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Abstract - We modify the McKendrick-von Foerster population model, an age-structured
population model, by including a net migration term to model population dynamics when
net migration is a significant contributor to population size. Net migration is treated as
a continuous function of age and time. We consider the model’s mortality rate as both a
constant and as a function of age. By allowing the mortality rate to be a function of age, the
model better captures more realistic death rates. We then apply this model to the United
States population. When the mortality rate is considered as a constant, the model has
3.95% relative error. When the mortality rate is considered as a function of age, it yields a
better approximation with a 2.33% relative error. This more accurate model of population
dynamics can provide a framework for studying the effect of policy changes and major events
on populations and sub-populations.
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1 Introduction

Immigration and emigration have often become an important topic for countries with large
numbers of migrants. In 2015, it was estimated that 244 million people were migrating
into a foreign country seeking employment, refuge, and other incentives [8]. Over three
million Venezuelans have emigrated to seek economic opportunity [6]. The civil war in
Syria encouraged people to seek refuge in countries along the Mediterranean Sea [6].
Among all the countries in the world, the United States has become the country with the
most immigrants [8]. Many population models focus on closed systems where individuals
do not migrate in or out of the system. Since migration can greatly affect the size of a
population, it will be necessary to include it in population models for countries where the
net migration is significant, such as the United States.

Typically, a population model includes an initial population, birth rates, death rates,
and other factors relevant to changes in the population. We modified a population model,
known as the McKendrick-von Foerster age-structured population model, to include net
migration [21]. An age-structured population model assumes individuals of the same age
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will age together at the same rate and will die with the same death rate. Thus, these
models use age and time as independent variables, resulting in a partial differential equa-
tion (PDE) model. An age-structured population model is appropriate for consideration
since there is significant variability in both the age of migrants and the mortality rate for
humans, which is highly dependent on age. For example, among U.S. children aged 1–4
years there were 28.6 deaths per 100,000 in 2007 [20], which is an extremely low death rate
compared to older age groups, where there were 4,987.1 deaths per 100,000 for ages 75–84
[7]. Health problems such as heart disease and cancer remain as the top two causes of
deaths for adults [7], giving a significantly higher death rate for the elderly. This leads us
to include a mortality rate that depends on age in our age-structured population model.
With this age-dependent mortality function and net migration, we are able to produce
reasonable population estimates when applied to the United States population. We will
show that our model yields a smaller error when age is incorporated as an independent
variable than when it is omitted.

2 Literature Review

Age-structured and stage-structured population models are often used in the literature,
since many aspects of population change depend on the age or stage of the individuals.
Some models include independent variables such as age, size, or location. For example,
the McKendrick model investigates the change in cell population relative to age and size
[21]. In 1967, James W. Sinko and William Streifer proposed a size-structured population
model that uses time, size, and age as independent variables [10]. The McKendrick-
von Foerster model uses time and age as independent variables [21] and is a special
case of the Sinko-Streifer model. In the 1970s, Gurtin and MacCamy also developed
a similar nonlinear age-structured population models where the survival and maternity
functions depended on both age and the current population size [28]. Since then, age-
structured population models have been used in a variety of applications, such as in
epidemiology [23, 24, 25, 26, 29], where disease latency or vaccinations are age-dependent.
The McKendrick-von Foerster model has also been extended to a stochastic differential
equation [19].

Age-structured population models are often in the form of differential equations. How-
ever, they may also be discrete models, such as the Leslie matrix. The Leslie model is
used to track the succession of population groups over a selected interval of time [13].
Additionally, the Leslie model is one of the various ways to numerically approximate
the McKendrick-von Foerster equation [13, 12]. The Leslie matrix has also been used
in extensions that include stochasticity to allow for fluctuations due to demographic and
environmental factors [15, 30].

The McKendrick-von Foerster model only considers population dynamics of a closed
system, which does not allow for migration. By considering a continuous open system, a
model would be able to better capture a population where migration is significant. One
model modifies the McKendrick-von Foerster model with an immigration term, consid-
ering only the female population [27]. Another model that included immigration and
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emigration with similar modification was applied to the human population in Spain [14].
Here, the authors fit smooth curves to the birth, death, and migration data in order
to make predictions about future population estimates. In a recent study, the authors
consider immigration by modifying the McKendrick-von Foerster model into two separate
equations, one for the resident population and the second for migrant population [18]. An-
other approach extends the McKendrick-von Foerster model in an environment divided
into patches, allowing for migration between patches [17]. Instead of the McKendrick-von
Foerster model, one approach was to add a non-negative age-dependent migration func-
tion to the similar Lotka-von Foerster system [11]. All of these models involve adding a
term to the original model, and our approach is similar to that of [14, 18, 27]. We consider
our base model to be the McKendrick-von Foerster model, since it is a first-order partial
differential equation and can be solved using analytical methods.

3 U.S. Population Data

Data were collected for the following different categories: population, births, mortality,
and migration. We include these categories in order to address the elements presented in
the proposed model in Section 4.2.

3.1 Population Data

The population data were retrieved from the national intercensal datasets 2000–2010 and
the annual estimates of the resident population 2010–2016 [1, 2]. The national intercensal
datasets (estimates of the population between two official census dates) are estimates of
resident population organized by single age per year, sex, race, and Hispanic origin from
April 1, 2000 to July 1, 2010. The population data includes births and deaths of U.S.
residents, domestic migration, international migration, and net movement of the U.S.
armed forces [3]. Domestic migration and the net movement of the U.S. armed forces
do not affect the model, since these populations do not migrate in or out of the U.S.
population. The annual estimates of the resident population for the datasets from April
1, 2010 to July 1, 2016 were categorized by two criteria: age and sex of the individual.
These estimates take into account the change in population from births, deaths, and
migration. The national intercensal datasets and the annual estimates datasets are merged
and organized by age for each year from 2004 to 2014 (see the Appendix for more detail).
These are two separate datasets with two different methods of estimating population size,
with the intercensal data providing population estimates up to age 85 and the remaining
estimates are summed into age 999, an unrealistic age. The annual estimates provide data
by age for each year up to age 100 with individuals over 100 grouped together. Due to
this inconsistency in the data, our study utilizes only the data from ages 0 to 84 from the
combined datasets.
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3.2 Birth Data

The birth data were obtained for the years 2004 to 2014 from the Centers for Disease
Control and Prevention (CDC) WONDER online data bank [5]. The datasets, natality
for 2003–2006 and the natality for 2007–2016, were queried to extract the birth totals
grouped by year. The data account for births in the United States from U.S. residents
and non-residents (individuals not classified with resident status, such as people holding
student visas) [5].

