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Abstract - The concept of zero forcing involves a dynamic coloring process by which blue
vertices cause white vertices to become blue, with the goal of forcing the entire graph blue
while choosing as few as possible vertices to be initially blue. Past research in this area has
focused on structural arguments, with approaches varying from graph substructures to the
interplay between local and global graph structures. This paper explores the use of these
structural concepts when determining the zero forcing number of complex classes of graphs,
specifically two infinite classes of graphs each defined on multiple parameters.
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1 Introduction

Graph theory, a branch of discrete mathematics, delves into the study of graphs—
mathematical structures comprising dots called vertices to represent elements or locations,
and line segments called edges connecting vertices which are used to depict relationships
between the vertices. The versatility of graphs enables their application in modeling and
analyzing pairwise connections among objects, expanding their utility beyond mathemati-
cal boundaries to various real-world scenarios. In 2008, the AIM Minimum Rank - Special
Graphs Work Group [1] first introduced a graph theory concept called zero forcing.

Zero forcing is a game in graph theory that involves coloring vertices blue with the
aim of using the least number of initially blue vertices. In this game, each vertex starts
as either blue or white. The rule permits a blue vertex to compel its lone white neighbor
to turn blue. The game concludes when there are no more white vertices left to color.
This method of analyzing graphs has played a role in the study of the inverse eigenvalue
problem for graphs where it was introduced as an upper bound on the maximum nullity of
graphs [1]. Its interdisciplinary applications extend beyond graph theory, finding utility in
physics as quantum control theory [3] and in power grid monitoring as power domination
[6] (with the role of zero forcing evident in [4]). These applications highlight the versatility
and importance of this method across diverse fields.

A recent area of focus in research on the zero forcing numbers of graphs has been
the exploration and introduction of new graph substructures called forts (first introduced
in [5]), and the interactions these substructures have with the zero forcing number of a
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graph. Another recent strategy introduced in [7] restricts a forcing process occurring in a
graph to one of its induced subgraphs. This provides one a way to transfer information
concerning zero forcing between the local structure given by the induced subgraph and
the global structure of the parent graph. These concepts were introduced in the abstract
setting, and thus initial research focused more on the theory than the practice of using it.
Due to this, a natural direction for additional research is to explore the usefulness of these
substructures when determining the zero forcing numbers of relatively complex classes of
graphs. To test this utility, this paper considers two classes of graphs defined on multiple
parameters. The first graph class, peony graphs, is a new graph class defined on three
parameters, and is a derivative of wheel graphs. The second graph class, web graphs, is
defined on two parameters and is the result of adding pendant vertices to grid graphs. In
Section 2, we determine the zero forcing number of peony graphs, making extensive use
of the concept of forts. Later, in Section 3, we determine the zero forcing number for web
graphs, and in various ways take advantage of the concept of restricting forcing processes
to subgraphs. Before diving into the new results we provide the following preliminary
definitions to ensure clear communication of the necessary concepts.

A graph G is a collection of vertices V (G) and a set E(G) of pairs of vertices, called
edges. If two vertices u and v are members of the same edge, then we denote this by
uv ∈ E(G) and we say that u is adjacent to v or that u and v are neighbors. The degree
of a vertex v denoted deg(v) is the number of neighbors that v has. A pendant vertex is
a vertex with degree 1. If H is a graph such that V (H) ⊆ V (H) and E(H) ⊆ E(G), then
H is a subgraph of G. Furthermore, if H is a subgraph of G such that given two vertices
u, v ∈ V (H) we have that uv ∈ E(H) if and only if uv ∈ E(G), then H is a vertex-induced
subgraph of G. Given S ⊆ V (G), the subgraph of G induced by S denoted G[S] is the
vertex-induced subgraph of G with vertex set V (G[S]) = S.

Two graphs G and H are said to be isomorphic denoted G ∼= H if there exists a
bijective function σ : V (G) → V (H), called an isomorphism, such that for u, v ∈ V (G),
we have σ(u)σ(v) ∈ E(H) if and only if uv ∈ E(G). A graph is said to be rotationally
isomorphic if there exists an isomorphism σ : V (G) → V (G) such that the application of
σ can be represented geometrically as a rotation θ with 0 < θ < 2π of V (G) onto itself.
That is, a graph is rotationally isomorphic if an appropriate drawing of it has nontrivial
rotational symmetry. The graph classes we discuss in this paper, peony graphs and web
graphs, are both classes of rotationally isomorphic graphs. With this in mind, modular
arithmetic can be used to streamline definitions and arguments. Specifically, let it be
understood that given a vertex vM ∈ {ui}ni=1, if either M < 1 or M > n, then vM = uN

where N ≡ M (mod n). Also for the compactness of the notations, given an integer n,
define [n] to denote {1, 2, . . . , n}.

