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Abstract - For each natural number n ≥ 2 and for each prime p ≤ n, we provide three
proofs of the fact that the power, Cp (n), of the prime p in the prime factorization of a
uniformly chosen random integer from 1 to n is stochastically dominated by a nonnegative
geometric random variable, Zp, of parameter 1/p. In one of these proofs, we construct a
coupling of Zp and Cp (n) such that with probability one we have both Zp−1 ≤ Cp (n) ≤ Zp

whenever Zp ≤ ⌊logp n⌋ and Cp (n) = ⌊logp n⌋ whenever Zp > ⌊logp n⌋; then we will show
that any coupling of Zp and Cp (n) satisfying this constraint is a maximal coupling of Zp

and Cp (n) if and only if n = pk for some positive integer k. We will also show how our
couplings of the variables Zp and Cp (n) correspond to rigid bracings of an ∞× ⌊logp (n)⌋
rectangular grid if and only if n is not divisible by p.
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1 Introduction

This paper uses the concept of stochastic domination to provide insights about prime
numbers by comparing the distribution of the power of the prime p in the prime fac-
torization of the uniform variable on the set {1, 2, . . . , n} with a nonnegative geometric
distribution of parameter 1/p. Given two random variables X and Y , not necessarily
defined on the same probability space, what does it mean to say that Y is “larger” than
X? The notion of stochastic dominance provides an answer to this question.

Definition 1.1 Let X and Y be random variables with cumulative distribution functions
(CDFs) P (X ≤ a) and P (Y ≤ a) for a ∈ R. We say that Y has a first-order stochastic
dominance over X, denoted by

X
D

≤ Y,

if P (X ≤ a) ≥ P (Y ≤ a) for all a ∈ R.

Applications of stochastic domination have appeared in economics, statistics, and
mathematical finance. The paper [5] shows how stochastic domination leads to constraints
for problems in optimization.

The following definition appears on p. 193 of [7].
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Definition 1.2 If X,X1, X2, . . . is a sequence of random variables with respective distri-
bution functions F, F1, F2, . . ., we say that Xn converges in distribution to X, written

Xn
D→ X, if Fn → F as n → ∞.

Fix a natural number n ≥ 2, and consider a uniformly chosen random integer N (n)
on the set {1, 2, . . . , n}. The fundamental theorem of arithmetic guarantees the existence
of a unique prime factorization

N (n) =
∏
p≤n

pCp(n),

where the variable Cp (n) is the power of the prime p. For any prime p, let Zp denote a
nonnegative geometric random variable of parameter 1/p. Figures 1 and 2 contain the
graphs of the probability mass functions (PMFs) of Zp and Cp (n) for p = 2, 3, 5, and
n = 20. For any prime p ≤ n, equations (3, 4) imply that Cp (n) converges to Zp in
distribution as n → ∞.

Figure 1: Partial plots of the probability histograms of Zp for p = 2, 3, 5.
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Note that the support of Zp is the set of nonnegative integers. Since pCp(n) ≤ n, the
support of Cp (n) is

{
0, 1, . . . , ⌊logp n⌋

}
, where ⌊·⌋ denotes the floor function.

Figure 2: Plots of the probability histograms of Cp (20) for p = 2, 3, 5.
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All of our results will involve couplings, which we now define.

Definition 1.3 A coupling of two random variables X and Y is a random vector
(X ′, Y ′) such that X ′ is equal to X in distribution and Y ′ is equal to Y in distribu-
tion. A coupling (X ′, Y ′) of X and Y is a maximal coupling if P (X ′ = Y ′) is maximal
among all couplings of X and Y .

In a coupling, the component variables X and Y may be random vectors or stochastic
processes. For example, the paper [6] uses maximal couplings to provide necessary and

sufficient conditions for the existence of a coupling of two stochastic processes X
(1)
n and

X
(2)
n such that the two processes eventually agree.
The goal of this paper is to prove the following theorem.

