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Abstract - A group has Property (NL) if it does not admit a loxodromic element in any
hyperbolic action. In other words, a group with this property is inaccessible for study from
the perspective of hyperbolic actions. This property was introduced by Balasubramanya,
Fournier-Facio and Genevois, who initiated the study of this property. We expand on this
research by studying Property (NL) in Coxeter groups, a class of groups that are defined
by an underlying graph. One of our main results show that a right-angled Coxeter group
(RACG) has Property (NL) if and only if its defining graph is complete. We then move
beyond the right-angled case to show that if a defining graph is disconnected, its corre-
sponding Coxeter group does not have Property (NL). Lastly, we classify which triangle
groups (Coxeter groups with three generators) have Property (NL).
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1 Introduction

Taking inspiration from the work of Gromov [7], isometric group actions on hyperbolic
spaces (sometimes called hyperbolic actions) have become a popular avenue of research in
geometric group theory. Understanding the ways in which a group can act on a hyperbolic
space can lend insight into its group-theoretic properties.

Property (NL), first formally defined in [3], attempts to understand groups that are
inaccessible from this perspective. A group G has Property (NL) if no element acts
loxodromically for any action of G on any hyperbolic space (see Sections and for
details).

Coxeter groups appear naturally as abstractions of reflection groups and provide in-
formation about the symmetries of an associated space. Such groups are most commonly
defined using a Cozeter graph, which is an edge-weighted graph where the vertices corre-
spond to generators of order 2, while vertices a and b are connected by an edge of weight
n € N if and only if n is the minimal natural number such that (ab)" = 1 (see Section
for details). If all edge weights equal two, the group is called right-angled. In this paper,
we are motivated by the following question.

*The second and third authors were undergraduate students at the time of writing this article.
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Question 1.1 Which Coxeter groups have Property (NL)? Moreover, how can this be
deduced from the defining graph of a Coxeter group?

We provide a partial answer to this question by proving the theorems below. We
note that the results contained in this paper will likely be well-known to experts working
with Coxeter groups. However, to the best of our knowledge, these results have not been
recorded in the literature; namely, Property (NL) has not been studied in the setting
of Coxeter groups thus far. We also aim for the detailed explanations and background
information in this paper to serve as an accessible entry point for undergraduate students
interested in this area of research.

Theorem 1.2 A right-angled Cozxeter group has Property (NL) if and only if its defining
graph I is complete.

Problem is inspired by a large body of research on Coxeter groups aimed at un-
derstanding how properties of a Coxeter group can be discerned from the structure of
the defining graph. We also note that most of the groups classically studied in geometric
group theory, such as mapping class groups, right-angled Artin groups, and Out(F,,), fail
to have Property (NL). However, there exist finite Coxeter groups, which naturally have
Property (NL). Problem is thus relevant for (infinite) Coxeter groups. A consequence
of Theorem is the following equivalent characterization of Property (NL).

Corollary 1.3 A right-angled Coxeter group has Property (NL) if and only if it is finite.

Note that, in general, infinite groups can have Property (NL). For instance, many
“Thompson-like” groups, including Thompsons groups 7, V' have Property (NL). So the
above result is special to the right-angled Coxeter group setting.

In the non-right-angled case, we limit our focus to triangle groups, which are Cox-
eter groups whose defining graphs have only three vertices. In this case, there are no
restrictions on edge weights. There are three distinct types of triangle groups: spherical,
euclidean, and hyperbolic (see section . These terminologies derive from whether the
triangle group results in a tiling of the sphere, the plane, or the hyperbolic plane, respec-
tively [9]. Theorem may therefore be thought of as classification result for triangle
groups.

Theorem 1.4 A triangle Coxeter group has Property (NL) if and only if it is not hyper-
bolic.

In addition, the defining graph can be used to determine whether a triangle group is
hyperbolic, which provides a positive answer to Question [1.1]in this case also.

Paper organization. In Section [2| we introduce some background on Coxeter groups
and on isometric group actions on hyperbolic spaces. In Section [3, we prove Theorem [I.2
about right-angled Coxeter groups. In Section 4 we prove Theorem about triangle
groups.
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2 Background

In this section, we collect some background information about the terms used throughout
the remainder of the paper.

2.1 Group Actions

Describing the action of a group on a set is one way of understanding the symmetries of
the set being acted on. We can view an action as assigning each element of the group to
a symmetry of the set. Formally, we have the following.

Definition 2.1 An action of a group G on a set X is a map ¢ : G X X — X such that
1. p(e,x) =z for all x € X where e is the identity element of G;
2. o(g,0(h,x)) = p(gh,x) for all g,h € G and for all z € X.