3.3 Mortality Data

The mortality data were obtained from the CDC WONDER online databases for under-
lying causes of death from 1999 to 2016. Data were available to download with grouped
ages starting with “< 1 year”, “1–4 years”, and then groups of 5 year intervals. The
data do not include deaths of non-residents. The death counts are derived from death
certificates from all fifty states, excluding Puerto Rico, Guam, the Virgin Islands, and
other U.S. territories [5]. Death counts that are zero to nine are suppressed.

3.4 Immigration Data

Immigration data were retrieved from the U.S. Homeland Security Yearbook of Immigra-
tion Statistics [16]. The data are grouped by year, containing data on foreign nationals
who were granted lawful permanent residence, admitted with a temporary status, or
applied for asylum or refugee status [16]. Persons admitted with temporary status are
considered “nonimmigrants” since their visit is short and without the intention of per-
manently residing in the U.S. territories. For the purposes of this study, legal permanent
residents, refugees, and asylees are considered in the estimates of immigration data, as
represented. To include temporary status individuals would require data on their depar-
ture, which is not recorded by any U.S. agency. Since their stay is considered temporary,
primarily less than one year, we do not include them in the population count. Undoc-
umented immigrants are not included in this dataset, and therefore, we do not include
them in the model. The data are grouped by 5-year age groups up to age 64, followed by
age groups 65–74 and over 75. We consider the immigration data to be estimates since
the U.S. Homeland Security Yearbooks acknowledge that revisions occur to eliminate
duplicates [16].

4 Model Description

This section describes our methodology for incorporating net migration into an age-
structured population model. We first introduce size and age-structured population mod-
els and then provide the proposed model.
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4.1 The Sinko-Streifer and the McKendrick-von Foerster Population Model

The Sinko-Streifer equation is a size-structured population model given as a partial dif-
ferential equation with time and size as independent variables [9]. Here, size describes
a characteristic such as height, weight, or age [9]. The Sinko-Streifer equation assumes
individuals of the same size share some common traits [9]. The model defines u(t, x) as
the number of individuals of size x at time t. Individuals who increase in size can tran-
sition into other sizes as time progresses. It is also assumed that individuals of the same
size have the same growth rate (rate of the individual’s size increasing) and the same
probability of death. Also, the size of the population is assumed to be sufficiently large,
and the size x of an individual is within some size interval, xmin ≤ x ≤ xmax.

Sinko and Streifer proposed the model,

∂

∂t
u(t, x) = − ∂

∂x
(g(t, x)u(t, x))− µ(t, x)u(t, x),

where the growth rate is denoted by g(t, x) and the death rate as µ(t, x) for individuals
of size x at time t. This PDE suggests that population change with respect to time is
determined by the change of the growth of the population with respect to size and the
number of individuals dying in the population. Births enter the population through a
boundary condition, namely

R(t) = g(t, xmin)u(t, xmin) =

∫ xmax

xmin

k(t, s)u(t, s) ds,

where R(t) denotes the number of births at time t, and k(t, x) is a function indicating the
fertility rate of the population at a given time and size [9].

The PDE represents the population dynamics of a closed system in which there are no
external influences that affect the population. The model is equivalent to the McKendrick-
von Foerster equation by considering size as the age α of individuals, giving the model
the independent variable α. Since individuals age at the same rate that time passes,
the change in age is the same as the change in time, giving g(t, α) = 1. This gives the
Mckendrick-von Foerster age-structured population model,

∂

∂t
u(t, α) = − ∂

∂α
u(t, α)− µ(t, α)u(t, α). (1)

Note that this model is also for a closed system with no movement in or out of the system
except through birth or death.

4.2 Proposed Model

We consider an age-structured population model where individuals can enter and leave the
system. We modify Equation 1 to include the net migration represented by the function
M(t, α). The proposed model is

∂

∂t
u(t, α) = − ∂

∂α
u(t, α)− µ(t, α)u(t, α) +M(t, α). (2)
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The initial condition is given by

u(t0, α) = u0(α)

where u0(α) is the initial age distribution. The boundary condition that incorporates the
births, R(t), into the population is given by

R(t) = g(t, 0)u(t, 0) = u(t, 0) =

∫ αmax

0

k(t, α)u(t, α) dα,

where k(t, α) is the age-dependent fertility function and αmax is the maximum age.
The proposed model suggests that population change with respect to time is deter-

mined by the change in the population with respect to age, the number of individuals
dying in the population, and the number of individuals migrating. Births are considered
through a boundary condition of the PDE. Unlike Equation 1, the external influence af-
fecting population change comes from the migration of individuals. To solve Equation 2,
we require M(t, α) to be a continuous function that represents the rate of net migration.
We model this M(t, α) in Section 5 for the U.S. population.

4.3 Process and Observation Errors

The data obtained have observation errors. For the intercensal years, the population data
are estimated through models. Migrants might be double counted. Further, there is no
record of individuals that emigrated out of the U.S. However, for the purpose of this study,
we will assume that the observed data have no errors. An additional consideration for
modeling is to include process errors [31]. For simplicity, we will assume our model to be
deterministic. This approach may introduce bias in the parameter estimates. Treatment
of these errors can be considered further using [32].