A path is a sequence of vertices (v1, v2, . . . , vk) such that for each i with 1 ≤ i ≤ k− 1
we have vivi+1 ∈ E(G). Likewise, a cycle is a sequence of vertices (v1, v2, . . . , vk) such
that for each i with 1 ≤ i ≤ k − 1 we have vivi+1 ∈ E(G) and also v1vk ∈ E(G). One
can define path graphs and cycle graphs in the natural way. Specifically, the path graph
on n vertices denoted Pn is the graph with vertex set V (Pn) = {vi}ni=1 and edge set
E(Pn) = {vivi+1}n−1

i=1 , and the cycle graph on n vertices denoted Cn is the graph with
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vertex set V (Cn) = {vi}ni=1 and edge set E(Cn) = {vivi+1}n−1
i=1 ∪ {v1vn}. A path cover

of a graph G is a collection of vertex-induced path subgraphs Q = {Qi}ki=1 such that
{V (Qi)}ki=1 is a partition of the vertex set of G. The path cover number of G denoted
P(G) is the minimum cardinality among the path covers of G. A path cover Q is a
minimum path cover of G if |Q| = P(G).

Zero forcing is a dynamic coloring process on graphs. Prior to initiating the process,
the vertices of a graph G must first be each colored either blue or white. Once this is
done, the zero forcing process is governed by the zero forcing color change rule, which
states:

Zero forcing color change rule: If u is blue and v is the only white neighbor of u, then u
can force v to be colored blue. If a vertex u forces v, then we denote this by u → v.

To initiate the process, and for the duration of the process, the zero forcing color change
rule is applied until either every vertex of G is blue or in its current state G contains
no blue vertices with a unique white neighbor. Note that once a vertex is blue, it will
remain blue. Further note that during each application of the zero forcing color change
rule, multiple vertices may become blue, and that the process may include multiple such
applications, with each application forming a step in the process and these steps being
referred to as time-steps. If B is the set of vertices initially colored blue and after a
sufficient number of time-steps every vertex in G is blue, then B is said to be a zero
forcing set of G. The zero forcing number of G denoted Z(G) is the minimum cardinality
among all zero forcing sets of G. A zero forcing set B of G is a minimum zero forcing set
if |B| = Z(G).

In order to be able to construct rigorous arguments for proofs, it is necessary to
introduce some additional terminology for discussing the specifics of the zero forcing
process. We will be using the terminology introduced in [7]. The fundamental object
in this discussion is the ordered collection of forces chosen during a zero forcing process
called a relaxed chronology of forces. First define S(G,B′) to be the set of valid forces in
G when B′ is the set of vertices which is currently blue. A relaxed chronology of forces F
is a collection of sets of forces {F (k)}Kk=1 such that at each time-step k, F (k) ⊆ S(G,E

[k−1]
F )

where E
[k−1]
F is the set of blue vertices after time-step k−1, with E

[0]
F = B the set of vertices

which were initially colored blue, and each vertex of v ∈ V (G) \ B occurring in exactly
one force u → v ∈ F (k) ∈ F . For a zero forcing set B and a relaxed chronology of forces
F , the sequence of sets {E[k]

F }Kk=0 with B = E
[0]
F ⊆ E

[1]
F ⊆ · · · ⊆ E

[K−1]
F ⊆ E

[K]
F = V (G), is

called the expansion sequence of B induced by F and for each time-step k, E
[k]
F is called

the k-th expansion of B induced by F .
For a graph G, a zero forcing set B, and a relaxed chronology F , a forcing chain

induced by F is a sequence of vertices (v0, v1, v2, . . . , vN) such that the vertex v0 ∈ B,
the vertex vN does not perform a force during F , and for each i with 0 ≤ i ≤ N − 1 we
have vivi+1 ∈ F (k) ∈ F . The collection of vertices which do not perform a force during
F are the terminus of F , denoted Term(F). The collection of forcing chains induced by
F is called a chain set, and since B is a zero forcing set, the forcing chains induced by
F form a partition of V (G). Furthermore, since vertices can only perform a force when
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they have a single white neighbor, it follows that each vertex of V (G)\B is forced exactly
once during F and each vertex of V (G) \ Term(F) performs exactly one force during F .
Due to this, it follows that a chain set forms a path cover, providing the following result.

