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1 Introduction

In topology, the fundamental group of a space is a tool that is instrumental in classifying
spaces up to homeomorphism. Various fundamental groups have been developed for
graphs using different generalizations. This research follows work done by Chih and Scull
[7] where the generators of the group are based circuits and ×-homotopy is the analogue
of classical homotopy. Chih-Scull defined the fundamental group for graphs under this
notion, and computed several examples. ×-homotopy is a well studied notion of homotopy
with connections to topology and applications in graph theory [5, 7, 6, 8, 9].

In particular, we compute the ×-homotopy fundamental groups for all Hamming
graphs. We start by continuing the investigation of pleats (or stiff representatives) that
Chih-Scull conducted. They showed that since fundamental groups are homotopy invari-
ant, we can compute a fundamental group for any graph by computing the fundamental
group of its pleat. Thus the fundamental groups of stiff graphs are of particular impor-
tance. We show here that Hamming graphs with elements or dimension greater than 2
are pleats. We show that the generators of a Hamming graph are the generators of the
fundamental groups of the complete subgraphs associated with each dimension. We also
show that these generators commute and are distinct, thus showing that the fundamental
group of a Hamming graph is a direct product of cyclic groups.

Our paper is organized in the following manner. In Section 2, we define properties
of graphs and provide information about notation. In Section 3, we discuss whether
Hamming graphs are pleats and investigate the special properties of Hamming graphs with
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2 elements (q = 2). In Section 4, we explore properties of Hamming graphs more generally,
compute the fundamental groups for all Hamming graphs, and use the fundamental group
to describe some covers.

2 Preliminaries

In this section we establish some preliminary facts and definitions that are used throughout
the paper. Standard graph theory terminology and notation can be found in [3] and group
theory terminology and notation can be found in [10]. We note that in this paper, we will
allow single loops, but not multiple edges between vertices.

We begin with the definition of a graph, and in particular a Hamming graph, as the
focus of this paper.

Definition 2.1 ([3, 11]) A graph is a pair G = (V,E), where V is a set of vertices
(singular: vertex), and E is a set of one or two sets of vertices which we call edges.
We denote the vertex set and edge set of a graph G as V (G) and E(G) respectively. We
denote the existence of an edge between two vertices v, u ∈ E(G) by writing v ∼ u. In this
case that u ∼ u,we say that u is looped.

Definition 2.2 Let d and q be positive integers, and let S be a set with q elements. The
Hamming graph is the graph with vertex set V (H(d, q)) = {(x1, . . . , xd) : xi ∈ S} where
two vertices are adjacent (x1, . . . , xd) ∼ (y1, . . . , yd) if they differ in exactly one coordinate.

Notice that this notation for vertices can be cumbersome to read and write, and so
we denote (x1, . . . , xi, . . . , xd) as (x1,−, xi,−, xd) or (−, xi,−) if it is understood what the
entries for the tuples are. Similarly, we will use 0 to denote the all 0’s tuple.

(0, 0)

(0, 1)

(0, 2)

(1, 0)

(1, 1)

(1, 2)

(2, 0)

(2, 1)

(2, 2)

Figure 1: The Hamming graphs H(2, 3).

Also note that for any Hamming graph, if we pick an index i and fix the entries for
every other index, the d vertices we obtain form a complete graph. In particular, the
subgraphs induced by {(0,−, x,−, 0) : x ∈ [d]} are complete graphs. In Figure 1, fixing
(a,−) or (−, b) the resulting trio of vertices form a complete graph.

Next, we establish some preliminaries of ×-homotopy.
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Definition 2.3 A homomorphism of graphs f : G → H is given by a set map f :
V (G) 7→ V (H) such that if v1 ∼ v2 ∈ E(G) then f(v1) ∼ f(v2) ∈ E(H).

Definition 2.4 ([5]) Let f, g : G → H be graph homomorphisms. We say f and g are a
spider pair if there exists a single vertex v ∈ V (G) such that f(u) = g(u) for all u ̸= v
and f(v) ̸= g(v). When we replace f with g we refer to it as a spider move.

Since fundamental groups are homotopy classes of closed walks (circuits), we define
some of the basic definitions used in this construction.

Definition 2.5 ([6]) Let
α = (v0v1v2 · · · vn)

be a walk in G. We say that α is prunable if vi = vi+2 for some i. We define a prune
of α to be given by a walk α′ obtained by deleting the vertices vi and vi+1 from the walk
when vi = vi+2: if α = (v0v1v2 · · · vi−1vivi+1vivi+3 · · · vn), then the prune of α is

α′ = (v0v1v2 · · · vi−1vivi+3 · · · vn).

Definition 2.6 Given graphs G,H, we define the categorical product denoted G×H
to be a graph where:

• A vertex is a pair (v, w) where v ∈ V (G) and w ∈ V (H).

• An edge is defined by (v1, w1) ∼ (v2, w2) ∈ E(G × H) for v1 ∼ v2 ∈ E(G) and
w1 ∼ w2 ∈ E(H).

Example 2.7 Let G be the graph on two adjacent looped vertices: V (G) = {0, 1} and
E(G) = {0 ∼ 0, 1 ∼ 1, 0 ∼ 1}. Let H = K2 with V (H) = {a, b} and E(H) = {a ∼ b}.
Then G×H is isomorphic to the cyclic graph C4:

a b

0

1

(0, a) (0, b)

(1, a) (1, b)

Definition 2.8 ([5]) Given f, g : G → H, we say that f is ×-homotopic to g, written
f ≃ g, if there is a graph homomorphism Λ : G × Iℓn → H such that Λ|G×{0} = f and
Λ|G×{n} = g, where Iℓn denotes a looped path graph.

Since ×-homotopy is the only form of homotopy discussed in this paper, we will use
×-homotopy and homotopy interchangeably.