5 Modeling the Migration Function for the U.S. Population

The immigration data collected from the U.S. Homeland Security Yearbook of Immi-
gration Statistics are an estimate of people entering the country [16]. Immigrants are
counted by category (such as refugees, residents, non-residents), some of which may over-
lap, and thus, some are double counted. Since there is little to no record of U.S. citizens
and residents departing or emigrating to other countries, we use the immigration data
only to model a continuous function for M̂(t, α). We then model the net migration
M(t, α) = δM̂(t, α). This uses the assumption that the age distribution of those emigrat-
ing are similar to those immigrating. The variable δ represents the net proportion of M̂
that are migrating into the country, which can be negative if more individuals are leaving
the country than entering it.

For a fixed year the immigration data, plotted in Figure 1, have a bell curve behavior
by age group where the largest population size is composed of middle-aged immigrants.
This shape can be seen for each year from 2004 through 2014. As time increases, the peak
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decays. Based on these observations, we determined a reasonable model for the data is a
Gaussian function for the bell curve behavior and an exponential function for time. The
immigration data are approximated by,

M̂(t, α) ≈ γe−β(α−σ)
2

e−λ(t−t0). (3)

Here, σ is approximately the median age, and t0 is 2004. The γ estimates the maximum
immigrant population size at age σ at time t = t0. The parameters that give the least-
squares fit to the migration data are,

γ = 137464.1856 people,

β = 0.0019 yr−1,

σ = 34.7412 yr,

λ = 0.0083 yr−1.

(4)

The immigration data and the migration model, M̂(t, α), are shown in Figure 1. A
superimposed comparison is shown in Figure 2. The relative error is 0.0827. Relative error
indicates the accuracy of a measurement relative to the size of what is being measured,
and it is calculated by

Relative Error =
||Actual− Estimated||2

||Actual||2
.

The net migration function is given by

M(t, α) = δM̂(t, α), (5)

where the δ is fit with the data using the entire model for the population.
In order to simplify the problem, a model for the migration needs to be chosen. Based

on observing the data, the distribution of immigrants by age was similar to a Gaussian
function. This choice has some issues, as we might not expect the data to be symmetric.
Further, there is no reason to expect the immigration to decrease exponentially in the
future, as this is highly dependent on the government’s policies, the economy, political
instability, and other factors. This model for the migration can be adjusted to include
these factors or other model forms. Other functional forms for the model is left for future
work. These could include non-symmetric distributions by age and perhaps linear or
sinusoidal curves for time.

5.1 Comparison to Micó et al. Migration Model

To compare our migration model with previously proposed models, we examine the mi-
gration model from Micó et al. [14], given by

m(t, α) =

(
a1e

− α
b1 + a2e

− (α−c2)
2

2b2 + a3e
− (α−c3)

2

2b3 + a4e
− (α−c4)

2

2b4

)
λβe−λ(t−t0)

(1 + ( β
y0
− 1)e−λ(t−t0))2

.
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Figure 1: The surface graph on the left represents the data for the estimated immigrant
population gathered from the U.S. Homeland Security Immigrant Yearbook Statistics.
The surface graph on the right was created using Equation 3.

The parameters were found by a least-squares fit to the immigration data [14]. The Micó
et al. model fits the 2004 – 2014 data with a 9.4% relative error, see Figure 3, which is
larger than the 8.27% relative error from our model.
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Figure 2: The migration data and the migration model M̂(t, α) are overlaid for a better
comparison. The migration model fits the data with a relative error of 8.27% and an AIC
value of 2958.2.

Figure 3: The migration data and the migration model proposed by Micó et al. are
overlaid for comparison. The Micó et al. model and the migration data have a relative
error of 9.4% and an AIC value of 3014.96.

A second measure used to compare the models is the Akaike Information Criterion
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(AIC), where a lower value indicates a better quality model, taking into account the
number of model parameters. Our model gave an AIC value of of 2958.2, which is lower
than the 3014.96 AIC value of the Micó et al. model.

5.2 Sensitivity of the Model M̂(t, α)

Since the immigration data collected are only an estimate of the people entering the
country, we wanted to test the sensitivity of the migration model M̂ when noise (number
of individuals) is added to the obtained data. To do this, for each data point we added
noise sampled from a normal distribution at a given noise level. We then found the model
parameters that had the least-squares fit of the model M̂ to the perturbed data. We
repeated this process 100 times for a given noise level and found the average and standard
deviation of the model parameters. These average parameter values are included in the
plots of Figure 4.

Figure 4: The sensitivity of M̂(t, α) was examined by adding noise to each data point,
sampled from a normal distribution with standard deviation given by the noise level. This
was repeated 100 times for each noise level, and the resulting parameter values that gave
the least-squares fit were obtained. The average for the runs at a given noise level are
plotted with the solid curve. Note that the horizontal axis is on a logarithmic scale.

These plots indicate that the parameter values are not sensitive for noise levels from
1 up through approximately 1000 people. When the noise level increases beyond 2000
people, the parameter values begin to vary dramatically. The smallest data point is 3685
people, and so adding noise sampled from a distribution with standard deviation 3000
will often result in unrealistic negative values. Thus, the model M̂(t, α) will not change
greatly for data estimates that are slightly off of the true values.
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6 Modeling the Mortality Function for the U.S. Population

The mortality data from the CDC WONDER databases are given in five year age groups
along with the total population for each age group per year [3, 4]. With these two data
categories, we obtain an approximate rate of the number of deaths per population size
for each age group per year, visually represented in Figure 5. Since the data are provided
with age groups in five-year blocks and not individual ages, we use the median age of
each group for data fitting. Using this median we fit several functions using the least-
squares criterion to these rates to approximate the µ(α) function, including low-degree
polynomials, an exponential model

µ(α) = AeB(α),

and the mortality function from Micó et al. [14], given by

µ̂(α) = a1e
− α
b1 + a2e

− (α−c2)
2

2b2 + a3e
− (α−c3)

b3 .