Theorem 1.1 [2] Let G be a graph. Then P(G) ≤ Z(G).

Since forcing chains form a path cover, and paths are reversible, as a natural but very
important result we have the following lemma concerning the terminus originally given in
[2] and generalized in [7].

Theorem 1.2 [2, 7] Let G be a graph, B be a zero forcing set of G, and F be a relaxed
chronology of forces of B on G. Then Term(F) is a zero forcing set of G.

2 The Zero Forcing Numbers of Peony Graphs

In this section, we determine the zero forcing numbers of a class of graphs we call
peony graphs. Intuitively, a peony graph is constructed by taking the star graph K1,m

and between each consecutive pair of pendant vertices in the star graph adding r paths
of length s. The following is the formal definition of peony graphs.

u1

u2

u3

u4

u5

u6

c

Figure 1: The peony graph Py(6, 3, 4)

u1

u2

c

v1,1,1
v1,1,2

v1,1,3
v1,1,4

v1,2,1 v1,2,2
v1,2,3

v1,2,4

v1,3,1 v1,3,2
v1,3,3

v1,3,4

Figure 2: A station S1 of the peony
graph Py(6, 3, 4)

Definition 2.1 (Peony Graph) A peony graph, denoted as Py(m, r, s), is a graph with
a vertex set V (Py(m, r, s)) = {c}∪{ui}mi=1∪{vi,j,k}mi=1,

r
j=1,

s
k=1. Given w, z ∈ V (Py(m, r, s))

distinct, it follows that wz ∈ E(Py(m, r, s)) if one of the following is true.

• {w, z} = {c, ui} for some i ∈ {1, 2, ...,m},

• {w, z} = {ui, vi,j,1} for some i ∈ {1, 2, . . . ,m} and j ∈ {1, 2, . . . r},
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• {w, z} = {ui, vi−1,j,s} for some i ∈ {1, 2, . . . ,m} and j ∈ {1, 2, . . . , r}.

• {w, z} = {vi,j,k, vi,j,k+1} for some i ∈ {1, 2, . . . ,m}, j ∈ {1, 2, . . . , r}, and k ∈
{1, 2, . . . , s− 1}.

To facilitate our proofs, it is useful to define certain substructures of peony graphs.
For every i ∈ {1, 2, . . . ,m}, the i-th station, denoted Si, is the collection of vertices
{ui} ∪ {vi,j,k}rj=1,

s
k=1. For each i, j with i ∈ {1, 2, . . . ,m} and j ∈ {1, 2, . . . , r}, the i, j-th

layer, denoted Si,j, is the collection of vertices {vi,j,k}sk=1.
The concept of forts were introduced in [5] along with the following theorem. Forts

can be considered as obstacles to the zero forcing processes. So they are often studied
alongside zero forcing. For the purpose of this paper, forts will help us to determine the
zero forcing number of peony graphs.

Definition 2.2 [5] Let G be a graph and S ⊆ V (G). If for all u ∈ V (G)\S, |NG(u)∩S| ≠
1, then we refer to S as a fort of G.

Theorem 2.3 [5] Let G be a graph and S ⊆ V (G). S is a zero forcing set of G if and
only if for each fort F of G, S ∩ F ̸= ∅.

We now establish several families of forts that are present in peony graphs. We do so
in order to calculate a lower bound on the zero forcing numbers of peony graphs. For the
sake of clarity, we use the term type-x fort, with x ∈ {2.4, 2.5, 2.6, 2.7} to refer to a fort
of the type identified in Lemmas 2.4, 2.5, 2.6, 2.7 respectively.

u1

u2

c

Figure 3: Type-2.4 fort
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u4

u5

u6

c

Figure 4: Type-2.5 fort

Lemma 2.4 For each i ∈ {1, 2, ...,m} and each distinct j1, j2 ∈ {1, 2, . . . , r}, Si,j1 ∪ Si,j2

is a fort of Py(m, r, s).
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Proof. Let w ∈ V (Py(m, r, s))\(Si,j1 ∪ Si,j2). If w /∈ {ui, ui+1}, then |NPy(m,r,s)(w) ∩
(Si,j1 ∪ Si,j2)| = 0. If w ∈ {ui, ui+1}, then |NPy(m,r,s)(w) ∩ (Si,j1 ∪ Si,j2)| = 2. Therefore,
Si,j1 ∪ Si,j2 is a fort. □

Lemma 2.5 For every i ∈ {1, 2, . . . ,m}, let ji ∈ {1, 2, . . . r}. Then S =
m⋃
i=1

Si,ji is a fort

of Py(m, r, s).

