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1 Introduction

Magic squares are square matrices with the same sum, called the magic sum, in each row,
each column, the main diagonal and the main anti-diagonal. Their history goes as far
back as ancient China c. 200 BC, and one appears in Albrecht Dürer’s famous painting
Melencolia I (1514). They have attracted the attention of mathematicians since Leonhard
Euler’s 1776 article linked them to Latin squares [3]. Magic squares that additionally
have the same magic sum over all ‘broken’ diagonals and anti-diagonals were once called
“diabolic” [15], but now are commonly known as pandiagonally magic or panmagic for
short [1, 2]. Early work mainly focused on constructions of magic and panmagic squares,
but more recently their algebraic properties also have received attention.

Back in 1950, Derek Lawden claimed that in even dimensions multiplying any three
panmagic squares (and then any odd number of them) produces another panmagic square
[14]. Although this only holds for panmagic squares with additional symmetry, Lawden’s
was the first result (that we know of) on closure under ternary multiplication for a class of
magic squares. It went entirely unnoticed, but other such classes were discovered in 1990s.
Anthony Thompson might have been the first to prove it in print for 3×3 magic and 5×5
panmagic squares in 1994 [21]. In 2012, known classes of magic and panmagic squares
closed under ternary multiplication were codified and generalized to higher dimensions by
Ronald Nordgren [18].
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Thompson had even found a spanning set of 5×5 panmagic permutation matrices that
is itself closed under ternary multiplication, no such spanning set exists for 3 × 3 magic
or Lawden’s panmagic squares. Moreover, this spanning set is closely associated with the
well-known dihedral group D5, the group of symmetries of the regular pentagon. The
nature of this association remained mysterious, like magic, but it suggests looking deeper
into permutations with panmagic matrices, which are simpler objects than the matrices
themselves.

Although quite natural, the term “panmagic permutations” is rarely used (it is used in
[1]), but they are classically known under a different name. A problem from the mid-19th
century, often misattributed to Carl Friedrich Gauss [3], asked to place 8 non-attacking
queens on the 8× 8 chessboard, and it was generalized to n× n chessboards by François
Lionnet in 1869. In 1900, George Carpenter proposed to fold the board into a cylinder
by identifying two opposite sides of it [5], and in 1918 George Polya folded it further
into a torus. Both modifications have the same effect of letting the queens attack along
the entire broken diagonals, and came to be known as the modular n-queens problem [3].
Given its solution, replace the board with a matrix and place 1-s into the positions of the
queens and 0-s elsewhere as on Figure 1. The result is a panmagic permutation matrix,
and conversely, any panmagic permutation produces a modular n-queens solution. In

Figure 1: Modular 5-queens solution and its permutation matrix.

this guise, panmagic permutations have been extensively studied [3], but not, it seems, for
their algebraic properties. Even the connection between modular n-queens and panmagic
squares [2] is little known despite being used as early as in 1900 by Charles Planck [3][p. 8].

For that matter, ternary and more general N -ary groups are also little known, but the
topic is, again, classical. It goes back to Edward Kasner’s talk at the 1911 International
Congress of Mathematicians and was originally developed by Wilhelm Dörnte in 1920-s,
at the urging of Emmy Noether [20]. It should be stressed that N -ary groups are not
groups, the multiplication on them is defined for N terms only, and ordinary groups are
just a special case with N = 2. Emil Post, better known for his work in mathematical
logic, proved a key structural result about N -ary groups in 1940, the Post coset theorem.
As will be explained in Section 7, it says, essentially, that N -ary groups are cosets of
normal subgroups of ordinary groups when the quotient group is cyclic of order N − 1.
This theorem demystifies the appearance of D5 in Thompson’s proof.

We will show that closure under N -ary multiplication is a general phenomenon for
sets of panmagic permutations in prime dimensions n = p > 3 because those sets are
Post cosets of the dihedral group Dp. Even for the ternary case, our descriptions are
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simpler and much more explicit than those based on linear algebra in [18]. A key idea is
to consider a subgroup GA1(Zp) of the symmetric group of all permutations Sp in which
Dp is normal. Its elements are called affine permutations and they can be expressed by
simple formulas of modular arithmetic in Zp. We will also describe the cyclic structure
of panmagic affine permutations and relate it to some classical topics of number theory:
primitive roots, multiplicative orders, 4k + 1 primes and quadratic residues. We only
consider the case of prime dimensions to keep the exposition elementary, but most results
generalize to composite n by less elementary methods, see [13].

As many authors have pointed out, magic squares provide a concrete and appealing
setting for grasping non-trivial concepts of undergraduate linear algebra [7, 17, 21]. We
will show that panmagic permutations are more than apt to do the same for group theory
and number theory. Indeed, it is treating them as permutations encoded by simple formu-
las of modular arithmetic that turns out to be most fruitful for discovering and proving
algebraic patterns obscured in other representations.

2 Permutations and Magic Squares

We use standard notation and terminology from group theory [8] and number theory [19].
We will identify the symmetric group of all permutations of n elements Sn with the group
of permutations of Zn = {0, 1, . . . n− 1}, the set of residues (congruence classes) modulo
n. To recover a standard permutation of 1, . . . , n, one simply replaces residue 0 by n.
Two special permutations will play a central role in our study, even though neither of
them is magic.

Definition 2.1 Denote ϕ the flip permutation that swaps antipodal numbers, i.e. ϕ(i) :=
n+1− i, and by κ the cyclic shift permutation κ(i) ≡ i+1 (mod n) that shifts numbers
one unit up and n to 1. In the cyclic notation, ϕ = (1n)(2n− 1) . . . and κ = (1 2 . . . n).

As usual, a | b means that b is an integer multiple of a, and a ≡ b (mod n) means that
n | (b− a). We will often write congruence formulas for residues in a simplified notation
that omits n when it is understood, and replaces ≡ by =. For example, we may write
n ≡ 0 (mod n) as just n = 0 when no confusion results. In our simplified notation,
ϕ(i) = 1− i and κ(i) = i+ 1. The same convention applies to matrix indices when they
go over n or under 1, for example, in an n× n matrix an+11 is a11. The broken diagonals
of an n×n matrix A have those aij where i− j = constant, and the broken anti-diagonals
have those where i+ j = constant. The main diagonal is the one with i− j = 0, and the
main anti-diagonal is the one with i+ j = 1.