Many of the low-degree polynomials produced models with negative mortality rates,
so we only include the constant function here. Higher degree polynomials (such as a
seventh degree) were able to fit the data well, but had numerous parameters. Having
fewer parameters will help us to not over-fit the model. We would like to use the function
with the lowest AIC value, which balances fit and the number of parameters. The AIC
values and the relative errors for these models are contained in Table 1.

Table 1: Relative Error and AIC Values of a Constant Rate Model, an Exponential Model,
and the Micó et al. Model for µ(α). Note the constant function and the Micó et al. models
were fit to the respective age groups. The exponential model is fit for the 0–84 age group
only. The relative error and AIC for the exponential model ages 0–74 calculates the error
over these age groups using the model fit for 0–84.

Relative Error AIC Age
Constant Function Fit (Optimized for the respective age group)

0.3428 -1234.2792 0–74
0.8305 -1091.6218 0–84

Micó et al. Function Fit (Optimized for the respective age group)
0.0398 -1930.9609 0–74
0.1064 -1846.0554 0–84

Exponential Function Fit (Optimized for the 0–84 age group)
0.0375 -1961.8593 0–74
0.2303 -1569.2769 0–84

The models fit to the 0–84 age range are displayed with the data in Figure 5. When
comparing the models fit for the 0–84 age groups, the Micó et al. model has the lowest
AIC of -1846.0554 and relative error of 10.64%. However, this model produces negative
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values for ages 10–34, and it grossly underestimates the rates for age groups below 65.
The exponential model fit for the 0–84 age groups produced a relative error of 23.03%
with an AIC value of -1569.2769 for ages 0–84, but performed with an outstanding 3.75%
for ages 0–74. We note that this exponential function cannot yield a negative mortality
rate unlike the Micó et al. function and the low-degree polynomials. Further, when the
Micó et al. function is optimized for the 0–74 age groups, the AIC of -1930.9609 is greater
than the exponential model’s AIC for the restricted age range, -1961.8593. This is due to
the exponential model having a better fit to the data for the lower age ranges and only
deviates from the data for ages greater than 74. Moreover, the exponential function has
only two parameters, making it a good choice for our mortality function model.

Figure 5: The approximate death rate for the median age of each age group was calculated
for each year. An exponential function that represents the mortality rate function for
the U.S. population from 2004–2014 is plotted with the data, along with the constant
mortality rate (µ0 = 0.00871703), and the Micó et al. Equation for comparison.

Since the overall model that best fit the mortality data was the exponential function,
we will use it as our µ(α) for non-constant µ in the remainder of the paper. It is given by

µ(α) = l1 e
l0α (6)

with the approximated coefficients l0 = 0.0644 and l1 = 0.00018106.
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7 Implementation

This section gives the model implementation details. To find an approximation to the
analytical solution with boundary and initial conditions coming from data, we apply
the method of characteristics [9]. We consider two different cases regarding µ(t, α), the
mortality rate. We initially consider the mortality rate to be a constant, then consider the
mortality rate as a function of age. The solution will be divided into two parts, the initial
condition driven solution (the population presented initially at t0) and the recruitment
driven solution (those born into the population during the period of interest) [9].

7.1 The Method of Characteristics for Semilinear PDEs

Equation 2 is a first-order partial differential equation with variable coefficients. An
estimate for Equation 2 is obtained through implementing a method to solve first order
PDEs, known as the method of characteristics. Consider a first order homogeneous PDE
with independent variables t and α. Values of the solution to the PDE are found by
solving systems of ODEs along curves in the tα-plane, known as characteristic curves
[22]. These curves are parameterized by a new variable, s.

The method of characteristics transforms a semilinear PDE of the form

a(α, t)uα + b(α, t)ut = c(α, t, u)

into a system of ODEs given by

dα

ds
(s) = a(α, t)

dt

ds
(s) = b(α, t)

du

ds
(s) = c(α, t, u).

The first two equations do not depend on u, giving a decoupled system. Solving these
two equations with initial conditions α(0) = α0 and t(0) = t0 will give the characteristic
curve projected into the tα−plane, Γ = (α(s), t(s)). Then, substituting the result for α
and t in the third equation for du

ds
will give u(α, t) along Γ. Figure 6 shows an example of

characteristic curves Γ projected onto the tα−plane.
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Figure 6: An example of characteristic curves. The curves Γ1–Γ4 (dashed lines) are curves
where the initial conditions are specified at t = t0. The curves Γ5–Γ8 (bold solid lines)
are curves where the boundary conditions are specified at α = αmin.

7.2 Applying the Method of Characteristics

Using the method of characteristics, we take our PDE and convert it into three ordinary
differential equations,

dt

ds
(s) = 1, and thus t = s+ t0,

dα

ds
(s) = 1, and thus α = s+ α0,

du

ds
(s) = −µu+M.

Solving for s yields the results,

s(t) = t− t0 and α(t) = (t− t0) + α0.

Next for du
ds

, along with the explicit function M = M(t, α) from Equation 5, we get

du

ds
+ µ(t(s), α(s))u = δγe−β(α(s)−σ)

2−λs. (7)

The solution to this ODE depends on the form of µ(t, α), which we will consider by case.

7.2.1 Constant Mortality Rate µ(t, α) = µ0

We first consider µ(t, α) as a constant rate. For µ(t, α) = µ0, Equation 7 becomes

du

ds
+ µ0u = δγe−β(s+α0−σ)2−λs.
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By applying an integrating factor we get

d

ds
(eµ0su) = δγe−β(s+α0−σ)2−λseµ0s

with parameters γ, β, σ, and λ given by Equation 4. The parameter δ is fit using the
population data.