Definition 2.9 ([5]) Suppose that Pn denotes the path graph with n vertices and α :
Pn → G,α, β : Pn → G are walks in G from x to y, so that α(0) = β(0) = x and
α(n) = β(n) = y. We say α and β are homotopic rel endpoints if α ≃ β in such a way
that all intermediate walks λ|G×{i} are also walks from x to y, so the endpoints of the walk
remain fixed: λ|{0}×Im = x and λ|{n}×Im = y.

the pump journal of undergraduate research 8 (2025), 338–358 340



Remark 2.10 The above definition is defined when two maps from Pn toG are homotopic
rel-endpoints. In [6] this definition is expanded and it is shown that two walks α, β are
homotopic rel endpoints if we can transform α to β through a series of spider moves,
prunes and anti-prunes. The definition and results are technical in nature and thus not
included here for ease of reading. Throughout this paper, we refer to such walks as
equivalent.

Example 2.11 Let α = (acbce) and β = (ade) be walks in the graph below. Then α ≃ β
since we have a prune of α to α′ = (ace) and then a spider move to β = (ade).

d

a

e

c
b

d

a

e

c
b

d

a

e

c
b

Notation 2.12 Given walks α = (v0v1 · · · vn) and β = (vnvn+1 · · · vm), we use ∗ to denote
the concatenation of α and β, α ∗ β = (v0v2 · · · vn · · · vm).

Definition 2.13 Given a graph G and v ∈ G, the neighborhood of v in G denoted N(v)
is the set of all vertices adjacent to v.

Definition 2.14 ([4, 2, 5]) We say that a graph G is stiff or a pleat if there are no
two distinct vertices v, w such that N(v) ⊆ N(w).

Finally we include some definitions and results about covers of graphs and their relation
to fundamental groups.

Definition 2.15 ([1]) A covering map is a graph morphism f : G̃ → G such that:

• f is a surjection on vertices and

• given any v ∈ V (G) and ṽ ∈ f−1(v), f induces a bijection N(ṽ) → N(v).

The notion of covers in graphs as defined by Angluin in [1] is extended in [7] to describe
covers which allow ×-homotopy of walks, and of ×-homotopy more generally, to lift as
in classical algebraic topology. In order to achieve this, we introduce an extension of the
two-neighborhood, which is a set of walks, rather than vertices.

Definition 2.16 ([7]) For any vertex v ∈ V (G) we define the extended neighborhood
N2(v) to be the walks of length 2 starting at v.

Our covering maps induce bijections on these two-neighborhoods.

Definition 2.17 ([7]) A graph morphism between graphs f : G̃ → G is a homotopy

covering map if given any v ∈ V (G) and ṽ ∈ V (G̃) such that f(ṽ) = v, then f induces
a bijection N2(ṽ) → N2(v) and this bijection respects endpoints in the sense that walks in
N2(ṽ) have the same endpoint if and only if their corresponding walks in N2(v) do also.
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Remark 2.18 If f : G̃ → G is a homotopy covering map then it is also a covering map
in the sense of Definition 2.15, since the bijection of length two walks requires a bijection
of walks of the form (vwv) for w ∈ N(v).

Example 2.19 The following is a homotopy covering map:

b

c

de

a

b′

G

b1 c1

d1

e1

a2
b2

c2

d2

e2

a1

b′1

b′2

G̃

f

The following is a homotopy covering map, where the covering map f : G̃ → G maps
xi 7→ x. One can verify that this is a group homomorphism. Here we see that the
diamond abcb′ lifts to a diamond in G̃, and thus the two-paths also lift in a way that
respects endpoints.

Finally, we introduce the notion of a fundamental group, which in this context con-
sists of ×-homotopy classes of circuits. Classifying the fundamental group for Hamming
graphs will the the main goal of this paper. We also introduce the notion of a universal
cover of a graph. In [7], it is shown that quotienting the universal cover by subgroups
of the fundamental group of a graph produces homotopy covers, as in classical algebraic
topology.

Definition 2.20 ([6]) Given a connected graph G and vertex v ∈ V (G), the funda-
mental group of G denoted Π(G) is the collection of ×-homotopy equivalence classes of
closed walks or circuits starting and ending at v, with concatenation as the operation.

Example 2.21 Consider the graph G from Example 2.19:

b

c

de

a

b′

G

The fundamental group G consists of classes of walks starting and ending at a. Note
that the walks (abcdea), (ab′cdea) and (abcb′abcdea) are equivalent via spider moves and
prunes. It is straightforward to see that (abcdea) generates the fundamental group, and
so Π(G) ∼= Z.
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Definition 2.22 ([7]) Given a graph G the universal cover of G is the graph U up to
isomorphism such that if ρ : G̃ → G is a covering and ṽ ∈ f−1(v), then there is a unique

map ρ̃ : U → G̃ such that ρ = f ◦ ρ̃ and ρ̃([v]) = ṽ, and the map ρ̃ is a homotopy cover.

Example 2.23 The universal cover U ofG from Example 2.19 may be depicted as follows:

· · · · · ·
a

ab

ab′
abc abcd abcde abcdea

abcdeab

abcdeab′

abcdeabc
aeaedaedc

aedcb

aedcb′
aedcba

aedcbae

aedcbaed

U

The vertices are homotopy classes of walks starting at a, noting that abc ≃ ab′c,
and two walks are adjacent if the differ by one step. We note that ρ : U → G maps
(a · · ·x) 7→ x.

One may likewise observe that if we consider the cover G̃ from Example 2.19, that
there is a homotopy covering map ρ̃ : U → G̃ so that ρ = f ◦ ρ̃.

b

c

de

a

b′

G

b1 c1

d1

e1

a2
b2

c2

d2

e2

a1

b′1

b′2

G̃

· · · · · ·
a

ab

ab′
abc abcd abcde abcdea

abcdeab

abcdeab′

abcdeabc
aeaedaedc

aedcb

aedcb′
aedcba

aedcbae

aedcbaed

U

f

ρ
∃ ! ρ̃

Proposition 2.24 ([7]) Any connected homotopy cover G̃ is of the form U/S ∼= G̃ where
S ≤ Π(G) is the subgroup {s|sρ̃ = ρ̃}.