A square matrix A is called semimagic when all of its column sums and row sums are
the same. Their common value is called the magic sum. A semimagic matrix is magic
(panmagic) when the main (all) diagonal(s) and anti-diagonal(s) also have sums equal to
the magic sum [7, 18]. We will be mainly interested in matrices Pσ with σ ∈ Sn that
permute the standard basis vectors ei as in Pσei := eσ(i). All of them are semimagic with
the magic sum 1 because a permutation matrix must have a single entry 1 in each row
and column, and the rest are 0-s. Moreover, Pστ = PσPτ , where on the left we have
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the composition of permutations and on the right the product of matrices. The effect of
multiplying a matrix by Pϕ is to swap i-th and (n + 1 − i)-th rows/columns. This also
interchanges (broken) diagonals and anti-diagonals. In turn, multiplication of a matrix
by P i

κ = Pκi on the left/right cyclically shifts its rows/columns by i positions and moves
the main diagonal to one of the broken diagonals.

A permutation will be called magic or panmagic when its matrix is such. Note that
the number of 1-s on the diagonal of Pσ is the number of fixed points of σ, those for
which σ(i) = i. Similarly, since ϕ flips points about the middle the number of 1-s on the
anti-diagonal of Pσ is the number of flipped points of σ, those with σ(i) = n+1− i. Thus,
a permutation is magic when it has exactly one fixed and exactly one flipped point, and
it is panmagic when all of its cyclic shifts κiσ are also magic.

3 Panmagic Permutations and Dihedral Groups

In this section, we will introduce the dihedral group in its permutational guise, relate it
to panmagic permutations, and reformulate two classical results about modular n-queens
solutions in the language of permutations. The subgroup of a group generated by elements
of a subset S, i.e., the set of all finite products of their positive and negative powers, will
be denoted ⟨S⟩. When S = {a1, . . . , ak}, we write simply ⟨a1, . . . , ak⟩ .

Definition 3.1 The subgroup of Sn generated by ϕ and κ will be called dihedral and
denoted Dn := ⟨ϕ,κ⟩. Its elements will be called dihedral permutations.

As a simple application of our trimmed down congruence notation, let us derive a com-
mutation relation for ϕ and κ. Note that κ−1(i) = i− 1, so

ϕκ(i) = 1− (i+ 1) = (1− i)− 1 = κ−1ϕ(i). (1)

It is also easy to see that ϕ2 = κn = id , so the commutation relation implies that all
permutations in Dn are of the form κi or ϕκi with i = 0, . . . , n− 1. Moreover, those are
all distinct, so |Dn| = 2n. Some authors denote D2n what we denote Dn, by the number
of elements in it.

Our subgroup Dn is isomorphic to the usual dihedral group defined as the group of
symmetries of the regular n-gon [8][2.1]. Indeed, if we number its vertices from 1 to n

Figure 2: Flip ϕ as reflection and cyclic shift κ as rotation of the regular pentagon.
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then ϕ is the permutation induced by the reflection about the middle perpendicular of
one of its sides, and κ is induced by the rotation by the angle 2π

n
around its center, see

Figure 2.
We will now explain how Dn is related to panmagic squares and permutations. As

multiplication by matrices Pϕ and Pκ interchanges diagonals and anti-diagonals and shifts
rows and columns, respectively, it preserves panmagic. The same is true of multiplication
by their products and those are exactly the permutation matrices Pδ with δ from the
dihedral group Dn. Moreover, multiplication by some Pδ can move any given row/column
to any other, and move any given diagonal/anti-diagonal to the main one. Thus, A is a
panmagic square if and only if APδ (or PδA) are magic squares with the same magic sum
for all δ ∈ Dn. Accordingly, σ ∈ Sn is a panmagic permutation if and only if σδ (or δσ)
are magic for all δ ∈ Dn.

The next theorem is a modular variant of Lionnet’s 1869 arithmetic reformulation of
the n-queens problem [3][p.4] (see also [1][Lemmas 2.1, 2.2]), and gives convenient arith-
metic characterizations of dihedral, magic, and panmagic permutations.

Theorem 3.2 (Lionnet) Let σ ∈ Sn be a permutation. Then

(i) σ is dihedral if and only if σ(i)− i or σ(i) + i is constant;

(ii) σ is magic if and only if 0 has a unique pre-image modulo n under σ(i)− i and 1 has
a unique pre-image modulo n under σ(i) + i;

(iii) σ is panmagic if and only if i 7→ σ(i)± i are both injective modulo n, and hence also
permutations.

Proof.
(i) The “only if” part is trivial from the modular formulas for ϕ and κ. Conversely, if
σ(i)− i = c then σ(i) = i+ c, so σ = κc. And if σ(i) + i = c then σ(i) = 1− i+ c− 1, so
σ = κc−1ϕ. In both cases, σ is dihedral.

(ii) Let σ be magic. Since it has a single fixed point there is only one i with σ(i) = i, so
0 has a unique pre-image under σ(i)− i. Since it also has a single flipped point, there is
only one j with σ(j) = 1− j and 1 has a unique pre-image under σ(j) + j. Running the
argument in reverse, we conclude that σ has one fixed and one flipped point, and hence
is magic.

(iii) Let σ be panmagic. Then κ−kσ is magic for any k, and κ−kσ(i)− i = σ(i)− i−k = 0
has a unique solution modulo n by (ii). But then σ(i) − i = k has a unique solution
for any k and σ(i) − i is injective. Similarly, κkϕσ is magic for any k, κkϕσ(i) − i =
1− (σ(i) + i) + k = 1 has a unique solution, and then so does σ(i) + i = k. Thus, σ(i) + i
is also injective.