We will often use the shorthand notations g - x = ¢(g,x) or gr = ¢(g,x) and denote
by G ~ X the action of G on X. A group can always act on any space trivially, where
every element of the group sends each element of the set to itself, or g - x = x for all
g € G and for all z € X. Every group can also act on itself by left multiplication via
the group operation. In this paper, we will most often deal with non-trivial actions that
satisfy certain properties.

Definition 2.2 If G ~ X and X is a metric space with a metric (distance function) d,
then the group action is called isometric if d(g -z, g -y) = d(x,y) for all g € G and all
z,y € X.

Definition 2.3 Let G ~ X be an isometric action. We say that the action is

1. cobounded if there exists a bounded set B C X such that X = U gB, and

geG
2. proper if for every bounded set B C X, the set {g € G | gB N B # 0} is finite.

Group actions are more interesting when the set is related to the group. For example,
the permutation group S, acts on the set {1,...,n} and, similarly, D, the group of
symmetries of the regular n-gon, can be viewed as permuting the set of vertices of the
associated polygon.

2.2 Hyperbolic Spaces

The hyperbolic plane differs from the Euclidean plane in how distances are measured and
how geodesics (or paths of shortest distance between points) are defined. The motivation
to define hyperbolic spaces comes from the Poincare disk model of the hyperbolic plane,
denoted H2. The hyperbolic plane H? can be visualized as a disk with open boundary
that is conceptualized as a circle at infinity. Geodesics in this space tend to veer towards
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the interior of the circle rather than follow the straight line (in the usual Euclidean sense)
between their endpoints.

Hyperbolicity was first defined by Gromov in terms of the Gromov product in [7];
however, we employ an equivalent definition of hyperbolicity due to Rips.

Figure 1: Geodesics in H? (solid) vs Euclidean geodesics (dotted).

Definition 2.4 Let (X, d) be a geodesic metric space. Let N(-) denote the e-neighborhood
of the argument. The space X is hyperbolic if there exists a 6 > 0 such that geodesic
triangles are d—thin, i.e. for any x,y,z € X and any geodesics [x,y], |y, z] and |z, z]

between them,
Nis(lz, yl Uy, 2]) 2 [z, 2].

The triangle with sides [z, y], [y, 2| and [z, 2] is called a geodesic triangle (see Figure[d).
The minimal constant § that satisfies this condition is called the hyperbolicity constant
of X.

For example, trees (geodesic spaces with no closed loops) are 0—hyperbolic since
geodesic triangles are degenerate, forming tripods (see Figures (3| and [4f). The hyper-
bolic plane H? is In(1 + v/2)—hyperbolic.

We now define the Gromov boundary of a hyperbolic space X, denoted 0.X, as follows.

Definition 2.5 Let (X,d) be a hyperbolic metric space. Given points x,y,z € X, the
Gromov product of points x and y with respect to z is defined by

(& ). = 5 (d(r,2) + dly, 2) — d(z. )

A sequence (z,,) of points of X converges at infinity if (z; | x;), — 00 as i,j — 00
(this definition is independent of the choice of the base point z). Two such sequences (x;)
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Figure 2: Thin triangles condition

Figure 3: Degenerate geodesic triangles on a line.

Figure 4: Geodesic triangles in a tree are tripods.

and (y;) are equivalent if (z; | y;), — 00 asi,j — oco. If a is the equivalence class of (x;)
under this equivalence, we say that the sequence x; converges to a. The boundary 0X is
defined as the set of all such equivalence classes of sequences convergent at infinity.

We end this subsection with the definition of a quasi-isometry.

Definition 2.6 Let (X, dx) and (Y,dy) be metric spaces. A map q: X — Y s called a
quasi-isometric embedding f there exists a constant C' > 1 such that

O+ édx(a, b) < dy (q(a), q(b)) < Cdx (a,b) + C

foralla,b € X. If, in addition, for everyy € Y, there is an x € X such that dy (q(x),y) <
C, then q is called a quasi-isometry.

Note that quasi-isometry is an equivalence relation of the set of metric spaces (see
the section titled “Quasi-Isometries” in Chapter 1.8 of [4] as a resource). Moreover,
hyperbolicity is a quasi-isometry invariant. This means that if metric spaces X and Y are
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quasi-isometric, then X is hyperbolic if and only if Y is hyperbolic (see [4][III.H. Theorem
1.9)).

2.3 Types of isometries in hyperbolic actions.

If G acts on a hyperbolic space by isometries, then we call such an action a hyperbolic
action. Gromov showed that for a hyperbolic group action G ~ X, an element g € G
can be classified into one of three possible types of isometries.

1. We say g is elliptic when the orbit of any zy € X, is bounded, i.e. given zq € X,
there exists a constant C' depending on x such that d(g" - xg,zo) < C for all n € Z.
In other words, repeatedly applying g will not send xy to approach the boundary
0X.

