., sgn(f) = 1 if f is an even permutation and
sgn(f) = −1 if f is an odd permutation.

By Theorem 2.2, applying f to each entry of Qn performs a rotation of Qn counter-
clockwise by 90◦. Therefore, every non-zero element a ∈ Z/mZ satisfies f 4(a) = a.
Moreover, since n is even, there is no center entry of Qn, which implies that fk(a) 6= a for
all 0 < k < 4. In view of these observations, when we represent f as a product of disjoint
cycles, f is a product of n2/4 cycles of length four and (0). We know that sgn((0)) = 1,
and for every cycle g of length four, we have that sgn(g) = −1. It now follows that
sgn(f) = (−1)n

2/4 and we conclude from (6) that(
n

m

)
= (−1)n

2/4. (7)

By applying Corollary 2.3 with the Jacobi symbol in place of ϕ and utilizing (7), we
immediately obtain that(

ρ(Qn)

m

)
=

(
n

m

)(
Qn

m

)
= (−1)n

2/4

(
Qn

m

)
. (8)

If n ≡ 0 mod 4 then n2/4 is even and (−1)n
2/4 = 1. Otherwise, n ≡ 2 mod 4 and n has

the form n = 4k + 2 for some k ∈ Z. This observation yields

n2

4
=

(4k + 2)2

4
=

16k2 + 16k + 4

4
= 4k2 + 4k + 1

which is certainly odd meaning that (−1)n
2/4 = −1. The result now follows from (8). �

We note that Theorem 3.1 excludes the case where n is odd as the Jacobi symbol is
undefined for that case. More importantly, Theorem 3.1 generalizes a well-known fact
about the symmetry properties of the Jacobi symbol. Under the assumptions of Theorem
3.1, −1 is certainly a square modulo m, and therefore, −1 is a square modulo every prime
which divides m. We conclude that

(−1
m

)
= 1 and(

a

m

)
=

(
−a
m

)
for all a ∈ Z/mZ. (9)
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By applying Theorem 3.1 twice, we can deduce (9) in another way. Indeed, it follows
from Theorem 3.1 that (

ρ2(Qn)

m

)
=

(
Qn

m

)
,

which is equivalent to the assertion that
(
Qn

m

)
is centro-symmetric. Now we immediately

obtain (9). In view of these observations, we may interpret Theorem 3.1 as an improve-
ment to the well-known fact (9).

As a basic example of Theorem 3.1, consider the case where n = 4 so that m = 17
and we are in the situation of the first line of (5). After applying the Jacobi symbol to
the 4 × 4 sequential matrix, as predicted by Theorem 3.1, we obtain a matrix which is
fixed under all rotations.

(
Q4

17

)
=


+1 +1 −1 +1
−1 −1 −1 +1
+1 −1 −1 −1
+1 −1 +1 +1


Of course, Theorem 3.1 also applies in cases where m is not prime or where n ≡ 2 mod 4.
For n = 6 we obtain the matrix

(
Q6

37

)
=


+1 −1 +1 +1 −1 −1
+1 −1 +1 +1 +1 +1
−1 −1 −1 +1 −1 −1
−1 −1 +1 −1 −1 −1
+1 +1 +1 +1 −1 +1
−1 −1 +1 +1 −1 +1


This matrix is not preserved under a 90◦ counter-clockwise rotation, but rather the sign
is flipped after performing a 90◦ counter-clockwise rotation. This is exactly as predicted
by Theorem 3.1. When n = 8 we get

(
Q8

65

)
=



+1 +1 −1 +1 0 −1 +1 +1
+1 0 −1 −1 0 +1 0 +1
−1 +1 −1 0 −1 −1 −1 −1
0 0 −1 +1 +1 0 −1 +1

+1 −1 0 +1 +1 −1 0 0
−1 −1 −1 −1 0 −1 +1 −1
+1 0 +1 0 −1 −1 0 +1
+1 +1 −1 0 +1 −1 +1 +1


In this case, some entries are equal to 0 due to the fact that the corresponding elements
of Z/65Z are not relatively prime to 65.
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