Conversely, let σ(i) ± i be injective modulo n. By (ii), it is enough to show that so
are δσ(i) ± i for all δ ∈ Dn, and even just for δ = κ, ϕ since they generate Dn. But
κσ(i)± i = σ(i)± i+ 1 and ϕσ(i)± i = 1− (σ(i)∓ i), so this follows trivially. □
A sad consequence of Lionnet’s characterization is that panmagic permutations do not
exist in all dimensions. The ‘nice’ dimensions first appeared in Carpenter’s construction
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of modular n-queens solutions in 1900 [5], and were proved exhaustive by Polya in 1918
by tiling the plane with chessboards. The slick congruence proof of the non-trivial “only
if” part below is due to Kløve, see [2]. The “if” part will easily follow from constructions
in Section 5.

Theorem 3.3 (Polya) Sn contains panmagic permutations only if 2, 3 ∤ n.

Proof. Let σ be a panmagic permutation. By Theorem 3.2 (iii), σ(i) − i is also a
permutation, which means that for i = 1, . . . , n it returns the same residues in a different
order. Therefore, modulo n:

Σ1 :=
n∑
i=1

i =
n∑
i=1

(σ(i)− i) = Σ1 − Σ1 = 0,

i.e. Σ1 is a multiple of n. But Σ1 =
n(n+1)

2
and this can only happen when n+ 1 is even,

so 2 ∤ n.
Similarly, let Σ2 :=

∑n
i=1 i

2. Since σ(i) + i is also a permutation, we have modulo n:

2Σ2 =
n∑
i=1

(σ(i)− i)2 +
n∑
i=1

(σ(i) + i)2 = 2
n∑
i=1

σ(i)2 + 2
n∑
i=1

i2 = 4Σ2 = 0,

i.e. 2Σ2 is a multiple of n. But 2Σ2 =
n(n+1)(2n+1)

3
, and this can only happen when n+ 1

or 2n+ 1 is divisible by 3. But both numbers are relatively prime to n, so 3 ∤ n. □
We will refer to n > 1 with 2, 3 ∤ n as Polya dimensions, and n will be assumed to be
Polya from now on, unless otherwise stated.

4 Panmagic Products in Dimensions 5 and 7

To motivate further developments, we will analyze products of panmagic permutations in
the two lowest dimensions where they exist, n = 5 and n = 7. For the n = 5 case we will
initially follow Thompson [21].

When H is a subgroup of a group G and a ∈ G we will write aH for the left coset
of H, i.e., the set of all products ah with h ∈ H. Thompson presents the space of 5 × 5
panmagic squares as the linear span of permutation matrices with permutations from the
coset ψD5, where ψ := (1)(2 4 5 3) is a particular panmagic permutation. Explicitly,

ψD5 := {ψ, ψκ, . . . , ψκ4, ψϕ, ψϕκ, . . . , ψϕκ4}, (2)

and there is a single independent linear relation among the matrices of ψD5, namely,∑4
i=0 Pψκi =

∑4
i=0 Pψϕκi . The reader can check that both sides add up to the matrix with

all entries 1. The space of 5×5 panmagic squares is known to be 9-dimensional [10], so any
9 of ψD5 matrices form a basis of it. By direct calculation, D5 · ψD5 = ψD5 ·D5 ⊆ ψD5

and ψD5 · ψD5 ⊆ D5, where the product of sets consists of all products of elements in
them. It follows immediately that ψD5 is closed under ternary multiplication.
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We can check the above inclusions by using commutation relations. In the congruence
notation, ψ(i) = 3 − 2i, and it is a simple exercise analogous to (1) that ϕψ = ψϕκ,
κψ = ψκ2 and ψ2 = ϕκ4. Therefore, products like ϕκi · ψϕκj are in ψD5 because we
can move ψ to the leftmost position leaving only powers of ϕ and κ to the right of it.
Similarly, products like ψϕκi ·ψϕκj are in D5 because we can move the second ψ likewise.
At the end, only powers of ϕ and κ remain since ψ2 ∈ D5.

Put this way, the exercise easily extends to ψD7 written as in (2) but with powers of
κ up to 6. We can again take ψ(i) = 3−2i, i.e., ψ = (1)(2 6 5 7 3 4), and the commutation
relations for ϕ, ψ and κ, ψ remain the same. However, it is no longer true that ψD7 ·ψD7 ⊆
D7 because ψ2 ̸∈ D7. This time, ψ3 ∈ D7, so ψ

3 ̸∈ ψD7 and ψD7 is no longer ternary.
It is instead quaternary, as the argument analogous to the one for D5 shows, and ψ2D7

is also quaternary by the same reasoning. But the union, ψD7 ∪ ψ2D7, which happens
to be the set of all panmagic permutations in S7, is neither ternary, nor quaternary, nor
N -ary for any N . However, if we add D7 itself to this union then the result is an ordinary
(binary) group.

Two lessons of D7 generalize to Dn in prime dimensions n ≥ 7. We should expect
N -arity for some N , but not necessarily ternarity, and we should expect it for parts of
the panmagic permutation set rather than for the whole of it. The group we obtained by
adding the dihedral group to the set of all panmagic permutations, which we will denote
⟨ψ,Dn⟩, is the group generated by ψ and Dn jointly. Dn is a normal subgroup in it, i.e.,
all of its left and and right cosets coincide, σDn = Dnσ, due to the commutation relations.
It is called the Post cover of ψDn in N -ary group theory [9, 20]. Discerning its nature
will be our next task.

5 Affine Permutations and Their Group

The group ⟨ψ,Dn⟩, the minimal group that contained all panmagic cosets, cannot be the
entire symmetric group Sn of all permutations. Indeed, Dn is never normal in Sn for n ≥ 4
[8][2.9]. A clue to its nature is that all permutations in it, ϕ,κ, ψ and their products and
powers, are expressed by very simple congruence formulas of the form σ(i) = ai+b. These
represent affine transformations of Zn analogous to affine transformations of R when a
and b are real numbers, whose graphs are straight lines with slope a.

Definition 5.1 A permutation in Sn is called affine when it is given by an invertible
affine transformation of Zn. Affine permutations will be denoted πa,b(i) ≡ ai+ b (mod n)
and linear ones πa := πa,0, with a called their slope. The group of affine permutations,
also known as the general affine group of degree 1 over Zn, is denoted GA1(Zn).