Proof. Let w ∈ V (Py(m, r, s))\S. If w /∈ {ui}mi=1, then |NPy(m,r,s)(w) ∩ S| = 0. If w ∈
{ui}mi=1, then |NPy(m,r,s)(w)∩S| = 2, because for any i ∈ {1, 2, . . .m}, |NPy(m,r,s)(ui)∩S| =
|NPy(m,r,s)(ui) ∩ (Si,ki ∪ Si+1,ki+1

)| = 2. Therefore, S is a fort. □

u1

u2

u3

u4

u5

u6

c

Figure 5: Type-2.6 fort
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Figure 6: One example of the set B con-
structed in Lemma 2.7

Lemma 2.6 Let i0 ∈ [m]. For each i ∈ {1, 2, . . . ,m}\{i0} choose ji ∈ {1, 2, . . . , r}. Then

S =

( ⋃
i∈[m]\{i0}

Si,ji ∪ {c}

)
is a fort of Py(m, r, s).

Proof. Let w ∈ V (Py(m, r, s))\S. If w /∈ {ui}mi=1, then |NPy(m,r,s)(w) ∩ S| = 0.
Given w ∈ {ui}mi=1, if w ∈ {ui0 , ui0+1}, then |NPy(m,r,s)(w) ∩ S| = 2, and otherwise
|NPy(m,r,s)(w) ∩ S| = 3. Therefore, S is a fort. □

Lemma 2.7 Let T = {(i, j)|i ∈ {1, 2, . . . ,m}, j ∈ {1, 2, . . . , r}}. For each p = (i, j) ∈ T ,
let vi,j,kp ∈ Si,j. If B = {c}∪{vi,j,kp}mi=1,

r
j=1, then V (Py(m, r, s))\B is a fort of Py(m, r, s).

Proof. Let w ∈ B.

Case 1. w = c
It follows that NPy(m,r,s)(w) ∩ (V (Py(m, r, s))\B) = {ui}mi=1 and |{ui}mi=1| = m > 1.

Case 2. w ∈ {vi,j,kp}m1=1,
r
j=1

First fix w = vi0,j0,k0 where i0 ∈ [m], j0 ∈ [r], and k0 denotes kp with p = (i0, j0).
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• If s = 1, then |NPy(m,r,s)(w) ∩ (V (Py(m, r, s))\B)| = |NPy(m,r,s)(w) ∩ {ui}mi=1| = 2.

• If s = 2, then |NPy(m,r,s)(w)∩{ui}mi=1| = 1 and |NPy(m,r,s)(w)∩{vi0,j0,k}k∈[s]\{k0}| = 1.
Since {ui}mi=1∩{vi0,j0,k}k∈[s]\{k0} = ∅, it follows that |NPy(m,r,s)(w)∩(V (Py(m, r, s))\
B)| = 2.

• Now suppose s ≥ 3. If kp ∈ {1, s}, then |NPy(m,r,s)(w) ∩ {ui}m1=1| = 1 and
|NPy(m,r,s)(w) ∩ {vi0,j0,k}k∈[s]\{k0}| = 1. So |NPy(m,r,s)(w) ∩ (V (Py(m, r, s))\B)| = 2.
Otherwise, |NPy(m,r,s)(w) ∩ {vi0,j0,k}k∈[s]\{k0}| = 2.

Therefore, V (Py(m, r, s))\B is a fort. □
From Theorem 2.3 we see that if Py(m, r, s)\B contains a fort, then B cannot be a

zero forcing set of Py(m, r, s). Using this fact, we prove the following theorem.

Theorem 2.8 Let Py(m, r, s) be a peony graph. Then Z(Py(m, r, s)) ≥ m(r − 1) + 3.

Proof. To prove this result, we will construct a set of minimum cardinality B ⊆
V (Py(m, r, s)) which intersects all type-x forts for x ∈ {2.4, 2.5, 2.6}. Noting that |B| =
m(r− 1)+ 2, we will then identify a type-2.7 fort F for which B ∩F = ∅, completing the
proof.

First, we construct a set, B1, which intersects all type-2.4 forts. Since type-2.4 forts
are comprised of two layers from the same station, to intersect all of them, one vertex must
be taken from each of r−1 layers at every station. Since the collection of stations {Si}mi=1

is pairwise disjoint, and furthermore the collection of layers {Si,j}rj=1 at the i-th station is
also pairwise disjoint, this will require at least m(r−1) vertices, specifically, r−1 vertices
chosen from distinct layers at each of the m stations. To construct an arbitrary set B1 of
this type, for each station i, choose ji ∈ [r] and for each Si,j with j ̸= ji, choose ki,j ∈ [s].
Let B1 = {vi,j,ki,j}mi=0,j ̸=ji . Note that B1 is of the minimum cardinality necessary to hit
all of the type-2.4 forts.