Proposition 2.25 ([7]) If G̃ = U/S for a subgroup S ≤ Π(G) then the size of any
preimage f−1(v) is the same as the index of the subgroup S ≤ Π(G).

Example 2.26 Consider G, G̃ and U from Examples 2.19, 2.23. We see that G̃ ∼=
U/⟨(abcdea)2⟩.
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Lastly, in our computation of the fundamental group of Hamming graphs, we utilize
the fundamental group of the complete graph. This result and proof appears in an older
version of [7], which may still be viewed via the arxiv. We reproduce the result and proof
below.

Proposition 2.27 [7] Π(Kn) ∼= Z for n = 3 and Z/2 for n ≥ 4.

Proof. Any element of Π(Kn) is represented by a walk (vv1v2v3 . . . v). Since vi ∼ v for all
vi ̸= v, this is equivalent to (vv1v2vv2v3vv3v4v . . . ) = (vv1v2v) ∗ (vv2v3v) ∗ (vv3v4v) ∗ . . . ).
Thus every element is a product of 3-cycles.

Now choose a 3-cycle β = (vv1v2v). Since n ≥ 4 there exists a v3 which is not v, v1, v2
and then β = (vv1v2v) = (vv3v2v) = (vv3v1v) = (vv2v1v) = β−1. Given any other 3-cycle
γ = (vvivjv), if vi ̸= v2 then we have spider moves γ = (vvivjv) = (vviv2v) = (vv1v2v) = β.
If vi = v2 then we have γ = (vv2vjv) = (vv2v1v) = β−1. Thus every 3-cycle is equal to
β = β−1 and β2 = e. So Π(Kn) ∼= Z/2. □

3 The Hamming Graph H(d, 2).

In this section, we explore the special case where there are two choices for entries of the
tuples, or q = 2, and classify the fundamental groups for these graphs.

Lemma 3.1 If d > 2 or q > 2, then H(d, q) is a pleat.

Proof. We proceed by cases: In the first case, let d > 2. Consider distinct vertices
(a1,−, an) and (x1,−, xn). If these vertices differ in all coordinates, observe that we can
find a vertex (x1,−, aj,−, an) such that

(a1,−, an) ∼ (x1,−, aj,−, an), and (x1,−, xn) ̸∼ (x1,−, aj,−, an).

If these vertices share at least one coordinate, observe that for k ̸= j, they can be writ-
ten as (a1,−, ak,−, aj,−, an) and (x1,−, xk,−, xj,−, xn), where ak = xk but aj ̸= xj.
Then we can find a vertex (a1,−, bk,−, aj,−, an) such that (a1,−, ak,−, aj,−, an) ∼
(a1,−, bk,−, aj,−, an) and (x1,−, xk,−, xj,−, xn) ̸∼ (a1,−, bk,−, aj,−, an). Thus, we
have found a vertex in the neighborhood of (a1,−, an) that is not in the neighborhood of
(x1,−, xn), so H(q, d) is a pleat when d > 2.

In the second case, let q > 2. Suppose we have vertices (−, a,−, b,−) and (−, c,−, d,−)
where b ̸= d but c could equal a. Since q > 2, we can find a vertex (−, x,−, d,−), where
x ̸= a, c. Note that (−, c,−, d,−) is in the neighborhood of (−, x,−, d,−) but not in the
neighborhood of (−, a,−, b,−). So H(d, q) is a pleat when q > 2. □

Example 3.2 Observe the following graph of H(2, 2)

(0, 0)

(0, 1)

(1, 0)

(1, 1)
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Note that (0, 0) ∼ (0, 1) and (0, 0) ∼ (1, 0). Also note that (1, 1) ∼ (0, 1) and (1, 1) ∼
(1, 0). Since these two vertices share a neighborhood, H(2, 2) is not a pleat.

Example 3.3

Observe in the above graph of H(2, 3) that for any distinct vertices u, v, since u, v differ
in at least one coordinate, there is always at least one vertex in the neighborhood of u
but not v. Therefore, for all u and w, N(u) ̸⊆ N(w) so H(2, 3) is a pleat.

We present a technical lemma describing the behavior of closed walks in H(d, 2).

Lemma 3.4 Let W be a walk in H(d, 2) such that W starts and ends at the origin. Then
W is equivalent to a walk in H(d − 1, 2) (as the subgraph of H(d, 2) induced by vertices
whose last coordinate is 0).

Proof. Let W be an arbitrary walk of length n starting and ending in (01,−, 0n). We
want to show that W ≃ W ′ where W ′ is a walk and every vertex in W ′ has last coordinate
0. If W = (0v1v2 · · · vk · · ·0) there is a lowest index i such that vi = (x1,−, xn−1, 1), that
is the nth coordinate is 1. If we isolate the part of the walk with vi, we obtain:

W = (0 · · · vi−1vivi+1 · · ·0)
= (0 · · · (x1, x2,−, xn−1, 0)(x1, x2,−, xn−1, 1)vi+1 · · ·0).

The second equality follows from the fact that i is the lowest index such that vi has a 1
in the nth coordinate. Since vi, vi−1 differ by exactly one coordinate, vi−1’s nth coordinate
must be zero.

We proceed via induction on the number of vertices in W with a 1 in the nth co-
ordinate. There are two cases for vi+1. The first case is that vi+1 has a 0 in the
nth coordinate. This would make vi+1 equal to vi−1, and vi could be pruned. Then
W = (0 · · · vi−1vivi+1 · · ·0) ≃ (0 · · · vi−1vi+2 · · ·0). Thus the number of vertices in this
walk with a 1 in the nth coordinate is reduced.