Aside from modular n-queens, affine permutations come up in pseudo-random number
generation [11, 16], in enumerative combinatorics [4], and in pure number theory, for
example, in Zolotarev’s lemma. As with the dihedral group Dn, we will not distinguish
between GA1(Zn) and its isomorphic representation by permutations, i.e. we will also
treat it as a subgroup of Sn. Clearly, πa,b is invertible, and hence a permutation, if and
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only if a is invertible in Zn. Let us denote Z×
n the group of invertible residues of Zn, called

units, then
GA1(Zn) = {σ(i) = ai+ b | a ∈ Z×

n , b ∈ Zn}. (3)

It is a standard fact of modular arithmetic that a ∈ Z×
n if and only if a is relatively prime

to n [19][4.2].
Linear permutations πa will serve as convenient replacements for ψ from our examples

because their powers are easier to track, πka = πak . Every affine permutation is a product
of πa and a power of κ. Indeed, πa,b = κbπa, so ψ = π−2,3 = κ3π−2. The commutation
relations for πa are also easy to derive as in (1), they are πaϕ = κa−1ϕπa and πaκ = κaπa.
The powers of −2 generate all units of Zn for n = 5, 7, so we can generate all affine
permutations by just multiplying powers of ψ (or of π−2) and powers of κ. Thus, the
group generated by ψ and Dn in these dimensions is exactly GA1(Zn).

A simple consequence of Theorem 3.2 is the following.

Corollary 5.2 A permutation πa,b ∈ GA1(Zn) is dihedral if and only if a = ±1, and is
panmagic if and only if a, a± 1 ∈ Z×

n . It is magic if and only if it is panmagic.

The last claim follows from the fact that an affine transformation is injective if and only
if it is injective at a single point. Since these properties of affine permutations entirely
depend on their slopes a we will also call units of Zn dihedral or panmagic accordingly.

It is easy to see now that the converse claim of Polya’s Theorem 3.3 is true. Indeed,
π2 and π3 are panmagic whenever 2, 3 ∤ n because 2, 2 ± 1 and 3, 3 ± 1 are units for any
such n. And since at least one of a− 1, a, and a+1 is divisible by 2 and at least one by 3
we see directly that affine panmagic permutations do not exist when n is even or divisible
by 3.

By Corollary 5.2, the dihedral group Dn is a subgroup of GA1(Zn) consisting of permu-
tations πε,b with ε = ±1. The next theorem shows that GA1(Zn) is the largest subgroup
of Sn in which Dn is normal, confirming that it is the ‘right’ group to consider.

Theorem 5.3 Let n ≥ 3 and σ ∈ Sn. Then σDn = Dnσ if and only if σ ∈ GA1(Zn).

Proof. If σDn = Dnσ then σκ = πε,a σ with ε = ±1 and a ∈ Zn. Applying both sides
to i, we get σ(i + 1) = εσ(i) + a. If ε = −1 then σ(i + 2) = −σ(i + 1) + a = σ(i), so
σ cannot be a permutation for n ≥ 3. If ε = 1 and we let σ(0) = b then, by induction,
σ(i) = ai+ b. Since σ is a permutation, a ∈ Z×

n , so σ = πa,b ∈ GA1(Zn).
Conversely, if σ ∈ GA1(Zn) then σ = πa,b = κbπa, and σDn = Dnσ follows from the

commutation relations for πa. □
The number of units in Zn is given by Euler’s totient function φ(n) := |Z×

n |, where |S|
denotes the cardinality of S. When n = pα1

1 · · · pαm
m is the prime factorization of n, we

have [19][7.1]

φ(n) = n

(
1− 1

p1

)
· · ·

(
1− 1

pm

)
. (4)

We now see from (3) that |GA1(Zn)| = φ(n)n.
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The number of panmagic units of Zn can be similarly counted. By Corollary 5.2,
a is panmagic when a, a ± 1 ∈ Z×

n , so panmagic units are in 1-1 correspondence with
triples of consecutive units. Back in 1869, the same year when Lionnet formulated the
n-queens problem, Victor Schemmel generalized Euler’s totient to k-totients φk(n) that
count k-tuples of consecutive units, see [15][p. 539]. It can be calculated analogously to
(4):

φk(n) = n

(
1− k

p1

)
· · ·

(
1− k

pm

)
(5)

when all pi ≥ k, and 0 otherwise. The number of panmagic units is thereby φ3(n),
and we see that there are none in non-Polya dimensions. For primes, φ(p) = p − 1 and
φ3(p) = p− 3, as expected.

Are all panmagic permutations affine? This question received much attention in the
modular n-queens literature, and the answer, in general, is no. They are for n = 5, 7, 11,
but in all Polya dimensions n ≥ 13 there exist non-affine panmagic permutations. First
examples of them were constructed only in 1975 by Bruen and Dixon, and their nature and
properties are still poorly understood [3][p. 16]. We will, therefore, confine our attention
to affine panmagic, which already has plenty of intricacies to offer.

6 Affine Panmagic in Prime Dimensions

Our identification of the Post cover group with GA1(Zn) for n = 5, 7 depended on −2
generating all units as its powers. Such units are called primitive roots in number theory
and they do not exist for all n. Luckily, they do exist for n = p ≥ 3 prime, by a classical
theorem of Gauss [19][9.2]. If r is a primitive root then we can generate all πa with πr
since πrk = πkr . And since any affine permutation is a product of πa and a power of κ we
have GA1(Zp) = ⟨πr,κ⟩ for any odd prime p. In this long section, we use primitive roots
to generalize the algebraic properties of panmagic permutations observed for p = 5, 7 and
determine their cycle structure.

6.1 Closure Under N-ary Multiplication

When n = p is prime, a linear permutation πa from Definition 5.1 is panmagic for any
a ̸= 0,±1 by Corollary 5.2. This means that among units only a = ±1 are not panmagic,
and those are dihedral.