Second, we construct a set, B2, containing B1, which intersects all type-2.4 and type-
2.5 forts. Since type-2.5 forts take a layer from every station, and for each station i,
there is a layer Si,ji for which B1 ∩ Si,ji = ∅, it follows that

⋃m
i=1 Si,ji is a type-2.5 fort

for which B1 ∩
⋃m

i=1 Si,ji = ∅. With this in mind, choose i2 ∈ [m] and k2 ∈ [s], and let
B2 = B1 ∪ {vi2,ji2 ,k2}. Note, the choice of B1 was arbitrary and we have shown that for
each choice of B1, a type-2.5 fort disjoint from B1 can be identified. Thus, it follows that
to hit all type-2.4 and type-2.5 forts, will require at least m(r − 1) + 1 vertices.

Next, we construct a set, B3, containing B2, which intersects all type-2.4, type-2.5, and
type-2.6 forts. Since the center vertex and a layer from each of m−1 distinct stations form
a type-2.6 fort, and for each station i with i ̸= i2 there is a layer Si,ji for whichB2∩Si,ji = ∅,
it follows that

⋃
i ̸=i2

Si,ji ∪ {c} is a type-2.6 fort for which B2 ∩
(⋃

i ̸=i2
Si,ji ∪ {c}

)
= ∅.

Thus, the possible alternatives are either B3 = B2 ∪ {c} or B3 = B2 ∪ {vi3,ji3 ,k3} for
arbitrary chosen i3 ∈ [m]\{i2} and k3 ∈ [s]. Note that the choice of B2 was arbitrary and
for any choice of B2, a type-2.6 fort disjoint from B2 can be identified. Either way, to
not miss any type-2.4, type-2.5, or type-2.6 forts, B3 must contain at least m(r − 1) + 2
vertices.
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Finally, since B3 has been constructed by taking at most one vertex from each layer
(as well as possibly the center vertex), by Lemma 2.7, V (Py(m, r, s)) \ B3 contains a
type-2.7 fort F . Thus, any set intersecting all type-x forts for x ∈ {2.4, 2.5, 2.6, 2.7} must
contain at minimum m(r − 1) + 3 vertices. □

Theorem 2.9 Py(m, r, s) be a peony graph. Then Z(Py(m, r, s)) = m(r − 1) + 3.

Proof. Let B = {vi,j,1}mi=2,
r
j=2 ∪ {vm,j,s}rj=1 ∪ {c} ∪ {u1} be the set of vertices initially

colored blue. Note that
∣∣{vi,j,1}mi=2,

r
j=2 ∪ {vm,j,s}rj=1

∣∣ = (m− 1)(r− 1) + r = m(r− 1) + 1,
so |B| = m(r − 1) + 3.

We now construct a relaxed chronology of forces F of B on Py(m, r, s). On the first
time-step, the vertex v1,1,1 is the unique white neighbor of u1, so we can let u1 force v1,1,1,
and after the first time-step v1,1,1 will be blue. On time-step p with 2 ≤ p ≤ s, because
{v1,j,p−1}rj=1 is a collection of blue vertices and for each j ∈ [r], v1,j,p is the unique white
neighbor of v1,j,p−1, we can perform the forces {v1,j,p−1 → v1,j,p}rj=1. Thus, after time-step
s, all vertices in the first station are blue. Similar forces occur in the m-th station. On
time-step p with 2 ≤ p ≤ s, because {vm,j,s−p+2}rj=1 is a collection of blue vertices and
for each j ∈ [r], vm,j,s−p+1 is the unique white neighbor of vm,j,s−p+2, we can perform the
forces {vm,j,s−p+2 → vm,j,s−p+1}rj=1. On time-step s+1, the vertex um is the unique white
neighbor of vm,1,1, so we can let vm,1,1 force um. Note that after time-step s+ 1, both the
first and m-th stations are blue.

To color the entire second station, u2 first must be made blue. On time-step s + 2,
since the vertex u2 is the unique white neighbor of v1,1,s, v1,1,s forces u2. The remaining
process of coloring the second station blue is identical to that which occurred in the first
station. Now, repeat the aforementioned process m − 3 times, thus forcing stations 3
through m− 1 to become blue, and at this point no white vertices remain in Py(m, r, s).