The second case is that vi+1 has a 1 in the nth coordinate and is therefore different
from vi in some other coordinate. Thus vi+1 = (x1,−, xj−1, yj, xj+1,−, 1), allowing

W = (0 · · · (x1,−, xj,−, xn−1, 0)(x1,−, xj,−, xn−1, 1)(x1,−, yj,−, xn−1, 1) · · ·0)
≃ (0 · · · (x1,−, xj,−, xn−1, 0)(x1,−, yj,−, xn−1, 0)(x1,−, yj,−, xn−1, 1) · · ·0).
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We see that (x1,−, yj,−, xn−1, 0) differs from vi−1, vi+1 by one entry each, and thus
this equivalence is a valid spider-move. In either case, the number of vertices with a 1 in
the nth coordinate has been reduced.

By induction,W ≃ W ′ whereW ′ is a walk where every vertex inW ′ has last coordinate
0. □

Example 3.5 Consider the following example of H(3, 2).

(0, 0, 0)

(0, 0, 1)

(1, 0, 0)

(1, 0, 1)

(0, 1, 0)

(0, 1, 1)

(1, 1, 0)

(1, 1, 1)

Observe the walk W = (0, 0, 1)(0, 1, 1)(1, 1, 1)(1, 0, 1) pictured above in blue. Note
that (0, 0, 0), (0, 1, 1) ∼ (0, 0, 1), (0, 1, 0), so (0, 1, 1) can be moved to (0, 0, 0) by a spi-
der move. This also means (0, 0, 1) can be moved to (0, 1, 0) by a spider move. Ob-
serve that (1, 0, 0), (1, 1, 1) ∼ (1, 0, 1), (1, 1, 0), so (1, 1, 1) can be moved to (1, 0, 0) and
(1, 0, 1) can be moved to (1, 1, 0) by spider moves as well. Then W ≃ W ′, where
W ′ = (0, 0, 0)(0, 1, 0)(1, 1, 0)(1, 0, 0) depicted on the “bottom” of the cube.

The above lemma allows us to reduce the dimension that a closed walk ‘lives” in. By
applying this lemma with induction, we can show that all closed walks in H(d, 2) are
trivial.

Proposition 3.6 Let W be a walk in H(d, 2) such that W starts and ends at vertex
v0 = 0. Then W ≃ (0), which we call trivial.

Proof. By repeatedly applying Lemma 3.4, we show that W ≃ W ′ which is a walk
where only the first coordinate has non-zero entries, and such a walk must be of the form
0(1, 0,−, 0)0 · · · (1, 0,−, 0)0 which prunes completely. □

Corollary 3.7 Π(H(d, 2)) ∼= {e}.

Proof. Since each closed walk of H(d, 2) is trivial, its fundamental group has no non-
trivial generators. □

4 General Hamming Graphs H(d, q), Where q ̸= 2.

We begin our computation of Π(H(d, q)), q > 2. We begin by defining the ground walk.
The overall strategy will be to show that these ground walks form a minimal generating
set of Π(H(d, q)). By also showing that they commute and after computing their order,
we will be able to fully compute the fundamental group.
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(0, 0)

(0, 1)

(0, 2)

(1, 0)

(1, 1)

(1, 2)

(2, 0)

(2, 1)

(2, 2)

Definition 4.1 Let Ui be a walk in H(d, q) of length three where the only nonzero coor-
dinate is i. Thus, Ui = (0(0,−, ai,−, 0)(0,−, bi,−, 0)0). We call this a ground walk in
the ith coordinate.

We will show that the ground walks defined above form a minimal generating set for
the fundamental group. We begin by demonstrating that the ground walks commute as an
important property of the group. We note the possibilities for the vertices of our ground
walks:

Remark 4.2 When q = 3, the only options for ai and bi are 1 and 2, so there are only 2
options for Ui:

Ui = (0(0,−, 1i,−, 0)(0,−, 2i,−, 0)0) or U−1
i = (0(0,−, 2i,−, 0)(0,−, 1i,−, 0)0).

We pick one, and one is the inverse of the other. If q ̸= 3, there are multiple options for
ai and bi, so there are multiple possibilities for Ui but note that any closed three-walks
chosen are equivalent since these walks are contained in a subgraph isomorphic to Kq,
and all closed three-walks are equivalent in Kq from Proposition 2.27 [7].

Example 4.3

(0, 0)

(0, 1)

(0, 2)

(1, 0)

(1, 1)

(1, 2)

(2, 0)

(2, 1)

(2, 2)

Observe the following example of H(2, 3). Recall that the ground walks (0, 0), (0, 1),
(0, 2), (0, 0) and (0, 0), (1, 0), (2, 0), (0, 0) are walks of length 3. Then, any equivalent
walk will be of odd length. Since pruning preserves the parity of length, such a walk can
never be equivalent to a walk of length 0. Thus, the ground walks are not trivial.

Lemma 4.4 Let Ui and Uj be ground walks in H(d, q) such that

Ui = (0(0,−, ai,−, 0)(0,−, bi,−, 0)0) and Uj = (0(0,−, aj,−, 0)(0,−, bj,−, 0)0), i ̸= j.
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Then Ui ∗ Uj ≃ Uj ∗ Ui, i.e. Ui, Uj commute.

Proof. Let W = Ui ∗ Uj, then:

W = 0(0,−, ai,−, 0)(0,−, bi,−, 0)0(0,−, aj ,−, 0)(0,−, bj ,−)0

≃ 0(0,−, ai,−, 0)(0,−, bi,−, 0)(0,−, bi,−, aj ,−, 0), (0,−, aj ,−, 0)(0,−, bj ,−, 0)0

≃ 0(0,−, ai,−, 0)(0,−, ai,−, aj ,−, 0)(0,−, bi,−, aj ,−, 0)(0,−, bi,−, bj ,−, 0)(0,−, bj ,−, 0)0

≃ 0(0,−, aj ,−, 0)(0,−, ai,−, aj ,−, 0)(0,−, bi,−, aj ,−, 0)(0,−, bi,−, bj ,−, 0)(0,−, bi,−, 0)0

≃ 0(0,−, aj ,−, 0)(0,−, ai,−, aj ,−, 0)(0,−, ai,−, bj ,−, 0)(0,−, bi,−, bj ,−, 0)(0,−, bi,−, 0)0

≃ 0(0,−, aj ,−, 0)(0,−, bj ,−, 0)(0,−, ai,−, bj ,−, 0)(0,−, ai,−, 0)(0,−, bi,−, 0)0

≃ 0(0,−, aj ,−, 0)(0,−, bj ,−, 0)0(0,−, ai,−, 0)(0,−, bi,−, 0)0

= Uj ∗ Ui.

