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Abstract - We prove a generalized non-stationary version of the fiber contraction mapping
theorem. It was originally used by Hirsch and Pugh, in 1970, to prove that the stable
foliation of a C2 Anosov diffeomorphism of a surface is C1. Our generalized principle was
recently used by the first author to prove an analogous regularity result for stable foliations
of non-stationary systems. The result is stated in a general setting so that it may be used
in future dynamical results in the random and non-stationary settings, especially for graph
transform arguments.
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Introduction

The contraction mapping principle is a classical result in mathematical analysis that has
an numerous applications in the theory of iterated function systems, Newton’s method,
the Inverse and Implicit Function Theorems, ordinary and partial differential equations,
and more (see [3], and references therein, for a survey of applications). Many versions
of this principle and converses have been studied and examined in different spaces. A
detailed historical note of this theorem can be found in [16].

This principle is frequently used in various areas of dynamical systems, especially in
smooth dynamics. Since the early 1970s, it has been used in graph transform arguments
to prove various existence and regularity results of stable foliations of hyperbolic systems
[13, 14].

Recently, hyperbolic dynamics have been used in studying the so-called trace maps
[4, 5, 9]. Understanding the dynamical behavior of these maps is a useful tool in deriving
spectral properties of discrete Schrödinger operators with Sturmian potential [2, 7, 8, 10,
11, 12, 18, 20]. One promising approach to advance these results is to further develop the
theory in the non-stationary case.

In the random and non-stationary settings, existence and smoothness of stable man-
ifolds is well understood (see for example Chapter 7 of [1]). In the non-stationary or
non-autonomous settings, questions regarding dynamical properties of Anosov families
such as existence of stable manifolds [23], openness in the space of two-sided sequences of
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diffeomorphisms [21], and structural stability [6, 22] have been addressed. When it comes
to regularity of non-stationary stable foliations, only partial results are available, such as
when the sequence of maps has a constant tail [24] or for a neighborhood of a common
fixed point of the maps [25], but our overall goal is to derive regularity results of these
foliations, currently not available in the literature. Our primary motivation comes from
questions on spectral properties of Sturmian Hamiltonians.

This note is dedicated to providing the preliminary technical contraction mapping
principles that will be useful in these non-stationary settings. In [19], it is proved that
the non-stationary stable foliation of a collection of diffeomorphisms of T2 that satisfy
a common cone condition, and have uniformly bounded C2 norms, is a C1 foliation of
T2. This result generalizes the classical version in [13] where it is proved that the stable
foliation of a C2 Anosov diffeomorphism of a surface is C1. In [13], a fibered version of the
contraction mapping principle is used to prove this C1 smoothness, and this paper is ded-
icated to supplying the appropriate generalized version of this principle to be applicable
in [19] and future analogous results.

Given complete metric spaces X and Y , we consider a sequence of maps (fn), fn :
X → X, and for each x ∈ X, a sequence of maps (hx

n), h
x
n : Y → Y . Given a sequence of

skew maps (Fn) via

Fn : X × Y → X × Y, (x, y) 7→ (fn(x), h
x
n(y)) ,

we show that under uniform contraction rates and reasonable continuity and bounded
orbit assumptions that there is a (x∗, y∗) ∈ X × Y such that

lim
n→∞

F1 ◦ · · · ◦ Fn(x, y) = (x∗, y∗)

for all (x, y) ∈ X × Y . Outside of its direct application in [19], this result has the
potential to be used for various dynamical techniques in the random or non-stationary
settings. This paper is a result of an undergraduate research project, supervised by the
first author, that occurred during the Summer and Fall quarters of 2024.

Background and Main Results

Given a metric space (X, d) and a mapping f : X → X, we define the Lipschitz constant
of f to be

Lip(f) := sup
x1 ̸=x2

d (f(x1), f(x2))

d(x1, x2)
.

If Lip(f) < 1, then we say that f is a contraction on X. An element x∗ ∈ X is a fixed
point of f if

f (x∗) = x∗.

Theorem 1 (Contraction Mapping Principle). If X is a complete metric space and f :
X → X is a contraction on X, then f has a unique fixed point x∗ ∈ X and moreover,

lim
n→∞

fn(x) = x∗

for all x ∈ X.
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Our goal is to generalize the following fibered version of this principle.