Since B is a zero forcing set of Py(m, r, s) and |B| = m(r − 1) + 3, it follows
that Z(Py(m, r, s)) ≤ m(r − 1) + 3. Thus, by Theorem 2.8, we can conclude that
Z(Py(m, r, s)) = m(r − 1) + 3.

□

3 The Zero Forcing Numbers of Web Graphs

We now introduce a class of graphs which we call web graphs. It is worth noting
that the definition we provide here is more generalized than another definition which
is commonly used, and sometimes the parameter r used to define our more generalized
version is fixed such that r = 2.

Definition 3.1 We define the web graph Wb(m, r) to be the graph with vertex set
V (Wb(m, r)) = {vi,j}mi=1,

r
j=1 ∪ {pi}mi=1 such that for u,w ∈ V (Wb(m, r)) distinct,

uw ∈ E(Wb(m, r)) if and only if one of the following is true:

• {u,w} = {pi, vi,1}

• i1 = i2 and |j1 − j2| = 1
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• j1 = j2, and either {i1, i2} = {1,m} or |i1 − i2| = 1.

v1,3

v1,2

v1,1

p1

v4,3

v4,2

v4,1

p4

v5,3

v5,2

v5,1

p5

v3,3

v3,2

v3,1

p3

v2,3

v2,2

v2,1

p2

Figure 7: The web graph Wb(5, 3)

Alternatively this can be viewed as a result of a small modification to the graph
V (Cm□Pr), where the Cartesian product of two graphs G and H denoted G□H is defined
to be the graph with vertex set V (G) × V (H) such that two vertices (g1, h1), (g2, h2) ∈
V (G□H) are adjacent in G□H if either g1 = g2 and h1h2 ∈ E(H) or h1 = h2 and
g1g2 ∈ E(G). Specifically, Wb(m, r) is the result of adding the set {pi}mi=1 of pendant
vertices to the graph Cm□Pr, with vertex set V (Cm□Pr) = {vi,j}mi=1,

r
j=1, such that for

each i, pi is adjacent to vi,1. To determine the zero forcing numbers of web graphs, we
first identify a pair of commonly cited results which will be key to our argument.

Lemma 3.2 [1] Z(Cm□Pr) = min{m, 2r}.

Lemma 3.3 [2] P(G) ≤ Z(G). Furthermore, if C is a chain set for some relaxed chronol-
ogy of forces F for some zero forcing set B of G, then C is a path cover of G.

Recent work in the area has been focused on identifying and studying the interaction
between local properties of a graph (those confined to a particular subgraph) and global
properties of a graph and the affect this interaction has on zero forcing. One such concept
introduced in [7] involves restricting relaxed chronologies of forces to those forces in a
given subgraph. Specifically, given a graph G and H a vertex-induced subgraph of G, if
F = {F (k)}Kk=1 is a relaxed chronology of forces of some zero forcing set B of G, then

the restriction of F to H denoted F|H = {F |(k)H }Kk=1 is the relaxed chronology of forces

such that at each time-step k we have F
(k)
H = {u → v : u, v ∈ V (H) and u → v ∈ F (k)}.

Letting C be the chain set induced by F , the forcing subpaths of C in H are the subgraphs
of H induced by the vertices in each member of C. A vertex u ∈ V (H) is an initial vertex
of a forcing subpath of C in H if either u ∈ B or v → u is a force which occurs during F
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but v ∈ V (G) \ V (H). The following result concerning initial vertices helps us to prove a
lower bound on the zero forcing numbers of web graphs.

Lemma 3.4 [7] Let G be a graph, H be a vertex-induced subgraph of G, B be a standard
zero forcing set of G, and F be a relaxed chronology of standard forces of B on G with
chain set C. Let B′ be the set of initial vertices in the forcing subpaths of C in H. Then
B′ is a standard zero forcing set of H, and F|H defines a relaxed chronology of standard
forces for B′ in H.

Lemma 3.5 Z(Wb(m, r)) ≥ max
{⌈

m
2

⌉
,min{m, 2r}

}
.

Proof. The graph Wb(m, r) contains m pendant vertices. If Q is a path cover of
Wb(m, r), then since Q forms a partition of V (Wb(m, r)) each of thesem pendant vertices
must be contained in some Q ∈ Q. Furthermore, for each Q ∈ Q, Q contains at most
2 pendant vertices as the vertices which are not endpoints of Q each have two distinct
neighbors in Q. So by 3.3, Z(Wb(m, r)) ≥ P (Wb(m, r)) ≥

⌈
m
2

⌉
.