Through spider moves, we are able to reorder the vertices so we move through the ground
walks in the reverse order, therefore showing that Ui and Uj commute. □

We next present a technical lemma showing what spider moves between walks are
possible, which will later be used to show that as a generating set, the ground walks are
minimal.

Lemma 4.5 Let W,W ′ be walks which differ by a spider move on the kth vertex of each
walk, vk, v

′
k respectively. If vk−1, vk and vk, vk+1 differ in the same coordinate, then v′k is

different from both vertices in the same coordinate as well. However if vk−1, vk differ in
coordinate i and vk, vk+1 differ in coordinate j, then vk−1, v

′
k differ in coordinate j and

v′k, vk+1 differ in coordinate i, and there is only one choice for v′k.

Proof. Suppose in the first case vk−1 = (a1,−ai,−, an), vk = (a1,−bi,−, an), vk+1 =
(a1,−ci,−, an). Then since v′k ∼ vk−1, vk+1 it must be of the form (a1,−di,−, an). Oth-
erwise, either vk−1, v

′
k or v′k, vk+1 would differ in more than 2 coordinates.

Suppose in the second case: vk−1 = (a1,−, ai,−aj,−, an), vk = (a1,−, bi,−, aj,−, an),
vk+1 = (a1,−bi,−, bj,−, an). Then since v′k ∼ vk−1, vk+1 and v′k ̸= vk, the only possible
choice for v′k is v′k = (a1,−ai,−, bj,−, an) □

Example 4.6 Case 1: Three consecutive vertices differ in the same coordinate

a b c da b c da b c da b c da b c da b c da b c da b c da b c da b c da b c da b c da b c da b c da b c da b c d
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Observe the following example of H(2, 4), where we have the walk W = (a, b, c).
Note that a, b, c are three consecutive vertices that differ from one another in the same
coordinate. Observe then that to create walk W ′ ≃ W where W and W ′ differ by a spider
move, W ′ = (a, b, d) is the only option, where we have a spider move changing vertex c to
d.

Case 2: Three consecutive vertices differ in multiple coordinates

a b

c d

a b

c d

a b

c d

a b

c d

a b

c d

a b

c d

a b

c d

a b

c d

a b

c d

Observe in the following example of H(2, 3) the path W = (c, a, b). We see that
a ∼ c, b, so the only possible spider move for a is d, since d ∼ c, b as well. So W ′ = (c, d, b),
which differs from W by a spider move.

We now show that the ground walks are minimal as a generating set.

Lemma 4.7 For a walk Ui, Ui cannot be a product of all the Uj where i ̸= j.

Proof. Note that Ui = 0, (0,−, ai,−, 0)(0,−, bi,−0),0 and each Uj is defined similarly.
Note that Ui is a walk where the ith coordinate is changed 3 times, and each other
coordinate changes 0 times. Note that for any walk W and W ′, a prune or anti-prune of
W , W ′ has either 2 less or 2 more changes in some coordinate k than W .

Suppose W ′ and W differ by a spider move. Then by Lemma 4.5, the number of
changes in each coordinate between W,W ′ remain exactly the same.

Then for any Ŵ ≃ W , since Ŵ is achieved by a finite sequence of prunes, anti-prunes
or spider moves, the number of changes in each coordinate has the same parity as W .

So if Ŵ ≃ Ui then Ŵ has an odd number of changes in coordinate i and an even
number otherwise. But since all the Uj have 0 changes in coordinate i, we have proven
that Ui is not generated by the set {Uj|j ̸= i}. □

We will now show that the subgroup they generate is in fact the entire fundamental
group. The following proposition shows that we may “retract” a 3-cycle mid walk back
to a ground walk.

Proposition 4.8 Let W be a walk of length n in H(d, q) starting and ending at the origin
such that

W = K ∗ ((a1,−, ai,−, ad)(−, bi,−)(−, ci,−)(−, ai,−)) ∗K−1.

Let C = ((−, ai,−)(−, bi,−)(−, ci,−)(−, ai,−)), and thus W = K ∗ C ∗K−1. Then C is
equivalent to a ground walk Ui.
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Proof. We proceed via induction on the length of W . For a walk W where n = 3,W =
(0(0,−ai−, 0) (0−, bi,−, 0)(0−, 0)). Since the walk must start and end at the origin, the
only option for W is Ui.

There are two cases for the vertex leading up to C within W for walks longer than
n = 3. The first case is that the preceding vertex also has a change in the same coordinate
as C. In this case:

W = (0 · · · (−, xi,−)(−, ai,−)(−, bi,−)(−, ci,−)(−, ai,−)(−, xi,−) · · ·0)
≃ (0 · · · (−, xi,−)(−, ai,−)(−, xi,−)(−, ci,−)(−, ai,−)(−, xi,−) · · ·0)
≃ (0 · · · (−, xi,−)(−, ci,−)(−, ai,−)(−, xi,−) · · ·0)
≃ (0 · · ·xi) ∗ (−, xi,−)(−, ci,−)(−, ai,−)(−, xi,−) ∗ (xi · · ·0).