Theorem 2 (Fiber Contraction Principle [13]). Let X be a space, Y be a metric space,
f : X → X a mapping, and {gx}x∈X a family of maps gx : Y → Y such that

F : X × Y → X × Y, (x, y) 7→ (f(x), gx(y))

is continuous. Suppose that p ∈ X is a fixed point of f satisfying lim
n→∞

fn(x) = p for all

x ∈ X, q ∈ Y is a fixed point of gp, and

lim sup
n→∞

Lip
(
gfn(x)

)
< 1

for all x ∈ X. Then, (p, q) ∈ X × Y is a fixed point of F satisfying

lim
n→∞

F n(x, y) = (p, q),

for all (x, y) ∈ X × Y .

The following theorem is a non-stationary version of the Contraction Mapping Prin-
ciple.

Theorem 3. Let (X, d) be a complete metric space and (fn), fn : X → X, a sequence of
contractions. If

µ := sup
n∈N

Lip(fn) < 1

and there is a x0 ∈ X such that (d(fn(x0), x0)) is bounded, then there is a x∗ ∈ X such
that

lim
n→∞

f1 ◦ · · · ◦ fn(x) = x∗

for all x ∈ X.

The next theorem is a non-stationary version of the Fiber Contraction Mapping Prin-
ciple.

Theorem 4. Let X and Y be complete metric spaces. Suppose that (fn), fn : X → X,
is a sequence of mappings such that

µ := sup
n∈N

Lip (fn) < 1. (1)

For each x ∈ X, let (hx
n), h

x
n : Y → Y , be a sequence of mappings such that

λ := sup
n∈N

sup
x∈X

Lip (hx
n) < 1. (2)

Suppose that

(1) There is a x0 ∈ X such that {fn(x0)}n∈N is bounded in X;
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(2) For any bounded set Ω ⊂ X × Y , the set {hx
n(y)}(x,y)∈Ω,n∈N is bounded in Y ;

(3) For any bounded set K ⊂ Y and any n ∈ N, we have lim
|x−x′|→0

dY
(
hx
n(y), h

x′
n (y)

)
= 0,

and this limit is uniform in y ∈ K.

Then, for the skew-maps Fn : X × Y → X × Y , defined via Fn(x, y) := (fn(x), h
x
n(y)),

there is a (x∗, y∗) ∈ X × Y such that

lim
n→∞

F1 ◦ · · · ◦ Fn(x, y) = (x∗, y∗)

for all (x, y) ∈ X × Y .

1 Proofs of the Main Theorems

We first prove Theorem 3.

Proof of Theorem 3. Denote

M := sup
n∈N

{d(fn(x0), x0)} .

Suppose n,m ∈ N with m > n. Then,

d (f1 ◦ · · · ◦ fn(x), f1 ◦ · · · ◦ fm(x)) ≤ µnd(fn+1 ◦ . . . ◦ fm(x0), x0), (3)

and by the triangle inequality,

d(fn+1 ◦ . . . ◦ fm(x0), x0)

≤ d (fn+1(x0), x0) +
m−n∑
i=2

d (fn+1 ◦ · · · ◦ fn+i(x0), fn+1 ◦ · · · ◦ fn+i−1(x0))

≤ d (fn+1(x0), x0) +
m−n∑
i=2

µi−1d (fn+i(x0), x0)

≤ M
m−n∑
i=1

µi−1 ≤ M
∞∑
i=1

µi−1.

It follows that

d (f1 ◦ · · · ◦ fn(x), f1 ◦ · · · ◦ fm(x)) ≤ µnM

∞∑
i=1

µi−1 → 0,

as n,m → ∞, so that (f1 ◦ · · · ◦ fn(x0)) is a Cauchy sequence. Since X is complete, there
is a x∗ ∈ X such that

lim
n→∞

f1 ◦ · · · ◦ fn(x0) = x∗.
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If x ∈ X, then

d (f1 ◦ · · · ◦ fn(x), f1 ◦ · · · ◦ fn(x0)) ≤ µnd(x, x0) → 0

as n → ∞, and hence
lim
n→∞

f1 ◦ · · · ◦ fn(x) = x∗.

Remark 1. Notice that from the proof, we deduced that the condition that (d(fn(x0), x0))
is a bounded sequence implies that the set {fk ◦ · · · ◦ fl(x0)}k≤l is bounded in X, due to
the uniform contraction rates of the maps.