We solve for u(t, α) by considering the initial condition for u0 = u(t0, α), the initial
population at time t0. This yields the initial condition driven solution for the constant
mortality function with t0 = 0,

u(t, α) = δγe−µ0t
∫ t

0

e−β(s+α0−σ)2+(µ0−λ)sds+ u(0, α)e−µ0t. (8)

Similarly, we find the recruitment driven solution. Let R(t) be the total number of
individuals born into the population at time t. Then the recruitment driven solution is
given by

u(t, α) = δγe−µ0t
∫ t

t−α
e−β(s+α0−σ)2+(µ0−λ)sds+ e−αµ0R(t− α). (9)

In solving for u, the integrals in Equations 8 and 9 cannot be determined analytically.
We use the Composite Simpson’s Rule to numerically estimate u(t, α).

7.2.2 Mortality Rate as a Function of Age, µ(t, α) = µ(α)

We use the best model from Section 6 for our µ(α), given by Equation 6, which estimates
the mortality rate according to age. We apply an integrating factor to Equation 7 with
µ = µ(α) to get

d

ds

(
eLu
)

= δγe−λs−β(s+α0−σ)2+L,

where

L(s) =
l1
l0
el0(α0+s)

obtained by integrating µ(α). This results in the initial condition driven solution,

u(t, α) = δγe−L(t)
∫ t

0

e−λs−β(s+α0−σ)2+L(t)ds+ eL(0)u(0, α)e−L(t), (10)

and the recruitment driven solution

u(t, α) = δγe−L(t)
∫ t

t−α
e−λs−β(s+α0−σ)2+L(t)ds+ eL(t−α)−L(t)R(t− α). (11)

The integrals in Equations 10 and 11 cannot be solved analytically. We use the Composite
Simpson’s Rule to numerically estimate u(t, α).

the pump journal of undergraduate research 3 (2020), 158–189 172



8 RESULTS

For our model, we first fit a mortality function (µ(α) = µ0 or µ(α) = l1e
l0α) and the

migration function (M̂(t, α)) using their respective data sets. Here, the mortality function
is fit first, as described in Section 6, and then immigration function in Equation 3 is fit
using the immigration data, as described in Section 5. The full model then only has one
unknown parameter from Equation 5, δ, which is determined by using a least-squares
error minimization method to find the best fit to the population data. In comparing the
population models with the different mortality functions, we calculate their relative errors
and AIC values, which are contained in Table 2 with their corresponding δ values. The
relative error allows for evaluating the precision of the model, relative to the size of the
data.

Table 2: Full Population Model Relative Error and AIC Values using a Constant Mortality
Function, an Exponential Mortality Function, and the Micó et al. Mortality Function for
µ(α).

Model Fit
Function Rel. Error AIC δ Value
Constant 3.9506e-02 24903.1 48.6622

Micó et al. 3.8958e-02 24910.9 2.6231
Exponential 2.3336e-02 23920.6 0.1380

We apply our model over the time period 2004–2014. Using the constant mortality
function, µ0 = 0.00871703 deaths per population per year, we optimize δ. The δ value
from this fit is δ = 48.6622 with a 3.95% relative error and an AIC value of 24903.1, see
Table 2. The estimate and the population data are superimposed in Figure 7 for a visual
comparison. A figure of the difference between the data and the model is also plotted in
Figure 8 to better show the error.

Next, using µ(α) from Equation 6 (the exponential function) with the optimal pa-
rameters found in Section 6 gives the estimate for u(t, α) shown in Figure 9. We find
the optimal δ using a least-square error minimization method with the population data
to obtain δ = 0.1380. We find that the model approximates the population data with a
relative error of 2.33%. A figure of the difference between the data and the model is also
plotted in Figure 10 to better show the error.

We include the Micó et al. model, which uses their migration function and mortality
function. When fit to the U.S. population, the optimal δ = 2.6231, giving a relative error
of 3.9% and AIC 24910.9. This has the highest AIC of the three models, where a lower
AIC indicates a better model choice.

If no migration had been incorporated into the model, M(t, α) ≡ 0 in Equation 3, giv-
ing the McKendrick-von Foerster equation. If we were to fit this model to the population
data for µ0 without using the mortality data, this yields the optimal µ0 = −0.00013. This
value is unrealistic since it is negative, indicating the need for migration to be included
in the model.
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Figure 7: Population estimate for a constant mortality rate. The constant mortality
rate is estimated to be µ0 = 0.00871703. Using the full model, δ is optimized to obtain
δ = 48.6622 with a relative error of 0.0395. The estimate and data are superimposed in
this figure as a visual reference.

Figure 8: The difference between the population data and the model is plotted to distin-
guish the variability for each age per year for a constant mortality rate.
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Figure 9: Population estimate using the exponential function µ(α). The model was
obtained by fitting M̂(t, α) to the migration data and µ(α) to the mortality data, and
then included in Equations 10 and 11. Then the coefficient δ was optimized using the full
model to produce a relative error of 0.0233 to the overall U.S. population and an AIC
value of 23920.6.

Figure 10: The difference between the population data and the model is plotted to dis-
tinguish the variability for each age per year for µ(t, α) = µ(α).

8.1 Model Prediction

From the 2004–2014 data, we use our model to predict the population in 2015. In order to
do this, we need to have a smooth curve for the initial and boundary conditions. This is
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done using cubic splines for both the birth data and the initial population. The prediction
for the population is compared with the actual population data gathered from the Census
data sets for 2015, see Figure 11.

Figure 11: The population prediction of year 2015 for all ages is shown relative to the
data provided by the US Census Bureau data bank.

9 Analysis

Our proposed model is able to capture the population dynamics of an open system. When
we consider mortality rate to be a constant function, we find µ0 = 0.00871703 deaths per
population per year. The result has a relative error of 3.95%. This indicates that the
overall population would have the same death rate for all ages. However, teenagers have
fewer chronic health problems, while seniors have a set of factors that significantly diminish
their health due to their age. The gap in Figure 7 for the older age groups suggests that
a model with a constant mortality rate does not fit the data well for all age groups.