The second case is that the vertex before does not have a change in the same coordi-
nate. The inductive hypothesis is the same, but in this case we have:

W = (0 · · · (−, ai,−, aj ,−)(−, ai,−, bj ,−)(−, bi,−, bj ,−)(−, ci,−, bj ,−)(−, ai,−, aj−)(−, ai,−, xj ,−) · · ·0)
≃ (0 · · · (−, ai,−, aj ,−)(−, bi,−, aj ,−)(−, bi,−, bj ,−)(−, ci,−, bj ,−)(−, ai,−, bj−)(−, ai,−, aj ,−) · · ·0)
≃ (0 · · · (−, ai,−, aj ,−)(−, bi,−, aj ,−)(−, ci,−, aj ,−)(−, ci,−, bj ,−)(−, ai,−, bj ,−)(−, ai,−, aj ,−) · · ·0)
≃ (0 · · · (−, ai,−, aj ,−)(−, bi,−, aj ,−)(−, ci,−, aj−)(−, ai,−, aj ,−)(−, ai−, bj ,−)(−, ai,−, aj ,−) · · ·0)
≃ (0 · · · (−, ai,−, aj ,−)(−, bi,−, aj ,−)(−, ci,−, aj ,−)(−, ai,−, aj ,−) · · ·0).

In both cases, the final equation gives us a walk shorter than W that contains a C,
which we know is equivalent to Ui by induction. □

We present another technical lemma which allows us to rearrange when we have
changes in coordinates between vertices in our walks.

Lemma 4.9 Let W be a walk of length n such that there is a change in the ith coordinate
followed by a change in the jth coordinate, j ̸= i. Then W ≃ W ′ such that W and W ′ are
the same, except that the change in ith coordinate follows the change in jth coordinate.
Proof. So for a walk W consider:

W = (0 · · · (a1,−, ai,−, aj,−, an)(a1,−, bi,−, aj,−, an)(a1,−, bi,−, cj,−, an) · · ·0)
≃ (0 · · · (a1,−, ai,−, aj,−, an)(a1,−, ai,−, cj,−, an)(a1,−, bi,−, cj,−, an) · · ·0)
= W ′.

The second equivalence follows from a spider move.
Note that W ′ is identical to W except for these 2 vertices, commuting the changes in

coordinates i and j. □

A consequence of Lemma 4.9 is that any pair of consecutive changes in different
coordinates may be swapped while preserving equivalence.
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Example 4.10

(0, 0)

(0, 1)

(0, 2)

(1, 0)

(1, 1)

(1, 2)

(2, 0)

(2, 1)

(2, 2)

Observe the walks W and V in the above example of H(2, 3), where

W = (0, 0)(1, 0)(2, 0)(2, 1)(0, 1)(0, 0) and V = (0, 0)(1, 0)(1, 1)(2, 1)(0, 1)(0, 0).

Note that W ≃ V since the walks only differ by a spider move. Isolating this spider move,
in W we have (1, 0)(2, 0)(2, 1) and in V we have (1, 0)(1, 1)(2, 1) Note that in W , there is
a change in the first coordinate i followed by a change in the second coordinate j. The
opposite is true for V , where we have a change in j followed by a change in i. Since we
still start at (1, 0) and end at (2, 1), we can commute the changes in coordinates i and j.

Using the allowed spider moves and reordering properties of Hamming graphs, we are
now able to show that the ground walks generate Π(H(d, q)).

Theorem 4.11 Let W be a walk in H(d, q) such that W starts and ends at the origin.
Then W is equivalent to a walk W ′ that is the product of ground walks. (This means that
W is generated by the ground walks.)

Proof. We proceed by induction on the length of W . For n = 3, let

W = (0(0,−, ai−, 0)(0,−, bi,−, 0)0).

The only possibility for a walk of length 3 that will start and end at the origin is Ui, or
it’s inverse, which is a ground walk.

For n > 3, let W be an arbitrary walk of length n that starts and ends at the origin.
We want to show W is a product of walks generated by the ground walks.
Note that there are two cases. The first case is that somewhere in W , there exists two
consecutive changes in the same coordinate. In that case:

W = (0 · · · (a1,−, ai,−, ad)(a1,−, bi,−, ad)(a1,−, ci,−, ad) · · ·0)
≃ C ∗ (a1,−, ai,−, ad)(a1,−, bi,−, ad)(a1,−, ci,−, ad) ∗K
≃ (C ∗ (a1,−, ai,−, ad)(a1,−, bi,−, ad)(a1,−, ci,−, ad)(a1,−, ai,−, ad) ∗ C−1)

∗(C ∗ (a1,−, ai,−, ad)(a1,−, ci,−, ad) ∗K).
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In this last equivalence,

(C ∗ (a1,−, ai,−, ad)(a1,−, bi,−, ad)(a1,−, ci,−, ad)(a1,−, ai,−, ad) ∗ C−1)

is equivalent to a ground walk by Proposition 4.8. We are therefore left with a walk
(C ∗ (a1,−, ai,−, ad)(a1,−, ci,−, ad) ∗ K) shorter than W that starts and ends at the
origin, which by induction is generated by the ground walks.

The second case is that there are no two consecutive changes in the same coordinate in
W . Since our walk must start and end at the origin, if we’ve made a change to coordinate
i in our walk, there must be a subsequent change in i in our walk. In that case, by Lemma
4.9, we can permute the changes in the walk such that the changes in the ith coordinate
are consecutive. We now have the case where there are two consecutive changes in the
same coordinate, so this walk is also generated by the ground walks by induction. □

Example 4.12

(0, 0)

(0, 1)

(0, 2)

(1, 0)

(1, 1)

(1, 2)

(2, 0)

(2, 1)

(2, 2)

Pictured above is the walk W = (0, 0)(1, 0)(1, 1)(2, 1)(2, 2)(0, 2)(0, 1)(0, 0). Observe the
following series of spider moves and prunes:

W = (0, 0)(1, 0)(1, 1)(2, 1)(2, 2)(0, 2)(0, 1)(0, 0)

≃ (0, 0)(1, 0)(2, 0)(2, 1)(2, 2)(0, 2)(0, 1)(0, 0)

≃ (0, 0)(1, 0)(2, 0)(2, 1)(0, 1)(0, 2)(0, 1)(0, 0)

≃ (0, 0)(1, 0)(2, 0)(0, 0)(0, 1)(0, 2)(0, 1)(0, 0)

≃ (0, 0)(1, 0)(2, 0)(0, 0)(0, 1)(0, 2)(0, 1)(0, 0)

≃ (0, 0)(1, 0)(2, 0)(0, 0)(0, 1)(0, 0)

≃ (0, 0)(1, 0)(2, 0)(0, 0).