We will now show, by way of contradiction, that Z(Wb(m, r)) ≥ min{m, 2r}. Suppose
B is a minimum zero forcing set of Wb(m, r) with |B| < min{m, 2r}. Let F be a relaxed
chronology of forces of B on Wb(m, r) and let C be the chain set induced by F . Now let
H be the subgraph of Wb(m, r) with H ∼= Cm□Pr, let F|H be the restriction of F to H,
and let CH be the collection of forcing subpaths of C contained in H. By 3.4, if BH is the
set of initial vertices of CH in H, then BH is a zero forcing set of H. Since pendant vertices
can only be the endpoints of paths, and thus the endpoints of forcing chains, each forcing
chain C ∈ C contains at most one member of CH as a forcing subpath. So it follows that
BH is a zero forcing set of H ∼= Cm□Pr with |BH | = |CH | ≤ |C| = |B| < min{m, 2r}, a
contradiction of Lemma 3.2. Thus Wb(m, r) ≥ min{m, 2r}. □

Lemma 3.6 If m ≤ 2r, then Z(Wb(m, r)) ≤ m.

Proof. Let B = {pi}mi=1. We will construct a relaxed chronology of forces F for B
on Wb(m, r). On time-step 1, F (1) = {pi → vi,1}mi=1. On time-step k with 2 ≤ k ≤ r,

F (k) = {vi,k−1 → vi,k}mi=1. So after time-step r, we have that E
[r]
F = V (Wb(m, r)). Thus,

Z(Wb(m, r)) ≤ |B| = m □

Lemma 3.7 If ⌈m
2
⌉ < 2r < m, then Z(Wb(m, r)) ≤ 2r.

Proof. Let B = {pi}2ri=1. We will construct a relaxed chronology of forces F for B on
Wb(m, r). On time-step 1, F (1) = {pi → vi,1}2ri=1. Moving forward, for k with 2 ≤ k ≤ 2r,
at each successive time-step k, fewer vertices in the set {vi,k−1}2ri=1 will be able to force
as an increasing number of vertices in these sets will have more than one white neighbor.
However, forcing will continue. Specifically, for k with 2 ≤ k ≤ r, during time-step k
the forces in the set {vi,k−1 → vi,k}2r−k+1

i=k can be performed because vi,k is the only white
neighbor of vi,k−1. On the other hand, once these forces are completed, an increasing
number of vertices will be able to force during each successive time-step k, with r + 1 ≤
k ≤ 2r − 1. Specifically, for k with r + 1 ≤ k ≤ 2r − 1, during time-step k the forces in
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Figure 8: Wb(9, 3) and an example of the subgraph H of Wb(9, 3) discussed in Lemma
3.7

p1 p2 p3 p4 p5 p6 p1 p2 p3 p4 p5 p6

Figure 9: The first 2r − 1 = 5 time-steps of F in Wb(9, 3)

the set {v2r−k+1,j → v2r−k,j, vk,j → vk+1,j}rj=2r−k+1 can be performed because v2r−k,j is the
only white neighbor of v2r−k+1,j and vk+1,j is the only white neighbor of vk,j.

Now identify that E
[2r−1]
F = {vi,j}2ri=1,

r
j=1 ∪ {pi}2ri=1, and let H be the subgraph of

Wb(m, r) induced by the vertices which are blue after time-step 2r− 1, specifically, H =

Wb(m, r)[E
[2r−1]
F ]. Since every vertex in H is blue after time-step 2r − 1, B is a zero

forcing set of H. Furthermore, F|H is a relaxed chronology of forces of B on H, so by
Theorem 1.2, Term(F|H) is also a zero forcing set of H.

Now let H ′ = Wb(m, r)[{vi,j}mi=m−2r+2,
r
j=1 ∪ {v1,j}rj=1 ∪ {pi}mi=m−2r+2 ∪ {p1}] and note

that H ∼= H ′ under some isomorphism σ. Due to this, σ(Term(F|H)) is a zero forcing
set of H ′. Furthermore, since

⌈
m
2

⌉
< 2r, it follows that m − 2r + 2 ≤ 2r and the vertex

sets of H and H ′ overlap in such a way that σ(Term(F|H)) ⊆ E
[2r−1]
F . It then follows

that E
[2r−1]
F contains a zero forcing set of H ′. Since Wb(m, r) contains no blue vertices

outside of H ′ after time-step 2r − 1, the forcing process can continue and B must be a
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zero forcing set of Wb(m, r). Thus, Z((Wb(m, r)) ≤ |B| = 2r. □

p1

p2

p3

p4
p5

p6

p7

p8

p9

p10

p11

p12
p13

p14

p15

p16

Figure 10: The zero forcing set B of Wb(16, 3)

Lemma 3.8 If 2r ≤ ⌈m
2
⌉, then Z(Wb(m, r)) ≤ ⌈m

2
⌉.