Corollary 6.1 (Panmagic/dihedral dichotomy) When p is prime, every affine per-
mutation is either panmagic or dihedral, and has the form πirκj, where r is a primitive
root modulo p.

Recall that when H is a normal subgroup of a group G the set of cosets of H with induced
multiplication on them is called the quotient group and denoted G/H [8]. We are now
ready to prove the first of our main theorems about affine panmagic cosets that generalizes
the p = 5, 7 examples.
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Theorem 6.2 Let p ≥ 5 be prime, r be its primitive root, N := p+1
2

and C := πrDp.
Then for i = 1, . . . , N − 2 the cosets Ci = πirDp consist of panmagic permutations and
are closed under N-ary multiplication. Moreover,

⟨πr, Dp⟩ = ∪N−1
i=1 C

i = GA1(Zp),

Dp is its normal subgroup, and the quotient group is GA1(Zp)/Dp ≃ ZN−1 = Z p−1
2
.

Proof. The commutation relations, πrϕ = κr−1ϕπr and πrκ = κrπr, imply that left and
right πr-cosets of Dp = ⟨ϕ,κ⟩ are equal, so C = πrDp = Dpπr. Since Dp is a group we
have Dp ·Dp = Dp and, by induction,

Ci = πrDpπrDp · · · πrDp = π2
rDp · · · πrDp = · · · = πirDp = Dpπ

i
r .

Since r is a primitive root every coset of Dp in GA1(Zp) is of the form Dpκbπri = Dpπri =
Ci, so ⟨πr, Dp⟩ = GA1(Zp) and Dp is normal in it.

The order of r is p − 1, the size of Z×
p , so r

p−1 = 1 and p − 1 is the smallest such

power. Therefore, r
p−1
2 = −1, as −1 is the only other unit that squares to 1, and p−1

2
is

the smallest power such that ri = ±1. But πir = πri ∈ Dp if and only if ri = ±1, so the
smallest i such that πir ∈ Dp is p−1

2
= N − 1. Therefore, CN−1 = Dp and all cosets are

exhausted by Ci with 1 ≤ i ≤ N − 1. Moreover, Ci · Cj = πirπ
j
r Dp = πi+jr Dp = Ci+j, so

Ci 7→ i is an isomorphism between the quotient group and ZN−1.
By Corollary 6.1, every permutation in GA1(Zp) is either panmagic or dihedral, and

all dihedral ones are in Dp. Since cosets partition the group we conclude that Ci for
1 ≤ i ≤ N − 2 contain only panmagic affine permutations, and (jointly) all of them.
Finally, CN = CCN−1 = CDp = C, so N -ary products of elements of C are again in C
and it is closed under N -ary multiplication. □
Theorem 6.2 is a global one and gives us a broad algebraic picture of how affine panmagic
permutations in prime dimensions behave. But, in general, the arity N it gives is not the
smallest possible for every coset. Indeed, if C4 = Dp then (C2)2 = Dp, so C

2 will not just
be quinternary like C, but also ternary. Conversely, if C is N ′-ary then we can take a
product of its N ′ elements, multiply it by N ′−1 more elements, then by N ′−1 more, and
so on. All of those products will again be in C. This means that closure under N ′-ary
multiplication implies closure under N -ary multiplication for any N = N ′ + k(N ′ − 1).
In particular, closure under ternary products implies closure under any odd-numbered
products.

In the light of the above ambiguity, we would like to distinguish the smallest possible
arity for each coset.

Definition 6.3 A subset C of a group will be called strictly N-ary, and N its strict arity,
when it is closed under N-ary multiplication, but not under N ′-ary multiplication with
any N ′ < N .

To find strict arities, we will supplement Theorem 6.2 by a local theorem that treats each
coset individually. Recall that the multiplicative order ordp(x) of x ∈ Z×

p is the smallest
positive integer i such that xi ≡ 1 (mod p).
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Theorem 6.4 Let p ≥ 5 be prime, a ∈ Z×
p be panmagic, and N := ordp(a

2) + 1. Then
the coset C := πaDp consists of panmagic permutations and is strictly N-ary. Moreover,
⟨πa, Dp⟩ = ∪N−1

i=1 C
i, Dp is a normal subgroup in it, and the quotient group is ⟨πa, Dp⟩/Dp ≃

ZN−1.

Proof. The proof is analogous to the proof of Theorem 6.2 with a replacing r, so we
only point out the differences. The group ⟨πa, Dp⟩ is no longer necessarily the whole
group GA1(Zp), but might be its proper subgroup. The smallest i such that ai = ±1 is
also the smallest i such that (ai)2 = (a2)i = 1, i.e. ordp(a

2), which gives the formula for
N . That N is the strict arity follows from the fact ai ̸= ±1 for i < ordp(a

2). Indeed,
πai = πia ̸∈ Dp for such i, hence π

i+1
a ̸∈ C, so C is not closed under N ′-ary multiplication

with N ′ = i+ 1 < ordp(a
2) + 1 = N . □

Theorem 6.4 allows us to find all primes p that admit strictly N -ary panmagic cosets of
Dp. Those must satisfy CN−1 = Dp and not coincide with Dp itself. Therefore, we need
p−1
2

from Theorem 6.2 to be divisible by N − 1, meaning that p− 1 must be divisible by
2(N − 1).

Corollary 6.5 Let p ≥ 5 be prime and N ≥ 3. Then strictly N-ary affine panmagic
cosets of Dp exist if and only if p = 2(N − 1)k + 1 for some integer k. When p is of this
form and r is its primitive root then πrkDp is such a coset. In particular, strictly ternary
panmagic cosets of Dp exist if and only if p = 4k + 1 for some integer k.