Theorem 1.4 Fix a natural number n ≥ 2, and let p denote a prime ≤ n. Let N (n) =∏
p≤n p

Cp(n) denote a uniform random variable on the set {1, 2, . . . , n}, and let Zp denote
a nonnegative geometric random variable of parameter 1/p.

a) There exists a coupling
(
Z ′

p, C
′
p (n)

)
of Zp and Cp (n) satisfying

C ′
p (n) =

{
Z ′

p or Z ′
p − 1 if Z ′

p ≤ ⌊logp n⌋,
⌊logp n⌋ if Z ′

p > ⌊logp n⌋.
(1)

Consequently,

Cp (n)
D

≤ Zp. (2)

b) Any coupling of Zp and Cp (n) satisfying (1) is a maximal coupling of Zp and Cp (n)
if and only if n = pk for some natural number k.

c) When n = pk, there exists a unique ∞×⌊logp n⌋ joint probability table representing
all maximal couplings of Zp and Cp (n). Furthermore, when n = pk, the maximal
coupling probability is 1− 1/np.

d) A coupling
(
Z ′

p, C
′
p (n)

)
of Zp and Cp (n) satisfying (1) corresponds to a bracing of

a rigid rectangular ∞× ⌊logp (n)⌋ grid if and only if n is not divisible by p.

An open conjecture by Richard Arratia (p. 49 of [3]) asks, for each n ≥ 1, whether
there exists a coupling of the variables

∏
p≤n p

Cp(n) and
∏

p≤n p
Zp , where the Zp, p ≤ n,

are independent variables, such that
∑

p≤n (Cp (n)− Zp)
+ ≤ 1, where (·)+ denotes the

positive part.
We will provide three proofs of (2). In Section 2, inequality (2) is proved via the

definition of first-order stochastic dominance by comparing the CDFs of Zp and Cp (n). In
Section 3, we prove inequality (2) by establishing a joint probability table with marginals
Z ′

p and C ′
p (n) corresponding to Zp and Cp (n), respectively, such that Z ′

p and C ′
p (n)

satisfy constraint (1). We will then refer to a theorem, which states that a variable Y has
a stochastic domination over the variable X if and only if there exists a coupling (X ′, Y ′)
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of X and Y such that X ′ is pointwise dominated by Y ′, to show that (2) follows from (1).
In Section 3.1, we prove Theorem 1.4b; and we prove Theorem 1.4c by showing that there
is a unique ∞ × ⌊logp n⌋ joint probability table corresponding to all maximal couplings
of Zp and Cp (n) when n = pk.

In Section 4, we prove inequality (2) by using a variant of the marriage theorem due
to Volker Strassen. In Section 5, we prove Theorem 1.4d by constructing a bipartite
graph corresponding to the coupling constructed in Section 3; and then we show that the
bipartite graph corresponds to a rigid bracing of a rectangular ∞×⌊logp (n)⌋ grid if and
only if n is not divisible by p.

2 Stochastic Domination via Direct Computation of Cumulative
Distribution Functions

Our first proof of inequality (2) is based on the fact that we have formulas for the CDFs
of Cp (n) and Zp.
Proof. [Proof of Inequality (2).] Given a nonnegative integer j, we have the event
equality

{Cp (n) ≥ j} =
{
pj divides N (n)

}
.

There are ⌊n/pj⌋ multiples of pj in the set {1, 2, . . . , n}, and since N (n) is uniformly
distributed, the probability of the event {Cp (n) ≥ j} is

P (Cp ≥ j) =
⌊n/pj⌋

n
. (3)

Moreover, since Zp is a nonnegative geometric random variable of parameter 1/p, the
probability of the event {Zp ≥ j} is

P (Zp ≥ j) = 1/pj. (4)

Thus,

P (Zp ≤ j)
(4)
= 1− 1/pj+1

≤ 1− ⌊n/pj+1⌋
n

(3)
= P (Cp (n) ≤ j) .