Proof. Construct the zero forcing set B using the following pendant vertices. First take
{pi}2ri=1 and then also include every second pendant vertex starting at p2r+2 up until vertex
pm−2r, making sure to include vertex pm−2r even in the case where m is odd. Specifically,

in the case that m is even B = {pi}2ri=1 ∪ {p2r+2i}(m−4r)/2
i=1 , and in the case that m is odd

B = {pi}2ri=1 ∪ {p2r+2i}(m−1−4r)/2
i=1 ∪ {pm−2r}; and in either case |B| =

⌈
m
2

⌉
. As in Lemma

3.7, chain sets beginning at the vertices {pi}2ri=1 can force {vi,j}2ri=1,
r
j=1 blue and will finish

doing so at the conclusion of time-step 2r − 1.

p6 p7 p8 p9 p10 p6 p7 p8 p9 p10 p6 p7 p8 p9 p10

Figure 11: Time-steps 2r = 6 through m− 2r − 1 = 9 of F in Wb(16, 3)

Now, during time-step 2r the forces {v2r,j → v2r+1,j}rj=1 as well as p2r+2 → v2r+2,1

can occur. At which point, the only white neighbor of v2r+1,1 will be p2r+1, so the force
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v2r+1,1 → p2r+1 as well as the set of forces {v2r+1,j → v2r+2,j}rj=2 can occur during time-
step 2r + 1. Time-steps analogous to Time-steps 2r and 2r + 1 will alternate (with one
additional time-step during which {vm−2r−1,j → vm−2r,j}rj=1 in the case where m is odd)

until time-step m− 2r − 1, at which point {vi,j}m−2r
i=1,

r
j=1 ∪ {pi}m−2r

i=1 ⊆ E
[m−2r−1]
F . Finally,

during time-step m− 2r, the sets of forces {v1,j → vm,j}rj=1 and {vm−2r,j → vm−2r+1,j}rj=1

can occur.
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v11,2

v11,1
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v12,2

v12,1

v13,3

v13,2

v13,1

v14,3

v14,2
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v15,3

v15,2

v15,1

v16,3

v16,2

v16,1

p11 p12 p13 p14 p15 p16

Figure 12: Subgraph H ′ of Wb(16, 3) discussed in Lemma 3.8

p11 p12 p13 p14 p15 p16 p11 p12 p13 p14 p15 p16

Figure 13: The last 2r − 1 = 5 time-steps of F in Wb(16, 3)

Next, in a way similar to Lemma 3.7, define H = Wb(m, r)
[
{vi,j}2ri=1,

r
j=1 ∪ {pi}2ri=1

]
and H ′ = Wb(m, r)[{vi,j}mi=m−2r+1,

r
j=1 ∪ {pi}mi=m−2r+1]. Note that again H and H ′ are

isomorphic by some isomorphism σ, and as before the fact that Term(F|H) is a zero forcing
set of H implies that σ(Term(F|H)) is a zero forcing set of H ′. Since σ(Term(F|H)) =
{vm,j, vm−2r+1,j}rj=1 ⊆ E

[m−2r]
F , it follows that E

[m−2r]
F contains a zero forcing set of H ′.

Finally, since there are no white vertices outside of H ′, B is a zero forcing set of Wb(m, r)
and Z(Wb(m, r)) ≤

⌈
m
2

⌉
. □

Combining Lemmas 3.5, 3.6, 3.7, and 3.8, one obtains the following theorem.

Theorem 3.9 Z(Wb(m, r)) = max
{⌈

m
2

⌉
,min{m, 2r}

}
, or equivalently

Z(Wb(m, r)) =


m if m ≤ 2r,

2r if ⌈m
2
⌉ < 2r < m,

⌈m
2
⌉ if 2r ≤ ⌈m

2
⌉.
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4 Conclusion

This wraps up our exploration of peony graphs and web graphs. In this paper we have
seen that recent discoveries concerning the interactions of graph substructures and the zero
forcing numbers of graphs can provide not only new abstract concepts but also concrete
tools for determining the zero forcing numbers of relatively complex graphs classes. Since
new graph substructures related to zero forcing are an active topic of research in this area,
it seems that further exploration of the applications of these new substructures warrants
additional study.
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