We also note that this condition cannot be removed. As an example, let X = R and
define fn : R → R via fn(x) :=

1
2
x+ 3n. Then, we have that

f1 ◦ · · · ◦ fn(0) =
n∑

i=1

3i

2i−1
→ ∞

as n → ∞.

We now prove Theorem 4.

Proof of Theorem 4. If πY : X × Y → Y is the projection map πY (x, y) = y, then for
each k ≤ n, we have

πY ◦ Fk ◦ · · · ◦ Fn(x, y) = h
fk+1···fnx
k · · ·hx

n(y). (4)

From Remark 1, we know there is a M = M(x0) > 0 such that

dX (fk ◦ · · · ◦ fl(x0), x0) < M (5)

for all k ≤ l. Fix y0 ∈ Y . By condition (2), there is an S > 0 such that

dY (hx
n(y0), y0) < S

for all n ∈ N and x ∈ BM(x0). From the triangle inequality, (2), and (5), if k ≤ n, we
have

dY

(
h
fk+1···fnx0

k · · ·hx0
n (y0), y0

)
≤ dY

(
h
fk+1···fnx0

k (y0), y0

)
+

n−k∑
i=2

dY

(
h
fk+1···fnx0

k ◦ · · · ◦ hfk+j+1···fnx0

k+j (y0), h
fk+1···fnx0

k ◦ · · · ◦ hfk+j ···fnx0

k+j−1 (y0)
)

≤ dY

(
h
fk+1···fnx0

k (y0), y0

)
+

n−k∑
i=2

λi−1dY

(
h
fk+j+1···fnx0

k+j (y0), y0

)
≤ S

n−k∑
i=1

λi−1.

That is,

dY

(
h
fk+1◦···◦fnx0

k ◦ · · · ◦ hfnx0

n−1 ◦ hx0
n (y0), y0

)
< L := S

∞∑
i=1

λi−1 (6)

for all k ≤ n.
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Claim 1. There is a y∗ ∈ Y such that

lim
n→∞

hf2···fnx0

1 ◦ · · · ◦ hx0
n (y0) = y∗.

Proof of Claim 1. Let ϵ > 0. Choose N0 such that

2λN0−1L < ϵ. (7)

By condition (3), there is a δ > 0 such that if dX(x, x
′) < δ, x, x′ ∈ BM(x0), then

dY

(
hx
n(y), h

x′

n (y)
)
< ϵ, (8)

for all y ∈ BL(y0) and n = 1, 2, . . . , N0. Choose N1 such that

µN1M < δ. (9)

Now, suppose m,n > Ñ := N0 +N1 with m > n. For j = 1, . . . , N0, define

Aj := dY

(
πY ◦ Fj ◦ · · · ◦ Fm(x0, y0), h

fj+1···fm(x0)
j (πY ◦ Fj+1 ◦ · · · ◦ Fn(x0, y0))

)
,

Bj := dY

(
h
fj+1···fm(x0)
j ◦ πY ◦ Fj+1 ◦ · · · ◦ Fn(x0, y0), πY ◦ Fj ◦ · · · ◦ Fn(x0, y0)

)
,

and
Cj := dY (πY ◦ Fj ◦ · · · ◦ Fm(x0, y0), πY ◦ Fj ◦ · · · ◦ Fn(x0, y0)) .

We will show that
C1 ≤ (Constant) · ϵ

for some constant that only depends on λ. First, we derive relations between the quantities
Aj, Bj and Cj.

Notice that from (4) and (6), we have

CN0 ≤ 2L (10)

and by the triangle inequality, we have

Cj ≤ Aj +Bj. (11)

In addition, since

Aj =

dY

(
h
fj+1···fm(x0)
j (πY ◦ Fj+1 ◦ · · · ◦ Fm(x0, y0)) , h

fj+1···fm(x0)
j (πY ◦ Fj+1 ◦ · · · ◦ Fn(x0, y0))

)
,

by (2), this implies that
Aj ≤ λCj+1. (12)
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Also, since j ≤ N0, we have that

n− j ≥ Ñ −N0 = N1

so from (1), (5), and (9), we have

dX (fj+1 ◦ · · · ◦ fm(x0), fj+1 ◦ · · · ◦ fn(x0)) ≤ µn−jdX(fn+1 ◦ · · · ◦ fm(x0), x0) ≤ µN1M < δ.