2. We say g is loxodromic if the map n — ¢" -z is a quasi-isometric embedding Z — X
for any zg € X. In this case, the boundary 0X contains two fixed points for g, '
and £~. The action of of a loxodromic element g appears similar to a translation,
with ¢" - 29 — T and g7 - 29 — €.

3. We say g is parabolic if it is neither elliptic nor loxodromic. In other words, the
boundary 0X contains exactly one fixed point for g, say & € 0X. In this case,
the orbit of any xy € X is unbounded, and we have that both ¢" - 2o — £ and
g xo — &

Property (NL), defined below, is characterized by the lack of loxodromic isometries.
Loxodromic isometries have been very useful in studying dynamics of group actions and
often yield a rich structure for the concerned groups; we refer to [7, [, 12, Bl 2] and
references therein for the interested reader.

2.3.1 Infinite Dihedral Group

One important example of a group action used in the main result in this paper is the
action of the infinite dihedral group, D.,, on the real line, which is a hyperbolic space.
The infinite dihedral group is the complete group of symmetries of the line marked at the
integral points; we define it as Dy, = Z % (Z/27).

T S

Figure 5: D, as a group of reflections.

We can also view the infinite dihedral group as the group generated by two parallel
reflections across different fixed points on the real line. Let r be the reflection across
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the point x = 0 where r(z) = —x and let s be the reflection across the point x = 1
where s(z) = 2 — x. Composing these two reflections yields a loxodromic element in the
group, called a translation. For example, performing r and then s results in a translation
g = sr to the right by two units. It follows that as n — oo, we have ¢"zy — oo and
g "xy — —oo for any xy € Z. We can see that g fixes only the two points on the boundary
of line, namely the points at co and —oo. Thus, it satisfies the definition of a loxodromic
element. We can check that the generators r, s do not commute by computing the element
rs, which is a translation to the left by two units. Elements of D, are either of order
two (reflections or, equivalently, involutions) or are of infinite order (called translations).
This nomenclature takes inspiration from the action of these elements on the line.

2.4 Coxeter Groups

Let I' be a finite graph with n > 1 vertices sy,--- ,s, with the following information:
vertices s;, s;, with ¢ # j may be connected by an edge labelled by a weight m;; = m;; €
[2,00) N Z. T is then called a Cozeter graph.

Associated to such a Coxeter graph, one can define a Coxeter group Wr as follows. A
generating set for Wr is S = {sy, 82,5, }. Moreover, s? = 1 and if two vertices s; and
s; with ¢ # j are connected by an edge labeled by m;;, then (s;s;)™9 = 1.

In other words, the following is a presentation of Wr:

Wr={(s1,...,8m|82=... =52 =1,

(sis5)™

= 1 if there is an edge labelled m;; between s; and s;).

A missing edge denotes the free relation between the associated generators; i.e. gen-
erators not connected by any edge lack any relation between them. A graph is called
complete if every pair of vertices has an edge between them. When m = 2, we treat
the edges as unlabeled since the labeling is implied. The relation arising from m = 2 is
important because it indicates that s; commutes with s;: since each s; is its own inverse,
when (s;5;)* = s;s;8:8; = 1, we can right multiply by s;s; to see that s;s; = s;s;. Right-
angled Coxeter groups are a special case in which the only relations between generators
are (s;5;)™9 = 1 with m;; = 2. In other words, in the right-angled setting, two generators
must either commute with each other or have no relation.

Returning to the previous example of the infinite dihedral group, we see that its asso-
ciated Coxeter graph must have two vertices, as the group is generated by two reflections.
Since their composition results in a translation (an element with infinite order), there is
no edge connecting them; see Figure [6] for more examples of Coxeter groups.

2.5 Property (NL)

The formal study of Property (NL) was initiated by Balasubramanya, Fournier-Facio, and
Genevois in [3].
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ORRO

(a) Dy as a Coxeter group. (b) Zy X Zs as a Coxeter group.

()
(——  O——

(¢) Zg * (Zo x L) (d) Ss

Figure 6: Examples of Coxeter graphs and their corresponding Coxeter groups.

Definition 2.7 We say that G has Property (NL)—which stands for “no loxodromics”—
if for any action of G on a hyperbolic space X, G only contains elliptic or parabolic
1sometries.

We will sometimes simply say that a group G has (NL) when we mean that G has
Property (NL). Finite and torsion groups are examples of groups with this property, since
each element in such groups has finite order (and loxodromic elements must have infinite
order).