Proof. By Theorem 6.4, strictly N -ary cosets of Dp exist if an only if there are units
a ∈ Z×

p with ordp(a
2) = N − 1. Since all a ∈ Z×

p are powers of r, all a2 are powers of

r2. But ordp(r
2) = p−1

2
, so the orders of its powers, (r2)k, are exactly the divisors of p−1

2
,

which means that p−1
2

= (N − 1)k for some integer k. Conversely, when this identity
holds, the order of (rk)2 will be N − 1. Thus, πrkDp will be strictly N -ary by Theorem
6.4. □
Primes of the form 4k+1, like 5, 13, 17, 29, 37, 41..., are famous in number theory. They
were singled out already by Albert Girard and Pierre de Fermat, who stated that they
are exactly the primes representable as the sums of two perfect squares. The first proof
was given by Euler. They also happen to be the only primes for which −1 is a quadratic
residue, the square of another unit [19][11.1]. Unsurprisingly, 4k + 1 primes appear in
connection with the modular queens problem as well [3][p. 15], and they will reappear in
Corollary 6.9.

6.2 Panmagic Cycle Types

We will now turn from algebra to the structure of individual affine panmagic permutations.
Recall that intrinsic character of a permutation is described by its cycle type, the number
and lengths of cycles in its disjoint cycle decomposition [8][2.5]. One can easily check that
all panmagic permutations in dimension 5 have one fixed point and one 4-cycle, and they
also all belong to a single coset of D5. However, in the π2D7 coset, we encounter two cycle
types represented by π2 = (1 2 4)(3 6 5)(7) and π5 = (1 5 4 6 2 3)(7). Further computations
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confirm that there are always at most two cycle types in each panmagic coset of Dp, and
all cycles in each, other than the fixed point, have the same length. Moreover, when there
are two cycle types the cycle length in one of them is twice that in the other.

A first step towards proving these observations is to recall that conjugate permutations
have the same cycle types (essentially, because they permute numbers in identical ways up
to relabeling). Then we observe that every affine permutation πa,b with a ̸= 1 is conjugate
to πa. Indeed, σ = κ−tπaκt with t ≡ −(a−1)−1b (mod p). Thus, we only need to consider
cycle types of πa, which is much less daunting since their powers are easily tracked. This
already confirms one of the above observations. As the slopes of permutations in πaDp

are only ±a, there can be at most two cycle types in it, that of πa and that of π−a.

Corollary 6.6 Let a ∈ Z×
p be panmagic. Then the disjoint cycle decomposition of πa

consists of one fixed point and p−1
ordp(a)

cycles of equal length ordp(a). Moreover, every

permutation in πaDp has the cycle type of πa or of π−a.

Proof. Recall that we identify residue 0 with p for affine permutations. Clearly, πa(0) =
0, and this gives us the fixed point p. The rest of residues are units u and πa(u) = au, so
the cycle that starts with u is of the form

(u au · · · am−1u),

where m is the smallest positive integer with amu = u. Since u is a unit this is equivalent
to am = 1, so m = ordp(a) for all u and is their common cycle length. Since there are
p− 1 units in Z×

p there are p−1
m

such cycles. □
Thus, there are at most two cycle types in each panmagic coset. When is there just one?
We already know that this happens exactly when πa and π−a have the same type. By
Corollary 6.6, a necessary and sufficient condition is that ordp(−a) = ordp(a). To make
it more explicit, we will relate the multiplicative orders of a and a2 (for any n).

Lemma 6.7 If ordn(a
2) is even then ordn(a) = ordn(−a) = 2 ordn(a

2). If ordn(a
2) is

odd then one of ordn(−a) and ordn(a) is equal to ordn(a
2) and the other to 2 ordn(a

2).

Proof. By a standard result of group theory [8][2.4],

ordn(a
2) =

{
ordn(a), ordn(a) odd
1
2
ordn(a), ordn(a) even.

(6)

Hence, if ordn(a
2) is even then so is ordn(a). Indeed, if it were odd then by (6) ordn(a) =

ordn(a
2) would also be odd, a contradiction. But then, by (6) again, ordn(a) = 2 ordn(a

2),
and the same argument applies to −a.

Now suppose that ordn(a
2) is odd. Since ordn(a

2) = ordn
(
(−a)2

)
, formula (6) im-

plies that ordn(±a) is either ordn(a2) or 2 ordn(a2). For definiteness, suppose ordn(a) =
ordn(a

2). Since it is odd (−a)ordn(a2) = −aordn(a) = −1, so ordn(−a) ̸= ordn(a
2) and it

must be 2 ordn(a
2). □

Our next result now follows easily.
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Theorem 6.8 Let p ≥ 5 be prime, a ∈ Z×
p be panmagic, and N := ordp(a

2) + 1. If N is
odd then all permutations in πaDp have the same cycle type with the cycle lengths, aside
from the fixed point, all equal to 2(N − 1). If N is even then permutations in πaDp have
two cycle types with the cycle lengths, aside from the fixed point, all equal to N − 1 in one
of them and 2(N − 1) in the other.

Proof. If N is odd then ordp(a
2) = N−1 is even and Lemma 6.7 implies that ordp(−a) =

ordp(a) = 2 ordp(a
2) = 2(N − 1). If N is even then ordp(a

2) = N − 1 is odd. By Lemma
6.7, one of ordp(−a) and ordp(a) is then equal to ordp(a

2) = N − 1 and the other is twice
that. □
As a simple observation, transpositions, i.e. 2-cycles, can only appear in cosets when
N = 2, i.e. when the coset is Dp itself. In other words, affine panmagic permutations
have no transpositions in prime dimensions.

Theorem 6.8 means that cosets of πaDp have permutations with the same cycle type
if and only if their strict arity N is odd. But then ordp(a) = 2 ordp(a

2) = 2(N − 1) is
divisible by 4. Since the order of any element must divide the order of Z×

p by Lagrange’s
theorem [8], we conclude that 4 | p − 1 and p is of the form 4k + 1. But this is the
exact same condition as in Corollary 6.5 ! It holds if and only if strictly ternary panmagic
cosets of Dp exist. In turn, Theorem 6.8 implies that all permutations in such cosets have
the same cycle type. They have only 4-cycles and a single fixed point. Summarizing,
we proved the following neat equivalence that highlights the special panmagic of 4k + 1
primes.

Corollary 6.9 The following conditions on a prime p are equivalent:
(i) Dp has panmagic cosets with all permutations of the same cycle type;
(ii) Dp has panmagic cosets of strictly odd arity;
(iii) Dp has strictly ternary panmagic cosets;
(iv) p = 4k + 1 for a positive integer k.