This equivalence produces the following graph:

(0, 0)

(0, 1)

(0, 2)

(1, 0)

(1, 1)

(1, 2)

(2, 0)

(2, 1)

(2, 2)
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Note that this is a graph consisting of one of the ground walks, thus confirming that
W is equivalent to a product of ground walks.

By Lemma 4.7, the ground walks are not just a generating set for Π(H(d, q)), but a
minimal generating set. We now address the order of the ground walks. Note that the
ground walk Ui is fully contained in a subgraph where only the ith coordinate is allowed
to be non-zero, which is isomorphic to Kq, and we will use this fact in our computations.

Lemma 4.13 Let Ui be a ground walk in Π(H(d, q)). Then, the order of Ui is infinite
when q = 3 and the order of Ui is 2 when q ̸= 3.

Proof. We begin with the case where q = 3. In this case, consider the following cover
of H(3, 2):

(0, 0)−1

(0, 1)−1

(0, 2)−1

(1, 0)−1

(1, 1)−1

(1, 2)−1

(2, 0)−1

(2, 1)−1

(2, 2)−1

(0, 0)0

(0, 1)0

(0, 2)0

(1, 0)0

(1, 1)0

(1, 2)0

(2, 0)0

(2, 1)0

(2, 2)0

(0, 0)1

(0, 1)1

(0, 2)1

(1, 0)1

(1, 1)1

(1, 2)1

(2, 0)1

(2, 1)1

(2, 2)1

· · · · · ·

· · · · · ·

· · · · · ·

To show that this is a cover, we need a covering map so that N((a, b)i) ∈ V (C) maps
bijectively toN((a, b)), and each 4-cycle inH(3, 2) lifts to a 4-cycle in C. We note that this
graph C has vertex set {vi : v ∈ V (H(2, 3)), i ∈ Z} and vi ∼ wj if v = (a, x), w = (a, y)
and i = j, if v = (1, x), w = (a, x), a ̸= 1 and i = j or v = (2, x), w = (0, x), j = i+1. Since
each 4-cycle in H(2, 3) has vertices of the form (a, x), (b, x), (b, y), (a, y) one can verify that
a closed 4-walk (a, x)(b, x)(b, y)(a, y) lifts to a closed 4-walk in C. Thus, C is a cover with
covering map ρ : C → H(2, 3), vi 7→ v. Note that the ground walk ((0, 0)(1, 0)(2, 0)(0, 0))
lifts to a non-closed walk ((0, 0)i(1, 0)i, (2, 0)i(0, 0)i+1) but ((0, 0)(0, 1)(0, 2)(0, 0)) lifts to
closed walk ((0, 0)i(0, 1)i, (0, 2)i(0, 0)i). We also note that C is infinite, so by Proposition
2.25, we have that the subgroup of Π(H(2, 3)) generated by U2 = ((0, 0)(0, 1)(0, 2)(0, 0))
has infinite index in Π(H(2, 3)) so the subgroup generated by U1 = ((0, 0)(1, 0)(2, 0)(0, 0))
has infinite order and thus U1 has infinite order. A similar argument shows that U2 has
infinite order as well. Generalizing this to higher dimension produces tedious but similar
arguments.

In the second case, where q ̸= 3, note that the induced subgraph of the set of vertices
{(0,−, xi,−0) : 0 ≤ xi ≤ q − 1} is isomorphic to Kq. Then, by Proposition 2.27 any
length 3 closed walk within this subgraph has order 2 since q > 3. Since Ui is a closed
3-walk in this subgraph, Ui, has order 2. □

Using the properties we have demonstrated in this section, we can now compute the
fundamental groups for all Hamming graphs.

Theorem 4.14 Π(H(d, 3)) ∼= Zd, and Π(H(d, q)) ∼= Zd
2 when q ̸= 3.
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Proof. For a walk W in H(d, q), we know that W is generated by the ground walks by
Theorem 4.11. We also know that the number of generators is at most d, since d is the
number of ground walks. Lemma 4.7 tells use that Ui is not generated by the other Uj

j ̸= i, so the number of generators is at least d. Thus, the minimal number of generators
is d. We know that the walks commute from Lemma 4.4, and thus Π(H(d, q)) is abelian.
When q = 3, we know that the order of the ground walks is infinite by Lemma 4.13. Thus,
Π(H(d, 3)) ∼= Zd. Lemma 4.13 then tells us that for q ̸= 3 the order of the ground walks
is 2. Thus, Π(H(d, q)) ∼= Zd

2. □

Remark 4.15 For q = 3, we have that |Π(H(d, 3))| = ∞, and so by Proposition 2.25,
each vertex v ∈ H(d, 3) lifts to an infinite number of possible points in U , its universal
cover, and U is infinite. Also since Π(H(d, 3)) has infinitely many subgroups of different
indices, H(d, 3) has infinitely many covers (up to isomorphism).

On the other hand v ∈ H(d, q) for q > 3 lifts to 2d vertices in its universal cover U ,
and thus |V (U)| = qd · 2d and U is finite.

We now provide examples of covers in H(2, 3) where we have ground walks U1 and U2.