By using a mortality rate function that depends on age, our model is able to closely
match the data with relative error of 2.33%. For both the constant mortality rate and
the exponential function mortality rate, the largest differences between the model and
the data occur as ages increase from age 64. The difference could be caused by the
estimating method used by the Census Bureau. The Census Bureau assumed a sum of
zero for the net migration, which can be over counting emigrants who leave the country.
Further, the immigration data is provided with different immigrant categories that might
be overlapping, and so further investigation of those categories is required. We only use
the datasets that have age as a subcategory up to age 64, so we are unable to count
all immigrants. We are unable to obtain data for emigration estimates. To account for
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the missing emigration data, we use a multiple of the immigration estimates for the net
migration, represented by the δ coefficient in Equation 3.

Of the three model fits, the only reasonable value for δ is given by the exponential
model. A value of δ > 1 indicates the net migration is more than the number of individuals
immigrating into the country given by the data. A negative value would indicate more
individuals are leaving than entering the country. A value 0 < δ < 1 would indicate
that more individuals are entering the country than leaving the country. For δ = 0.1380,
this indicates the number of individuals emigrating out of the country is about 86.2% of
the number of those immigrating into the country estimated by M̂ . This is a plausible
estimate, given that we do not have the emigration data.

Due to the challenges with the migration data, we provide a sensitivity analysis on the
migration model. With noise sampled from a normal distribution of standard deviation
up to 1000 added to each point, the migration model parameters do not vary greatly. If
we had more confidence in the data accuracy, then perhaps a different model should be
used to better approximate the migration data, reducing the 8.27% relative error for the
migration model.

We compare our migration model to that of Micó et al. Our model has a better
relative error and AIC, indicating a better fit to the migration data. We then compare
our mortality function with that of an optimized Micó et al. Even though the Micó et al.
mortality function has a 10.64% relative error for all age groups, it does not produce an
adequate result for the overall population estimate. This is due to the negative mortality
rates it produces for the age groups 10 to 34. We also compare our mortality function
to several other models, including low degree polynomials. While some of these models
have better fits to the mortality data, they unfortunately give negative mortality rates for
some age groups and are therefore not considered. The exponential function provides a
better fit to the mortality data for age groups 0 to 74. However, the data for the older age
groups deviate from the model, which accounts for a large difference in the population
and estimate as seen in Figure 9.

With the data for 2004–2014, we project our model forward to 2015 and compare our
prediction with the 2015 data. Our prediction closely follows the actual data. We slightly
underestimate the population for ages approximately 10–27, and overestimate ages 40–53.

10 Conclusion

We proposed an age-structured population model that allowed for migration in and out
of the system. We modified the McKendrick-Von Foerster model and applied it to the
United States data, creating models for both migration and mortality. We required birth,
death, population, and migration data to accomplish this goal. Without the inclusion of
migration into the model, the mortality rate yields an invalid negative rate. By including
a migration term into the PDE model, the results significantly improved with a 3.95%
relative error when the mortality rate was considered to be constant for all ages. This
error was substantially improved to 2.33% when the mortality rate was allowed to vary
by age. The model we used for the mortality function was an exponential function. This
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was chosen to be the best since it did not produce negative values for mortality rates and
the AIC and relative error values were adequate.

With a small relative error, this model closely captures the U.S. population over time.
The model can be used to predict how the population is affected if migration, birth, or
death patterns change. For example, different migration models could be used to test
for a surge or drop in migration, both overall and for different age groups. Alternatively,
if there is a wide-spread epidemic that affects certain age groups more than others, the
mortality function could be adjusted to understand this outcome. With the decrease in
the U.S. fertility rate, the birth rates could be projected to take this into consideration
to see the long-term implications on the total population and the different age groups.

Appendix

The appendix contains additional information regarding the data used for the study. It
also contains the main MATLAB code used.

Population Data

The national intercensal datasets (estimates of the population between two official census
dates) are estimates of resident population organized by single age per year, sex, race,
and Hispanic origin from April 1, 2000 to July 1, 2010. The estimates were calculated
by the Census Bureau using a population base and the result of the population size from
the year 2000 from the previous decennial census (occurring every ten years), and then
updated using the Das Gupta method, which assumes that the ratio from the intercensal
estimate follows a geometric progression [3]. Terms in a geometric progression are found
by multiplying the previous term by a constant common ratio. The annual estimates of
the resident population for the datasets from April 1, 2010 to July 1, 2016 are categorized
by two criteria: age and sex of the individual. These estimates take into account the
change in population from births, deaths, and migration. The annual population estimates
are calculated by the Census Bureau using a cohort component method derived from a
demographic balancing equation using a population base from the previous decennial
census estimate [4]. Here, the next population estimate takes the previous population
estimate, adds new births and migrants, and subtracts deaths. The population estimate
from the intercensal dataset for age 85 ranges from 4,545,883 to 5,367,301 individuals
from 2004 to 2009, while the annual estimates mark the population size for age 85 to
fall between 915,071 to 914,112 individuals. This presents an unexplained jump for this
particular age.

Main Code

In this section, we provide some of the main code used for the model fitting and model
solution.
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Fitting Polynomial Function

This code fits a polynomial function of n-degrees to the deaths per population per year
data.

t_i = 2004:2014;

age_j = 2:5:84;

% Data Setup

load(’..\deathsAdj.mat’)

load(’..\usPopMatrix.mat’)

popAdj = [[popmatrix(1,:)+popmatrix(2,:)];[popmatrix([3:18],:)]];

muPop=deathsAdj(1:17,:); %deathsAdj matrix up to age group 80-84;

muPopNorm=muPop./popAdj; % num of deaths per age group / pop of age group

% Residuals of muPopNorm per age per year

mupopAll = muPopNorm(:);

agegroupAll = [];

for year=1:11

agegroupAll = [agegroupAll; age_j’];

end

Ndeg(1:11,1:11)=zeros;

for n=0:8

p_All=polyfit(agegroupAll,mupopAll,n)’;

[p,S]=polyfit(agegroupAll,mupopAll,n);

for i=1:n+1

Ndeg(n+1,i)=p(i);

end

end

nDEG_nonOpt=Ndeg’;

Fitting Exponential Function

The code fits an exponential function to the deaths per population per year data.