7 N-ary Subgroups

Before concluding, we wish to put things into a broader algebraic perspective and tie up
some loose ends. Theorems 6.2 and 6.4 provide a template for how sets closed under
N -ary multiplication arise as cosets, but it is not yet clear how much of it is specific to
those examples and how much is essential. Moreover, closure under multiplication does
not quite entitle us to call them N -ary groups. If the binary case is our guide, we also
need an analog of closure under taking inverses. We will briefly develop a bit of N -ary
group theory to fill in those gaps.

N -ary groups can be defined abstractly, like ordinary groups, but to keep our exposi-
tion elementary we will only define N -ary subgroups of ordinary groups. Those are the
only ones we need, and one can prove that any abstract N -ary group is isomorphic to an
N -ary subgroup [9][Theorem 1.5], [20][p. 4].
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Definition 7.1 A subset C ⊆ G of a group G is called an N-ary subgroup of G when
for any N elements a1, . . . , aN ∈ C, the product a1 · · · aN ∈ C; and for any a ∈ C, the
element a3−2N ∈ C.

The first condition replaces closure under the binary multiplication by an N -ary one and
the second replaces closure under inversion. When N = 2 we recover the definition of the
ordinary (binary) subgroup.

In the ternary case, a3−2N = a−3, but we still get closure under taking inverses because
a−1 = aaa−3 ∈ C as a triple product. In fact, for N ≥ 3 we can generally replace the
condition a3−2N ∈ C with a simpler equivalent one, a2−N ∈ C. Indeed, a2−N = aN−1a3−2N

and a3−2N = aN−3
(
a2−N

)3
, and both are N -ary products for N ≥ 3. The element a2−N

is called skew to a and is typically used as the replacement for the inverse in N -ary group
theory [9][p. 13], [20][p. 3].

We did not say anything about the identity element e, and that is by design. In the
binary case, e will be in C because we can multiply any element by its inverse. But
also conversely, if e ∈ C then C is a binary subgroup because we can reproduce binary
products by taking N -ary ones with N − 2 copies of e in them. Indeed, under Definition
7.1 any binary subgroup is also N -ary for any N ≥ 3.

Nonetheless, there are non-binary N -ary subgroups for N > 2. In fact, many of them
are quite familiar, albeit rarely thought about this way. For example, odd integers form
a ternary (additive) subgroup of Z. Indeed, while the sum of two odd integers is not odd,
the sum of any three is. The inverse (negative) of an odd integer is also odd. Similarly,
odd permutations form a non-binary ternary subgroup of Sn. Non-zero purely imaginary
numbers iR× form a (multiplicative) ternary subgroup of non-zero complex numbers C×.
Indeed, ia · ib · ic = i(−abc) and (ia)−1 = i(−a).

One can check that ψD5 = π3D5, the panmagic ternary coset from Section 4, does
contain the inverses of all of its elements and is a ternary subgroup. The quaternary coset
ψD7 = π5D7 does not; in fact, its inverses belong to the other ternary panmagic coset
π3D7. But it does contain the skews a−2 of its elements and is a quaternary subgroup.
Fortunately, we do not need to go back and check that our cosets closed under N -ary
multiplication were also closed under skewing. This is because all of them were finite,
and, as with ordinary finite subgroups, closure under multiplication is enough to be an
N -ary subgroup.

Theorem 7.2 Suppose C ⊆ G is closed under N-ary multiplication and finite. Then it
is an N-ary subgroup of G.

Proof. Let CN−1 denote the set of (N−1)-element products of elements of C. We claim
that it is a binary subgroup. Indeed, a product of two (N − 1)-products of elements of C
has the total of 2(N − 1) = N +(N − 2) factors. The first N multiply to an element of C
by assumption, so it is again a product of N − 1 factors from C. If C is finite then so is
CN−1. Since it is closed under binary multiplication it must be a subgroup by a standard
result of group theory [8][2.3].

Let a ∈ C, then aN−1 ∈ CN−1. Since a binary subgroup contains inverses of its

the pump journal of undergraduate research 8 (2025), 195–212 208



elements, a1−N = (aN−1)−1 ∈ CN−1, i.e. is a product of N − 1 elements of C. But then
a2−N = aa1−N is a product of N elements of C and must be in C by assumption. Thus,
C is an N -ary subgroup. □
It turns out that the trick for obtaining N -ary subgroups from cosets, which we exploited
in Theorems 6.2 and 6.4, is quite general. It constitutes the ‘easy’ direction of the Post
coset theorem.

Theorem 7.3 (Post) Let H ⊂ H̃ ⊆ G be a pair of (binary) subgroups of G with H

normal in H̃ and H̃/H ≃ ZN−1. Then every coset of H in H̃ is an N-ary subgroup of G.

Proof. Let C = bH for b ∈ H̃. Since H is normal, for any h ∈ H, we have hb = bh′ for
some h′ ∈ H, and since H̃/H is cyclic of order N − 1, we have bN−1 ∈ H for any b ∈ H̃.
Therefore, for ai = bhi with hi ∈ H, by induction,

a1 · · · aN = bh1bh2 · · · bhN = b(bh′1h2b · · · bhN) = · · · = b(bN−1ĥ) ∈ bH = C.

Similarly, since (b−1)N−1 ∈ H, moving b−1-s to the left we obtain for a = bh,

a2−N = (h−1b−1)N−2 = (b−1)N−2ĥ = b
(
(b−1)N−1ĥ

)
∈ bH = C.

Thus, C is an N -ary subgroup. □
In Theorem 6.2, G = Sp was the symmetric group, H = Dn was the dihedral group, and

H̃ = GA1(Zp) was the general affine group. One can check that for the purely imaginary

numbers we have G = C×, H = R×, and H̃ = ⟨i,R×⟩ = R× ∪ iR×.
The hard direction of the Post coset theorem is that any N -ary group arises as a

Post coset up to isomorphism, i.e. it is isomorphic to a coset of an index N − 1 normal
subgroup of a larger group with the cyclic quotient. It was proved by Post in his 1940
seminal paper on N -ary groups. In general, given an N -ary subgroup C ⊆ G, the group
H = CN−1 is called its Post associate and the group H̃ = ⟨C⟩ its Post cover. In our
panmagic examples, the Post associate was always Dp, while the Post cover could be the
entire group GA1(Zp) or its subgroup of the form ⟨πa, Dp⟩ with a panmagic unit a.