□

3 Constructing a Coupling of Zp and Cp (n) with Cp (n) ≤ Zp

Pointwise

In this section, Theorem 1.4a is proved by constructing a coupling
(
Z ′

p, C
′
p (n)

)
of Zp

and Cp (n) such that
(
Z ′

p, C
′
p (n)

)
satisfies constraint (1); constraint (1) implies that
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C ′
p (n) is pointwise dominated by Z ′

p. The construction is achieved by describing an
∞× ⌊logp (n)⌋ joint probability table, consisting of nonnegative numbers, such that row
i sums to P (Zp = i) for each integer i ≥ 0, column j sums to P (Cp (n) = j) for each
integer j with 0 ≤ j ≤ ⌊logp (n)⌋, and we impose the constraint that the entry in row i
and column j is 0 if both of the statements

(i) i− 1 ≤ j ≤ i < ⌊logp n⌋,

(ii) i ≥ ⌊logp n⌋ and j = logp n

are false. Then we apply the following theorem (Theorem 3.1 in Chapter 1 of [10]) to
prove inequality (2).

Theorem 3.1 Let X and Y be random variables. Then X
D

≤ Y if and only if there is a
coupling (X ′, Y ′) of X and Y such that (pointwise) X ′ ≤ Y ′.

Proof. [Proof of Theorem 1.4a.] Consider a prime p ≤ n. Any coupling of Zp and
Cp (n) has row and column sums determined by the PMFs of Zp and Cp (n), given by

P (Zp = i)
(4)
=

1− 1/p

pi
, i ∈ Z≥0 (5)

and

P (Cp (n) = j)
(3)
=

⌊n/pj⌋ − ⌊n/pj+1⌋
n

, 0 ≤ j ≤
⌊
logp n

⌋
. (6)

Table 1 illustrates the desired row and column sums of any joint probability distribution
corresponding to a coupling of Zp and Cp (n). To simplify the notation in the following
tables, define p (i, j) := P

(
Z ′

p = i, C ′
p (n) = j

)
and k := ⌊logp (n)⌋.

Table 1: Visual features of a coupling
(
Z ′

p, C
′
p (n)

)
of Zp and Cp (n).

C ′
p 0 1 2 · · · k Row sum

Z ′
p

0 p (0, 0) p (0, 1) p (0, 2) · · · p (0, k) 1− 1/p
1 p (1, 0) p (1, 1) p (1, 2) · · · p (1, k) (1− 1/p) /p

2 p (2, 0) p (2, 1) p (2, 2) · · · p (2, k) (1− 1/p) /p2

...
...

...
...

. . .
...

...

k p (k, 0) p (k, 1) p (k, 2) · · · p (k, k) (1− 1/p) /pk

...
...

...
...

...
...

...

Column sum 1−
⌊
n
p

⌋
/n

(⌊
n
p

⌋
−
⌊

n
p2

⌋)
/n

(⌊
n
p2

⌋
−
⌊

n
p3

⌋)
/n · · ·

(⌊
n
pk

⌋
−
⌊

n
pk+1

⌋)
/n

We will construct a coupling corresponding to equation (1) by placing at most two nonzero
entries each row and each column except the final column. The resulting joint probability
PMF is provided by Table 2.
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Table 2: Visualizing a joint probability table corresponding to equation (1).

C ′
p 0 1 2 · · · k − 1 k Row sum

Z ′
p

0 p (0, 0) 0 0 · · · 0 0 1− 1/p
1 p (1, 0) p (1, 1) 0 · · · 0 0 (1− 1/p) /p

2 0 p (2, 1) p (2, 2) · · · 0 0 (1− 1/p) /p2

3 0 0 p (3, 2) · · · 0 0 (1− 1/p) /p3

...
...

...
...

. . .
...

...
...

k 0 0 0 0 p (k, k − 1) p (k, k) (1− 1/p) /pk

k + 1 0 0 0 0 0 p (k + 1, k) (1− 1/p) /pk+1

k + 2 0 0 0 0 0 p (k + 2, k) (1− 1/p) /pk+2

...
...