% Fitting the Mortality Function - exponential function

t_i = 2004:2014;

age_j = 2:5:84;

% Retrieve data

load(’..\deathsAdj.mat’)

load(’..\usPopMatrix.mat’)

popAdj = [[popmatrix(1,:) + popmatrix(2,:)]; popmatrix([3:18],:)];
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muPop = deathsAdj(1:17,:); %deathsAdj matrix up to age group 80-84;

muPopNorm = muPop./popAdj; % num of deaths per age group / pop of age group

% Residuals of muPopNorm per age per year

mupopAll = muPopNorm(:);

agegroupAll = [];

for year=1:11

agegroupAll = [agegroupAll; age_j’];

end

%fitting of unknown coefficients

p = polyfit(agegroupAll, log(mupopAll),1);

beta = p(1)

lambda = exp(p(2))

Fitting Migration Model

This code finds the least-squares approximation for the migration data to the migration
model, M̂(t, α).

% Fitting the Migration Data

t_i = 2004:2014;

age_j = 2:5:64;

[T,Age] = meshgrid(t_i,age_j);

% Retrieve Data

load(’..\refugeeResidentMatrix.mat’)

M=refRes_immigrants(1:13,:);

% Fit the parameters

parameter_guess = [1/11*log(8.237/3.941),0.01, 1.678e05, 37];

J = @(params) sum(sum((migration_model(params, t_i, age_j) - M).^2));

% Least-squares approximation

[parameter_estimate,Jval] = fminsearch(J, parameter_guess);

Migration Model Function

This function gives the migration model with input of parameters, time, and age.

function [migration_est] = migration_model(params, t_i, age_j)

%Parameters

lambda = params(1);
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beta = params(2);

gamma = params(3);

sigma = params(4);

[T,Age] = meshgrid(t_i,age_j);

migration_est = gamma*exp(-beta*(Age-sigma).^2).*exp(-lambda*(T-2004));

Finding Optimal δ Coefficient using a Constant Mortality Rate µ(t, α) = µ0

t_i = 2004:2014;

age_j = 0:84;

[T,Age] = meshgrid(t_i,age_j);

% Get data

load(’usPopMatrix_age.mat’)

POP=popmatrix((1:85),1:11);

%==== Fit the parameters.

parameter_guess = 40;

J = @(params) sum(sum((fitDeltap0(params, t_i, age_j) - POP).^2));

[parameter_estimate,Jval] = fminsearch(J, parameter_guess);

deltaValue = parameter_estimate

model_estimate = fitDeltap0(parameter_estimate, t_i, age_j);

Function for the Population Model with Constant Mortality Rate µ(t, α) = µ0

This function gives the population model for an inputted constant mortality rate for an
unknown δ value.

function [param_est] = fitDeltap0(vars,t_i, age_j)

%Function optimizes delta using full model and pop data for a polynomial of n-degrees.

%The constant function is given by n=1 within the for loop.

load(’nDEG.mat’) %load polynomial coefficient matrix

delta = vars;

n = 1; %Deg of polynomial is n-1

params(1,:) = nDEG((11:-1:1),n)’;
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%INITIALIZE variables

gamma=137464.185474326;

beta=0.001871913;

sigma=34.741176748;

lambda=0.008333126;

%Polynomial coefficients are assigned to variables.

%If empty the value is 0.

l_0 = params(1);

l_1 = params(2);

l_2 = params(3);

l_3 = params(4);

l_4 = params(5);

l_5 = params(6);

l_6 = params(7);

l_7 = params(8);

l_8 = params(9);

[T,Age] = meshgrid(t_i,age_j); %time and age matrix

% Restriction of the Recruitement Driven Solution

X = T>Age+2004;

%LOAD POPULATION DATA

load(’usPopMatrix_age.mat’)

POP=popmatrix(1:85,1:11);

load(’..\births.mat’)

iniPop = POP(:,1); %defining initial population

%DEFINE s for each portion of the characteristic curve

s = T-2004;

s_r = (s-Age).*X; %s for recruitement driven

s_i = s.*(1-X); %s for intial driven

%SETUP DATA: recruitement driven solution

R = zeros(size(T));

%LOAD Infant Population in Migration Model

InfantMigration= migration_model([lambda, beta, gamma, sigma], t_i, 0);

Rb=births(:,2)+InfantMigration; %Include Infant migration into Birth data

for i=1:size(R,1)

for j=1:size(R,2)
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if X(i,j)>0

R(i,j) = Rb(T(i,j)-2004+1-Age(i,j));

end

end

end

%SETUP DATA: initial driven solution

IP = zeros(size(T));

for i=1:size(IP,1)

for j=1:size(IP,2)

if X(i,j)==0

IP(i,j) = iniPop(Age(i,j)-(T(i,j)-2004)+1);

end

end

end

mainPOP = zeros(size(T));

for i=1:85

for j=1:11

if X(i,j)==1 %Recruitment Driven Solution

ageNot=(s_r(i,j));

[ lamBarVal ] = lamBar_n( l_0, l_1, l_2, l_3, l_4, l_5,...

l_6, l_7, l_8, s_r(i,j), ageNot, n-1 );

f = @(ss) exp(lambda*ss-beta*( ss + ageNot - sigma )^2 + ( l_8/9*...

( ss + ageNot )^9 + l_7/8*( ss + ageNot )^8 + l_6/7*( ss +...

ageNot )^7 + l_5/6*( ss + ageNot )^6 + l_4/5*(ss + ageNot )^5...

+ l_3/4*( ss + ageNot )^4 + l_2/3*( ss + ageNot )^3 + l_1/2*...