Example 4.16

(0, 0)−1,−1

(0, 1)−1,−1

(0, 2)−1,−1

(1, 0)−1,−1

(1, 1)−1,−1

(1, 2)−1,−1

(2, 0)−1,−1

(2, 1)−1,−1

(2, 2)−1,−1

(0, 0)0,−1

(0, 1)0,−1

(0, 2)0,−1

(1, 0)0,−1

(1, 1)0,−1

(1, 2)0,−1

(2, 0)0,−1

(2, 1)0,−1

(2, 2)0,−1

(0, 0)1,−1

(0, 1)1,−1

(0, 2)1,−1

(1, 0)1,−1

(1, 1)1,−1

(1, 2)1,−1

(2, 0)1,−1

(2, 1)1,−1

(2, 2)1,−1

(0, 0)−1,0

(0, 1)−1,0

(0, 2)−1,0

(1, 0)−1,0

(1, 1)−1,0

(1, 2)−1,0

(2, 0)−1,0

(2, 1)−1,0

(2, 2)−1,0

(0, 0)0,0

(0, 1)0,0

(0, 2)0,0

(1, 0)0,0

(1, 1)0,0

(1, 2)0,0

(2, 0)0,0

(2, 1)0,0

(2, 2)0,0

(0, 0)1,0

(0, 1)1,0

(0, 2)1,0

(1, 0)1,0

(1, 1)1,0

(1, 2)1,0

(2, 0)1,0

(2, 1)1,0

(2, 2)1,0

(0, 0)−1,1

(0, 1)−1,1

(0, 2)−1,1

(1, 0)−1,1

(1, 1)−1,1

(1, 2)−1,1

(2, 0)−1,1

(2, 1)−1,1

(2, 2)−1,1

(0, 0)0,1

(0, 1)0,1

(0, 2)0,1

(1, 0)0,1

(1, 1)0,1

(1, 2)0,1

(2, 0)0,1

(2, 1)0,1

(2, 2)0,1

(0, 0)1,1

(0, 1)1,1

(0, 2)1,1

(1, 0)1,1

(1, 1)1,1

(1, 2)1,1

(2, 0)1,1

(2, 1)1,1

(2, 2)1,1

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

· · · · · ·

· · · · · ·

· · · · · ·

· · · · · ·

· · · · · ·

· · · · · ·

· · · · · ·

· · · · · ·

· · · · · ·

We begin with the universal cover of H(2, 3) depicted above, where vertices are vij, v ∈
V (H2, 3), i, j ∈ Z and incidence is determined by (2, x)ij ∼ (0, x)(i+1)j and with covering
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map ρ : U → H(2, 3), (x, y)ij 7→ (x, y). Comparing this picture to Example 4.3, we
see that if we lift (0, 0) to say (0, 0)00, then any walk in H(2, 3) lifts to a walk in U .
Moreover, every spider move of a walk lifts to a spider move in U as well since spider
moves correspond to switching the order of a first and second coordinate change [7].
Moreover, a walk W in H(2, 3) starting at (0, 0) lifts to a walk starting and ending at
(0, 0)0,0 if and only if W is equivalent to the trivial walk, since ground walks U1, U2 lift to
moving to the right or up by 3 places respectively. Since |Π(H(d, 3))| = ∞, the universal
cover is also infinite, so repeating vertices in W will lift to unique vertices in U .

Example 4.17

(0, 0)0

(0, 1)0

(0, 2)0

(1, 0)0

(1, 1)0

(1, 2)0

(2, 0)0

(2, 1)0

(2, 2)0

(0, 0)1

(0, 1)1

(0, 2)1

(1, 0)1

(1, 1)1

(1, 2)1

(2, 0)1

(2, 1)1

(2, 2)1

(0, 0)0

(0, 1)0

(0, 2)0

(1, 0)0

(1, 1)0

(1, 2)0

(2, 0)0

(2, 1)0

(2, 2)0

(0, 0)1

(0, 1)1

(0, 2)1

(1, 0)1

(1, 1)1

(1, 2)1

(2, 0)1

(2, 1)1

(2, 2)1

Observe now the following covers of H(2, 3): U/⟨U2
1 , U2⟩ and U/⟨U1, U

2
2 ⟩. In the first

cover, we see that every walk in H(2, 3) lifts to a walk in U/⟨U2
1 , U2⟩. Observe that in

this cover a walk in H(2, 3) starting at (0, 0) lifts to a walk starting and ending at (0, 0)0,0
when W is equivalent to the product of 2 horizontal ground walks and one vertical ground
walk. The second cover follows similarly. In this cover, a walk W in H(2, 3) starting at
(0, 0) lifts to a walk starting and ending at (0, 0)0,0 when W is equivalent to the product
of 2 vertical ground walks and 1 horizontal ground walk.
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Example 4.18

In this last cover we have U/⟨U3
1 , U

2
2 ⟩. In this cover, a walk W in H(2, 3) starting at

(0, 0) lifts to a walk starting and ending at (0, 0)0,0 when W is equivalent to the product
of 2 vertical ground walks and 3 horizontal ground walks.

Example 4.19 Consider H(2, 4):

The universal cover of H(2, 4) is finite since Π(H(2, 4)) ∼= Z2 ×Z2. Since |Π(H(2, 4))|
= 4, the universal cover of H(2, 4) is the following 4-cover:
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We can see that either ground walk U1, U2 would lift to a walk that starts at (0, 0)0,0
that ends at (0, 0)1,0 or (0, 0)0,1, and that U2

i lifts to a walk ending at (0, 0)0,0.

5 Conclusions and Future Directions

To conclude, we found that the fundamental groups of Hamming graphs H(q, d) are
trivial when q = 2, Zd when q = 3 and Zd

2 when q > 3. We also showed that all covers
of Hamming graphs are generated by ground walks, which are walks of length 3 with
non-zero coordinate i, and these generators commute and are unique. Thus, Hamming
graphs are cartesian or box products of complete graphs.

In this research, we computed the fundamental group for a more complex family of
graphs than those previously studied under this x-homotopy. In continuing this work,
we would like to extend this investigation to include more families of graphs with similar
or greater complexity. In a work in progress, Chih and Scull generalized some of these
results to show that Π(G □ H) ∼= Π(G)× Π(H).
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