...
...

. . .
...

...
...

Column sum 1−
⌊
n
p

⌋
/n

(⌊
n
p

⌋
−
⌊

n
p2

⌋)
/n

(⌊
n
p2

⌋
−
⌊

n
p3

⌋)
/n · · ·

(⌊
n

pk−1

⌋
−
⌊

n
pk

⌋)
/n

(⌊
n
pk

⌋
−
⌊

n
pk+1

⌋)
/n

Since p (0, 0) is the only nonzero entry in the zeroth row, we necessarily have

p (0, 0) = 1− 1/p. (7)

Since p (0, 0) and p (1, 0) are the only possible nonzero entries in the zeroth column, we
necessarily have

p (0, 0) + p (1, 0) = 1− ⌊n/p⌋
n

.

Thus,

p (1, 0) = 1− ⌊n/p⌋
n

− p (0, 0)
(7)
= 1/p− ⌊n/p⌋

n
. (8)

Since p (1, 0) and p (1, 1) are the only entries in the first row, it follows that

p (1, 0) + p (1, 1) =
1− 1/p

p
,

so

p (1, 1) =
1− 1/p

p
− p (1, 0)

(8)
=

⌊n/p⌋
n

− 1/p2. (9)

Since p (1, 1) and p (2, 1) are the only entries in the first column,

p (1, 1) + p (2, 1) =
⌊n/p⌋ − ⌊n/p2⌋

n
.

Thus,

p (2, 1) =
⌊n/p⌋ − ⌊n/p2⌋

n
− p (1, 1)

(9)
= 1/p2 − ⌊n/p2⌋

n
. (10)

Similarly, it follows that

p (2, 2) =
1− 1/p

p2
− p (2, 1)

(10)
=

(
1/p2 − 1/p3

)
−
(
1/p2 − ⌊n/p2⌋

n

)
=

⌊n/p2⌋
n

− 1/p3.
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Continuing in this fashion, we can obtain formulas for the entries
p (3, 2) , p (3, 3) , . . . , p (k, k − 1) , p (k, k); each row and column will have at most
two nonzero entries except the last column (since we have yet to assign values to the
entries p (i, k) for i > k). By construction,

p (i, i) =
⌊n/pi⌋

n
− 1

pi+1
, 0 ≤ i ≤ k, (11)

and

p (i+ 1, i) = 1/pi+1 − ⌊n/pi+1⌋
n

, 0 ≤ i ≤ k − 1. (12)

Before we deal with the final column, let us show that the terms we have constructed in
equation (11) are positive and the terms given by (12) are nonnegative. The case i = 0 has
been resolved by equations (7, 8), so consider 1 ≤ i ≤

⌊
logp n

⌋
. By the division algorithm

(the use of the division algorithm was suggested by [8]), we have

n = qpi + r, 0 ≤ r < pi, q ∈ N. (13)

Therefore,

p (i, i)
(11)
=

⌊n/pi⌋
n

− 1

pi+1

(13)
= q/n− 1/pi+1

=
qpi+1 − n

npi+1

=
qpi (p− 1)− r

npi+1

(13)
> 0,

and

p (i+ 1, i)
(12)
=

1

pi+1
− ⌊n/pi+1⌋

n
≥ 0.

At the moment, we have only assigned one entry in the final column, namely,
p
(⌊
logp n

⌋
,
⌊
logp n

⌋)
. By equation (11), we have

p
(⌊
logp n

⌋
,
⌊
logp n

⌋)
=

⌊
n

p⌊logp n⌋

⌋
n

− 1

p⌊logp n⌋+1
.

Moreover, since in rows i >
⌊
logp n

⌋
all entries in Table 2 are zero except in the final

column, we necessarily have

p
(
i,
⌊
logp n

⌋)
= row i sum

(5)
=

1− 1/p

pi
, i >

⌊
logp n

⌋
. (14)
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Summing over the entries in the final column, leads to

p
(⌊
logp n

⌋
,
⌊
logp n

⌋)
+

∑
i>⌊logp n⌋

1− 1/p

pi
= column

⌊
logp n

⌋
sum

(6)
=

⌊
n

p⌊logp n⌋

⌋
-
⌊

n

p⌊logp n⌋+1

⌋
n

=

⌊
n

p⌊logp n⌋

⌋
n

.