( ss + ageNot )^2 + l_0*ss));

[integVal] = csr( f, T(i,j)-Age(i,j)-2004 , T(i,j)-2004 ,10 );

mainPOP(i,j) = delta * gamma*(lambda)*exp(-lamBarVal)*integVal+...

exp(lamBar_n(l_0, l_1, l_2, l_3, l_4,...

l_5, l_6, l_7, l_8, T(i,j)-...

Age(i,j)-2004, ageNot, n-1))*R(i,j)*exp(-lamBar_n(l_0, l_1, l_2,...

l_3, l_4, l_5, l_6, l_7,l_8, T(i,j)-2004, ageNot, n-1));

else %Initial Driven Solution

ageNot=Age(i,j)-s_i(i,j);

[ lamBarVal ] = lamBar_n( l_0, l_1, l_2, l_3, l_4, l_5, l_6,...

l_7, l_8,s_i(i,j), ageNot, n-1 );

f = @(ss) exp(lambda*ss-beta*( ss + ageNot - sigma )^2 + ( l_8/9*...

( ss + ageNot )^9 + l_7/8*( ss + ageNot )^8 + l_6/7*...

( ss + ageNot )^7 + l_5/6*( ss + ageNot )^6 + l_4/5*(ss...
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+ ageNot )^5 + l_3/4*( ss + ageNot )^4 + l_2/3*( ss +...

ageNot )^3 + l_1/2*( ss + ageNot )^2 + l_0*ss));

[integVal] = csr( f, 0 , T(i,j)-2004 ,10 );

mainPOP(i,j) = delta * gamma*(lambda)*exp(-lamBarVal)*integVal+...

exp( lamBar_n( l_0, l_1, l_2, l_3, l_4, l_5, l_6, l_7, l_8,...

0, ageNot, n-1 ))*IP(i,j)*exp(-lamBarVal);

end

end

end

param_est = mainPOP;

Function for Optimizing Delta using the Population Model with Non-Constant Mortality
Rate µ(t, α) = µ(α)

This code gives the population model for an inputted non-constant mortality rate, repre-
sented by an exponential function for an unknown δ value.

function [param_est] = fittingDelta(vars)

%This function fits coefficient ’delta’ from Mhat exponential function using the

%overall population model

%INITIALIZE variables

gamma=137464.186103456;%M^ coefficients

beta=0.001871913;

sigma=34.741176825;

lambda=-0.008333126;

delta = vars;

params = [1.8106e-04, 0.0644]; %Exponential Fun coefficients

l_0 = params(1);

l_1 = params(2);

t_i = 2004:2014;

age_j = 0:84;

[T,Age] = meshgrid(t_i,age_j); %time and age matrix

% Restriction of the Recruitement Driven Solution

X = T>Age+2004;

%LOAD POPULATION DATA

load(’usPopMatrix_age.mat’)
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POP=popmatrix(1:85,1:11);

load(’..\births.mat’)

iniPop = POP(:,1); %defining initial population

%DEFINE s for each portion of the characteristic curve

s=T-2004;

s_r = (s-Age).*X; %s for recruitement driven

s_i = s.*(1-X); %s for intial driven

ageNot=Age-s_i; %defining ageNot

%SETUP DATA: recruitement driven solution

R = zeros(size(T));

%LOAD Infant Population in Migration Model

InfantMigration= migration_model([lambda, beta, gamma, sigma], t_i, 0);

Rb=births(:,2)+InfantMigration; %Include Infant migration into Birth data

for i=1:size(R,1)

for j=1:size(R,2)

if X(i,j)>0

R(i,j) = Rb(T(i,j)-2004+1-Age(i,j));

end

end

end

%SETUP DATA: initial driven solution

IP = zeros(size(T));

for i=1:size(IP,1)

for j=1:size(IP,2)

if X(i,j)==0

IP(i,j) = iniPop(Age(i,j)-(T(i,j)-2004)+1);

end

end

end

mainPOP = zeros(size(T));

for i=1:85 %1:85

for j=1:11

if X(i,j)==1 %Recruitment Driven Solution
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ageNot=(s_r(i,j));

[ lamBarVal ] = lamBarExp( l_0, l_1, s_r(i,j), ageNot );

f = @(ss) exp(-lambda*ss-beta*( ss + ageNot - sigma )^2 + l_0 *...

exp( l_1*(ss + ageNot)));

[integVal] = csr( f, T(i,j)-Age(i,j)-2004 , T(i,j)-2004 ,10 );

mainPOP(i,j) = delta*gamma*exp(-lamBarVal)*integVal+exp(...

lamBarExp( l_0, l_1, T(i,j)-Age(i,j)-2004, ageNot ) )*R(i,j)*...

exp( -lamBarExp( l_0, l_1, T(i,j)-2004, ageNot) );

else %Initial Driven Solution

ageNot=Age(i,j)-s_i(i,j);

[ lamBarVal ] = lamBarExp( l_0, l_1, s_i(i,j), ageNot );

f = @(ss) exp(-lambda*ss-beta*( ss + ageNot - sigma )^2 + l_0 *...

exp( l_1*(ss + ageNot)));

[integVal] = csr( f, 0 , T(i,j)-2004 ,10 );

mainPOP(i,j) = delta*gamma*exp(-lamBarVal)*integVal+exp( lamBarExp(...

l_0, l_1, 0, ageNot ) )*IP(i,j)*exp(-lamBarVal);

end

end

end

param_est = mainPOP;

Composite Simpson’s Rule

This function approximates a definite integral using Composite Simpson’s Rule.

function [XX] = csr(f,lowlim,uplim,n)

% lowlim and uplim give the bounds of integration

% n is the number of subintervals

h = (uplim - lowlim)/n;

x10 = f(lowlim) + f(uplim);

x11 = 0; x12 = 0;

for i = 1:n-1

X = lowlim + i*h;

if mod(i,2) == 0

x12 = x12 + f(X);

else

x11 = x11 + f(X);

end

end

XX = h*(x10 + 2*x12 + 4*x11)/3;
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