Note that N does not, in general, have to be the strict arity of C, and that the Post
cover may depend on which N it is considered under. It follows from the Post coset
theorem that the strict arity is ord(C) + 1, where ord(C) is the order of C as an element

of the quotient group H̃/H. We will not elaborate further and refer the interested reader
to [9, 20] and references therein.

In conclusion, let us neatly repackage Theorems 6.2 and 6.4 in terms of N -ary group
theory.

Theorem 7.4 Let p ≥ 5 be prime. If a ∈ Z×
p is panmagic then πaDp is a strictly N-ary

panmagic subgroup of Sp with N = ordp(a
2)+1, the Post associate Dp and the Post cover

⟨πa, Dp⟩. Moreover, all πaDp with a ̸= 0,±1 are N-ary panmagic subgroups of Sp with
common N = p+1

2
, common Post associate Dp, and common Post cover GA1(Zp).
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The appearance of GA1(Zp) as the common Post cover is a consequence of the existence of
primitive roots in prime dimensions. Indeed, when r is a primitive root, permutations of a
single coset πrDp generate the entire group of affine panmagic permutations. In turn, Dp

is the common Post associate because it is the largest subgroup that preserves panmagic
in those dimensions. These observations point to what should change and what should
stay the same in non-prime dimensions.

8 Conclusions and Open Problems

We have developed an algebraic theory of affine panmagic permutations that focuses on
their algebraic and number-theoretic properties. Their matrices are the simplest kind of
panmagic squares and they also represent configurations of non-attacking queens on a
toroidal chessboard. But it is treating them as permutations that unlocked many new
results. We hope that our algebraic approach and its generalizations will be useful for
solving other problems. Let us briefly outline some adjacent topics and open problems
that lie ahead for those willing to pursue the subject further.

We generalized most of our results on N -ary groups and cycle types of panmagic per-
mutations to composite dimensions [13]. However, proving them requires less elementary
methods because the only composites satisfying the Polya condition that have primitive
roots are odd prime powers. Even for them, the panmagic/dihedral dichotomy fails –
there exist units that are neither panmagic nor dihedral. It turns out to be helpful to use
the Post coset theorem systematically from the start. In composite dimensions, Dn is no
longer the largest subgroup of Sn whose elements preserve panmagic, and we studied its
extensions as Post associates instead, while GA1(Zn) is no longer the universal Post cover,
and this role is passed to its proper subgroups. The cycle types of panmagic permutations
are also more complex in general, and no longer have all cycles of the same length aside
from the fixed point as in Theorem 6.8.

Affine panmagic permutations seem to be closely related to the uniform step method
for constructing “natural” panmagic squares, those filled with natural numbers from 1
to n2. Planck used them to construct modular queens solutions already in 1900 [3][p. 8].
The method only works in Polya dimensions, and there are intriguing parallels between
Lehmer’s results on it [15] and ours. More recently, constructions linking natural panmagic
squares to non-affine panmagic permutations were also discovered [2][p. 225ff].

Counting all panmagic permutations in dimension n is known to be a hard problem,
and even good estimates are hard to come by. It is known that there are more than

2
√

p−1
2 of them for prime n = p, and, conjecturally, the count is asymptotically ∼ nαn

for some α > 0 [3][p. 18]. Since there are only φ3(n)n affine panmagic permutations and
φ3(n) ≤ n, the vast majority of panmagic permutations are non-affine for large n. While
some special constructions of such permutations are known [3][p. 16], they are far from
producing the entire set or revealing its algebraic structure.

Non-affine panmagic permutations present new, more complex questions. For example,
are there N -ary groups consisting of them? Non-affine panmagic cosets of Dn are ruled
out by Theorem 5.3, but there may be other groups that work. One would have to find
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pairs of subgroups of Sn, one normal in the other, with non-affine panmagic cosets. Some
candidate groups that act on general panmagic permutations are considered in [6].

The linear span of permutation matrices of any N -ary panmagic subgroup is an N -ary
algebra of panmagic squares. Many such examples are provided by our Corollary 6.5. So
far, only ternary panmagic algebras have been considered in the literature and they have
an appealing alternative description in terms of linear algebra. Consider an invertible
matrix Q that commutes with both Pϕ and Pκ, and let E be the square matrix with all
entries 1. Matrices A such that AQ +QA is a scalar multiple of E are called Q-regular,
and they are panmagic squares that form a ternary algebra [18][Theorem18]. Thompson’s
algebra, the linear span of π2D5, is Q-regular with Q = 1

2
I + Pκ + P−1

κ . Can such Q be
found for other ternary groups from our Corollary 6.5? And conversely, which Q-regular
algebras are spanned by ternary groups and how can those groups be recovered from Q?
More generally, what is a linear algebra description of N -ary panmagic algebras, and when
are they linear spans of N -ary panmagic groups?

Although affine panmagic permutations are a small fraction of all of them, this tells us
little about their share of the space of panmagic squares. Indeed, there are n! permutations
in Sn, but the dimension of the linear span of all permutation matrices (which is the space
of semimagic squares) is only (n − 1)2 + 1. This means that there are massively many
linear relations among permutations matrices, and it is a priori possible that panmagic
permutation matrices (or already affine ones) span the entire space of panmagic squares
for Polya n. Do they?

When we consider only squares with positive entries and positive linear combinations,
the answer is no for n > 5, as proved in [1]. For odd n, the space of panmagic squares
is known to be (n − 2)2-dimensional [10], so we could answer the question if we counted
linearly independent panmagic permutation matrices. Questions about linear relations
among matrices of group elements belong to the group representation theory. For the
affine case, this suggests looking into representation theory of GA1(Zn) and its subgroups.
But this is a task for another day.
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