Thus, upon summing a geometric series, we have

p
(⌊
logp n

⌋
,
⌊
logp n

⌋)
=

⌊
n

p⌊logp n⌋

⌋
n

−
∑

i>⌊logp n⌋

p− 1

pi+1

=

⌊
n

p⌊logp n⌋

⌋
n

− 1

p⌊logp n⌋+1
,

which is consistent with the value of p
(⌊
logp n

⌋
,
⌊
logp n

⌋)
determined by equation (11).

This completes the construction of the coupling
(
Z ′

p, C
′
p (n)

)
of Zp and Cp (n) satisfying

the constraint (1). Moreover, constraint (1) implies that Z ′
p pointwise dominates C ′

p (n);
thus, by Theorem 3.1, inequality (2) is true. □

3.1 Maximal Couplings of Cp (n) and Zp Satisfying Constraint (1)

In this section, we will prove Theorem 1.4b-c. First we describe the notion of a maximal
coupling, and then we show that any coupling of Cp (n) and Zp satisfying (1) (e.g., any
coupling whose joint probability table is of the form given by Table 2) is a maximal
coupling of Cp (n) and Zp if and only if n = pk for some positive integer k (Theorem
1.4b). Then we give a short proof of Theorem 1.4c, which is basically a corollary of
Theorem 1.4b. The following definition appears in Section 4.1 of [10].

Definition 3.2 Let I be an arbitrary index set. Suppose (X ′
i)i∈I is a coupling of the

collection of random variables Xi, i ∈ I. A coupling event is an event C such that

C ⊆
{
X ′

i = X ′
j for all i, j ∈ I

}
. (15)

Suppose that the variables Xi, i ∈ I are discrete and take values in a finite or countable
set E, and denote the PMF of Xi by pi. A coupling is a maximal coupling if the event
inequality (15) holds with equality. The sum

∑
x∈E infi∈I pi (x) is the maximal coupling

probability.
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Visually, Theorem 1.4b says that the coupling in Table 2 is maximal if and only if
the entries below the main diagonal are 0 for columns labeled 0, 1, . . . , ⌊logp n⌋ − 1; and
this is due to the fact that, by equation (12), p (i+ 1, i) = 0 when n = pk. The following
theorem (see Section 4.2 of [10]) gives a formula for the maximal coupling probability.

Theorem 3.3 Let I denote an index set. Suppose Xi, i ∈ I, are discrete random variables
taking values in a finite or countable set E. Then there exists a maximal coupling; i.e.,
there exists a coupling with coupling event C such that P (C) =

∑
x∈E infi∈I pi (x).

By Theorem 3.3 and equations (5) and (6) the maximal coupling probability of Cp (n)
and Zp is

⌊logp n⌋∑
l=0

min

{⌊
n/pl

⌋
−
⌊
n/pl+1

⌋
n

,
1− 1/p

pl

}
.

Proof. [Proof of Theorem 1.4b.] The proof of theorem 1.4a provided in Section 3
proved the existence of a coupling of Zp and Cp (n) satisfying equation (1); it suffices to
show that equation (1) corresponds to a maximal coupling of Zp and Cp (n) if and only
if n = pk.

Suppose n = pk. Then ⌊
n/pl

⌋
−
⌊
n/pl+1

⌋
n

=

{
1−1/p

pl
l ̸= k,

1/n l = k

which implies

min

{⌊
n/pl

⌋
−
⌊
n/pl+1

⌋
n

,
1− 1/p

pl

}
=

1− 1/p

pl
(16)

for each l = 0, 1, . . . , k. Therefore,

P
(
C ′

p (n) = Z ′
p

)
=

k∑
l=0

p (l, l)

(11)
=

k∑
l=0

(⌊
n/pl

⌋
n

− 1

pl+1

)

=
k∑

l=0

(
1/pl − 1/pl+1

)
(16)
=

k∑
l=0

min

{⌊
n/pk

⌋
−
⌊
n/pk+1

⌋
n

,
1− 1/p

pl

}
.