Since

Bj =

dY

(
h
fj+1···fm(x0)
j (πY ◦ Fj+1 ◦ · · · ◦ Fn(x0, y0)) , h

fj+1···fn(x0)
j ◦ (πY ◦ Fj+1 ◦ · · · ◦ Fn(x0, y0))

)
in combination with (6) and (8), this implies that

Bj < ϵ, (13)

for all j ≤ N0. By a repeated application of equations (11), (12), and (13), we have

dY (πY ◦ F1 ◦ · · · ◦ Fm(x0, y0), πY ◦ F1 ◦ · · · ◦ Fn(x0, y0)) = C1

≤ A1 +B1 ≤ λC2 + ϵ

≤ λ(A2 +B2) + ϵ ≤ λ2C3 + λϵ+ ϵ

≤ λ2(A3 +B3) + λϵ+ ϵ ≤ λ3C4 + λ2ϵ+ λϵ+ ϵ

≤ · · · ≤ λN0−1CN0 + λn−2ϵ+ · · ·+ λϵ+ ϵ

≤ 2λN0−1L+ λn−2ϵ+ · · ·+ λϵ+ ϵ

≤ ϵ+ ϵ
n−2∑
i=0

λi ≤

(
1 +

∞∑
i=0

λi

)
· ϵ,

where the third to last inequality follows from (10) and the second to last follows from
(7). We conclude that (πY ◦ F1 ◦ · · · ◦ Fn(x0, y0)) is a Cauchy sequence in Y and hence
convergent, since Y is complete.

Denoting the limit of the sequence (πY ◦ F1 ◦ · · · ◦ Fn(x0, y0))n∈N by y∗, we see that
for any y ∈ Y , we have

dY (πY ◦ F1 ◦ · · · ◦ Fn(x0, y), πY ◦ F1 ◦ · · · ◦ Fn(x0, y0)) ≤ λndY (y, y0) → 0

as n → ∞, so that
lim
n→∞

πY ◦ F1 ◦ · · · ◦ Fn(x0, y) = y∗. (14)

Claim 2. For each x ∈ X and y ∈ Y , we have

lim
n→∞

πY ◦ F1 ◦ · · · ◦ Fn(x, y) = y∗.
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Proof of Claim 2. Let ϵ > 0, x ∈ X, y ∈ Y . Set L′ := dY (y, y0) + L. By property (2),
there is a S ′ > 0 such that if dX (x′, x′′) < dX(x, x0), then

d
(
hx′

n (y), h
x′′

n (y)
)
≤ S ′ (15)

for all y ∈ BL′(y0) and n ∈ N. Choose N0 so large such that

S ′
∞∑

i=N0

λi < ϵ. (16)

By condition (3), there is a δ > 0 such that if dX(x
′, x′′) < δ, then

dY

(
hx′

n (y), h
x′′

n (y)
)
< ϵ, (17)

for all y ∈ BL′(y0) and n = 1, 2, . . . , N0. Choose N1 so large such that

µN1d(x, x0) < δ. (18)

Suppose n > Ñ := N0 +N1. Let us adopt the notation

T x
k := hf2···fnx

1 ◦ · · · ◦ hfk+1···fnx
k

so that
πY ◦ F1 ◦ · · · ◦ Fn(x, y) = T x

k−1 (πY ◦ Fk ◦ · · · ◦ Fn(x, y))

for each k ≤ n. Define

Ak := dY
(
T x
k−1(πY ◦ Fk ◦ · · · ◦ Fn(x, y), T

x
k−1 (πY ◦ Fk ◦ · · · ◦ Fn(x0, y))

)
Bk := dY

(
h
fk+1···fnx
k (πY ◦ Fk+1 ◦ · · · ◦ Fn(x0, y)) , h

fk+1···fnx0

k (πY ◦ Fk+1 ◦ · · · ◦ Fn(x0, y))
)

and
Ck := dY (T x

k (πY ◦ Fk+1 ◦ · · · ◦ Fn(x0, y)) , T
x0
n (y0))

for k ≤ n.
We will show that

Cn ≤ (Constant) · ϵ

for some constant that only depends on λ, but we first establish relations between the
quantities Ak, Bk and Ck.