By Theorem 3.3, this shows that the coupling in Table 2 is indeed a maximal coupling of
Cp (n) and Zp when n = pk.
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Conversely, suppose that n ̸= pk for every nonnegative integer k. Then at least one of
the terms p (i+ 1, i) , i = 0, 1, . . . , k − 1, in Table 2 is positive. To see this, note that n is
of the form n = plb, where 0 ≤ l ≤ k − 1, b > 1, and p does not divide b; thus,

p (l + 1, l)
(12)
=

1

pl+1
− ⌊n/pl+1⌋

n
> 0.

Therefore,

p (l + 1, l + 1) = P (Zp = l + 1)− p (l + 1, i)

=
1− 1/p

pl+1
−
(

1

pl+1
− ⌊n/pl+1⌋

n

)
=

⌊n/pl+1⌋
n

− 1

pl+2

<
⌊n/pl+1⌋

n
− ⌊n/pl+2⌋

n
.

= P (Cp (n) = l + 1) ;

thus, p (l + 1, l + 1) is less than min {P (Zp (n) = l + 1) ,P (Cp (n) = l + 1)}, which implies

that
∑k

l=0 p (l, l) is strictly less than the maximal coupling probability. Therefore, the
coupling in Table 2 is not maximal in this case. □
Proof. [Proof of Theorem 1.4c.] If n = pk for some positive integer k, then the

maximal coupling probability was expressed as
∑k

l=0

(
1−1/p

pl

)
in the proof of Theorem

1.4b, and
k∑

l=0

(
1− 1/p

pl

)
= 1− 1

np
.

Moreover, by equation (12) the entries p (i+ 1, i), where 0 ≤ i < k, are 0, and this gives
a unique solution to Table 2.

Now we will show that if n = pk, then any maximal coupling of Zp and Cp (n) satisfies
the constraint

C ′
p (n) =

{
Z ′

p if Z ′
p ≤ k,

k if Z ′
p > k,

which is a special case of equation (1) (and therefore corresponds to a maximal coupling
by Theorem 1.4b). Note that in the case n = pk, by equations (5, 6), the row i sum equals
the column i sum in Table 2 if 0 ≤ i ≤ k− 1. Thus, if any of the entries not on the main
diagonal of the sub-table obtained by removing column k of Table 2 are nonzero, this will
ensure that at least one of the entries p (i, i) will be less than the row i sum – as a result,
the coupling will not be maximal. □

4 Combinatorial Optimization and Stochastic Domination

In this section, we will use a theorem proved by Volker Strassen to prove inequality (2).
Strassen’s theorem provides a necessary and sufficient criterion for the existence of a
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joint probability distribution given a set of marginal distributions and constraints. As a
consequence, it can be applied to model the dependence between random variables.

Let S and T be complete metric spaces. Denote by pS the projection of the Cartesian
product S × T onto S. Let ω be a nonempty closed subset of S × T and ε ≥ 0. The
following result is Theorem 11 of [9].

Theorem 4.1 (Strassen) There is a probability measure λ in S×T with marginals µ and
ν such that λ (ω) ≥ 1− ε if and only if for all closed sets L ⊆ T

ν (L) ≤ µ (pS (ω ∩ (S × L))) + ε. (17)

Proof. [Proof of Inequality (2).] Let us define

S := Z≥0,

T :=
{
0, 1, . . . ,

⌊
logp n

⌋}
,

corresponding to the support of Zp and the support of Cp (n), respectively. Let us endow
S and T with metrics, denoted by dS and dT , by restricting the Euclidean metric d on R
given by

d (x, y) = |x− y| ,
to the sets S and T , respectively. Since S is countably infinite and T is finite, both S and
T are separable. In S and T , we have

i1 ̸= i2 =⇒ dS (i1, i2) ≥ 1

and
j1 ̸= j2 =⇒ dT (j1, j2) ≥ 1.