First notice that by definition of Ak and Bk, and (2), we have

Ak ≤ λk−1Bk, (19)

and by the triangle inequality,
Ck ≤ Ak + Ck−1. (20)
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From (6), (2) and the triangle inequality, we have

dY (πY ◦ Fk+1 ◦ · · · ◦ Fn(x0, y), y0)

≤ dY (πY ◦ Fk+1 ◦ · · · ◦ Fn(x0, y), πY ◦ Fk+1 ◦ · · · ◦ Fn(x0, y0))

+ dY (πY ◦ Fk+1 ◦ · · · ◦ Fn(x0, y0), y0)

≤ λn−kdY (y, y0) + dY (πY ◦ Fk+1 ◦ · · · ◦ Fn(x0, y0), y0)

≤ dY (x0, y0) + L = L′.

and also

dX (fk+1 ◦ · · · ◦ fn(x), fk+1 ◦ · · · ◦ fn(x0)) ≤ µn−kd(x, x0) ≤ dX(x, x0)

for all k ≤ n. So, from (15), we have

Bk ≤ S ′, (21)

for all k ≤ n. Also, for k ≤ N0, we have that

n− k ≥ Ñ −N0 = N1,

so from (1) and (18), we know that

dX (fk+1 ◦ · · · ◦ fn(x0), fk+1 ◦ · · · ◦ fn(x)) ≤ µn−kdX(x, x0) ≤ µN1d(x, x0) < δ.

Thus, from (17), we have

Bk ≤ ϵ (22)

for all k ≤ N0. Now, using a repeated application of (19) and (20), we have

dY (πY (F1 ◦ · · · ◦ Fn(x, y)) , πY (F1 ◦ · · · ◦ Fn(x0, y0))) = Cn

≤ An + Cn−1 ≤ λn−1Bn + An−1 + Cn−2

≤ λn−1Bn + λn−2Bn−1 + An−2 + Cn−3

≤ λn−1Bn + λn−2Bn−1 + λn−3Bn−2 + An−3 + Cn−4

≤ · · · ≤ λn−1Bn + λn−2Bn−1 + · · ·+ λB2 +B1

and from (21), (22) and (16), the last quantity satisfies

n∑
k=1

λk−1Bk ≤
N0∑
k=1

λk−1Bk +
n∑

k=N0+1

λk−1Bk

≤ ϵ

N0∑
k=1

λk−1 + ϵ ≤

(
1 +

∞∑
k=1

λk−1

)
· ϵ.

Therefore,

lim
n→∞

dY (πY (F1 ◦ · · · ◦ Fn(x, y)) , πY (F1 ◦ · · · ◦ Fn(x0, y0))) = 0,

so from (14), the claim holds.
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Combining these claims with Lemma 3 implies that there is some x∗ ∈ X such that

lim
n→∞

F1 ◦ · · · ◦ Fn(x, y) = (x∗, y∗)

for all (x, y) ∈ X × Y .

Remark 2. Notice that condition (4) can be reformulated as the assumption that for
bounded K ⊂ Y , the family of maps {x 7→ hx

n}y∈K is uniformly equicontinuous for each
n ∈ N. This is analogous to the continuity assumption in the Fiber Contraction Theorem.

We now give examples demonstrating the conditions (2) and (3) cannot be removed
in Theorem 4. Notice that condition (1) cannot be removed by Remark 1.

Example. Condition (2) cannot be removed for if we set X = Y = R, and for all x, y ∈ R
and n ∈ N, set fn(x) = 1

2
x and hx

n(y) =
1
2
y + 3n, then

limπY ◦ F1 ◦ · · · ◦ Fn(0, 0) =
n∑

i=1

3i

2i−1
→ ∞

as n → ∞.

Example. Condition (3) cannot be removed for if we set X = Y = R, and for all x, y ∈ R
and n ∈ N, we have fn(x) =

1
2
x and

hx
n(y) =

{
0 x = 0
1
2

(
y − 1

4

)
+ 1

4
x ̸= 0

,

then

lim
n→∞

F1 ◦ · · · ◦ Fn(x, y) =

{
(0, 0) if x = 0(
0, 1

4

)
if x ̸= 0

.
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