Therefore, every Cauchy sequence in S converges in S, and every Cauchy sequence in
T converges in T . Thus, S and T are complete separable metric spaces. Let us apply
Strassen’s theorem with

ω = {i, j : i ∈ S, j ∈ T, j ≤ i} ,
µp (i) = P (Zp = i) , i ∈ S,

ν(n,p) (j) = P (Cp (n) = j) , j ∈ T,

λ = p (·, ·) ,
L ⊆

{
0, 1, . . . ,

⌊
logp n

⌋}
,

ε = 0,

where p (·, ·) is our desired joint PMF with marginals corresponding to Zp and Cp (n)
satisfying

Cp (n) = j > i = Zp =⇒ p (i, j) = 0.

Endow ω with the metric dω obtained by restricting the metric

dS×T ((i1, j1) , (i2, j2)) := max {dS (i1, i2) , dT (i1, i2)}
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on S × T to ω. The set ω is closed since both S and T are closed. Further, ω ̸= ∅ since,
e.g., (0, 0) ∈ ω. Moreover,

ν(n,p) (L) =
∑
j∈L

P (Cp (n) = j)

and

µp (pS (ω ∩ (S × L))) = P (Zp ∈ pS (ω ∩ (S × L)))

= P (Zp ≥ minL)

(4)
= 1/pminL.

Therefore, inequality (17) reduces to∑
j∈L

P (Cp (n) = j) ≤ 1

pminL
+ ε. (18)

Furthermore, ∑
j∈L

P (Cp (n) = j)
(6)
=
∑
j∈L

⌊n/pj⌋ − ⌊n/pj+1⌋
n

≤
maxL∑

j=minL

⌊n/pj⌋ − ⌊n/pj+1⌋
n

=

⌊
n/pminL

⌋
n

−
⌊
n/p1+maxL

⌋
n

≤ 1/pminL.

Thus, inequality (18) is true when ε = 0. Therefore, p (ω) ≥ 1−ε = 1; thus, by Strassen’s
theorem, there exists a coupling

(
Z ′

p, C
′
p (n)

)
of Zp and Cp (n) such that Z ′

p pointwise
dominates C ′

p (n). By Theorem 3.1, this proves inequality (2). □

5 Bipartite Graphs Corresponding to Cp (n) and Zp

In this section, we will construct a bipartite graph corresponding to our coupling in Section
3, and then we will prove Theorem 1.4d by showing that the bracing of the ∞×⌊logp (n)⌋
grid corresponding to our bipartite graph is rigid if and only if n is not divisible by p.

Consider the following bracing problem described in pp. 74-75 of [4]: “A rectangular
grid constructed of rigid struts can flex in many ways if no diagonal braces are included.
Even if some braces are present, flexing may be possible.” Figure 3 provides two examples
of 3× 3 rectangular grids in which flexing occurs.
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Figure 3: Flexing in a 3× 3 grid: (A) without bracing and (B) with bracing.

(a) non-braced grid (b) braced grid

For each braced grid, we can identify its corresponding bipartite graph by drawing an
edge from vertex i to vertex j whenever there is a brace in cell (i, j) of the grid.

One variation of rigid bracing, known as tension bracing, is discussed on page 85 of [1].
In this setting, the cells are braced by wires, instead of rods, which may bend to shorter
lengths among flexing.
Proof. [Proof of Theorem 1.4d.] When n is not divisible by p, the terms p (i+ 1, i),
0 ≤ i ≤ k − 1, defined by equation (12) are positive. In Section 3, it was shown that
p (i, i) > 0 when 0 ≤ i ≤ k. Moreover, when i ≥ k, we have

p (i, k)
(14)
=

1− 1/p

pi
> 0.

Thus, when n is not divisible by p, Table 2 corresponds to the bipartite graph shown in
Figure 4 - an edge is drawn between the vertex Z ′

p = i and the vertex C ′
p (n) = j whenever

p (i, j) > 0.
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Figure 4: A bipartite graph corresponding to the coupling of Zp and Cp (n) given by Table
2 when n is not divisible by p.

0 0

1 1

2 2

...
...

⌊logp (n)⌋ − 1

⌊logp (n)⌋

⌊logp (n)⌋ − 1

⌊logp (n)⌋

⌊logp (n)⌋+ 1

⌊logp (n)⌋+ 2

⌊logp (n)⌋+ 3

...

C ′
p (n) Z ′

p

Moreover, by [2], it is known that a finite braced grid is rigid (i.e., no flexing occurs) if
and only if the corresponding bipartite graph is connected. The bipartite graph in Figure
4 is connected since there is a path between any two vertices, regardless of which set they
are in. Therefore, the grid in Figure 5 is rigid.
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Figure 5: An ∞ × ⌊logp (n)⌋ rigid braced grid corresponding to the bipartite graph in
Figure 4.

...
...

...
...

...
...

...
...

...
...

. . .

C ′
p (n)

Z ′
p

For if the grid in Figure 5 was not rigid, then there would exist a smallest row label l
such that a cell in the lth row bends or flexes. To see that this is not possible, note the
corresponding bipartite subgraph obtained by removing the vertices Z ′

p > l in Figure 4 is
connected.

On the other hand, if n is divisible by p, then the by (8) the term p (1, 0) is equal
to zero; as a result, there is no edge connecting the vertices Z ′

p = 1 and C ′
p (n) = 0 in

the bipartite graph. This proves that the corresponding bipartite graph is not connected;
thus, the grid is not rigid when n is divisible by p. □
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[5] D. Dentcheva, A. Ruszczyński, Optimization with stochastic dominance constraints, SIAM Journal
on Optimization, 14 (2003), 548–566.

[6] S. Goldstein, Maximal coupling, Z. Wahrscheinlichkeitstheor. Verw. Geb., 46 (1979), 193–204.

[7] G. Grimmett, D. Stirzaker, Probability and Random Processes, Oxford University Press, 2001.

[8] Is
⌊

n
pi

⌋
> n

pi+1 , for n ≥ 1, p ≤ n any prime, and 0 ≤ i ≤ ⌊logp n⌋, avail-

able online at the URL: https://math.stackexchange.com/questions/2452461/

is-left-lfloor-fracnpi-right-rfloor-fracnpi1-for-n-ge1-p

[9] V. Strassen, The existence of probability spaces with given marginals, Ann. Math. Stat., 36 (1965),
423–439.

[10] H. Thorisson, Coupling, Stationarity, and Regeneration, Springer, 2000.

Joseph Squillace
University of the Virgin Islands
10000 Castle Burke
Kingshill, USVI 00850-9960
E-mail: joseph.squillace@uvi.edu

Carissa George
University of the Virgin Islands
10000 Castle Burke
Kingshill, USVI 00850-9960
E-mail: carissa.george@students.uvi.edu

Received: December 19, 2024 Accepted: May 16, 2025
Communicated by Steven J. Miller

the pump journal of undergraduate research 8 (2025), 322–337 337

https://math.stackexchange.com/questions/2452461/is-left-lfloor-fracnpi-right-rfloor-fracnpi1-for-n-ge1-p
https://math.stackexchange.com/questions/2452461/is-left-lfloor-fracnpi-right-rfloor-fracnpi1-for-n-ge1-p

	Introduction
	Stochastic Domination via Direct Computation of Cumulative Distribution Functions
	Constructing a Coupling of Zp and Cp(n) with Cp(n)Zp Pointwise
	Maximal Couplings of Cp(n) and Zp Satisfying Constraint (1)

	Combinatorial Optimization and Stochastic Domination
	Bipartite Graphs Corresponding to Cp(n) and Zp