We first note that every nontrivial group has a nontrivial action on some hyperbolic
space. Indeed, every group G acts on some complete graph: take one vertex per group
element and label each vertex by said group element and add all possible edges between
the vertices. This is a hyperbolic space when equipped with the path metric since it has
finite diameter (the distance between any two vertices is one here.) An element h € G
acts on the vertex g via left-multiplication. (In the case of finitely generated groups, this
is an example of a very uninformative Cayley graph.) Moreover, countable groups admit
parabolic actions on a hyperbolic space that can be constructed using the combinatorial
horoball construction of Groves—Manning [6]. In case the group is not finitely generated,
Serre [I3]) provides constructions to build parabolic actions on trees.

In addition to exploring the stability of Property (NL) under different group opera-
tions, the authors of [3] also produced many new examples of groups with the property.
In particular, many so-called Thompson-like groups have Property (NL) (see [3, Theorem
1.6] for a list of examples).

We note the following results about Property (NL), which will be used crucially in
this paper. The first concerns quotients of groups.

Proposition 2.8 [3, Lemma 4.2] Let N be a normal subgroup of G and ¢: G — G /N be
the quotient map. If G/N ~ X is a hyperbolic action, then the action of G ~ X defined
by g-x = ¢(g9) - x is a well defined hyperbolic action of the same type. In particular, if
G/N ~ X contains a loxodromic element, then so does G ~ X.

In what follows, a group G is virtually abelian if there is a finite-index subgroup H < G
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such that H is abelian. The next result follows from [3, Corollary 1.5].

Proposition 2.9 Let G be a finitely generated virtually abelian group. Then G has Prop-
erty (NL) if and only if it does not surject onto Z or D,.

The motivation to study Property (NL) in Coxeter groups comes from the follow-
ing observations: many classically studied groups in geometric group theory admit many
actions on hyperbolic spaces with loxodromic elements, as proved by Abbott, Balasub-
ramnya, and Osin in [I].

In particular, right-angled Artin groups (RAAGs) never have Property (NL). Indeed,
if G is a RAAG that does not decompose as a direct product, then it admits an action with
a loxodromic element on the associated extension graph, which is a hyperbolic space. This
was proved by Kim and Koberda in [§]. Otherwise, G = A x B for two infinite RAAGs
A, B, where are least one of A, B does not decompose as a direct product. Suppose A
does not decompose as a direct product. Then we may take the quotient G/B = A and
construct a hyperbolic action of G with a loxodromic element by using Proposition [2.8|

In contrast, right-angled Coxeter groups (RACGs) can be finite groups, which have
Property (NL). It is a natural question to consider which infinite RACGs, and more
generally, which Coxeter groups, have this property. An interesting area of research in
geometric group theory aims at understanding how a property of a RACG is related to
the structure of its defining graph; we can therefore ask how to identify whether a RACG
has Property (NL) using the defining graph.

3 Right-Angled Coxeter Groups and Property (NL)

Our first result fully classifies which right-angled Coxeter groups have Property (NL),
which is Theorem in the introduction. We recall the statement here.

Theorem 1.2 A right-angled Cozeter group has Property (NL) if and only if its defining
graph T' 1s complete.

Proof. We first prove that if I' is a complete right-angled Coxeter graph, then W has
(NL). Consider the complete right-angled Coxeter graph on n vertices, $i,...,$,. Since
the graph is complete, each s; commutes with every s; for 1 <4,7 < n. Any element in
Wr can thus be expressed in the normal form s7"'...s7" with my € Nfor 1 <k <n. In
addition, since s? = 1 for all 1 < ¢ < n, we can further simplify this element by specifying
that my € {0,1} for 1 <k < n. In other words, s;" is equal to the identity when m; =0
and is equal to s; when m; = 1. Therefore, Wr is isomorphic to Zy X - - - X Zs for n copies
of Zs. Since this is a finite group, we conclude that Wr has Property (NL).

We now prove the converse via the contrapositive. We will show that if I' is not
complete, then W must contain a loxodromic element.

Since I' is not complete, there exist two vertices, say s; and s,, that are not connected

by an edge. Thus for syso € Wr, it follows that |s1ss| = 00.
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Recall the presentation of D, as the Coxeter graph with two disconnected vertices, s
and r (see Figure [6(A)). We define a map ¢ : Wr — Do by ¢(s1) = s, p(s2) = r, and
o(s;) = 1 for i # 1,2. We extend the map ¢ to any w € Wr where w is the product of
generators

W = Sk SkySks--Skm

for k; € {1,--- ,n} by the rule

p(w) = ©(Sk; )P (Sky)P(Sks) = Sk, )-

Since our map ¢ is extended canonically over generators, we have that ¢ is a homo-
morphism. We claim that ¢ is surjective. Consider the element (sr)Ps? where g € {0, 1}
and p € Z. We have that

©((s152)Ps]) = (s1)Ps?.

Similarly, elements of the form (rs)Pr? also have well-defined preimages in Wr. Thus ¢ is
surjective.

By the first isomorphism theorem, Wr/kerp = D,. As D, admits a hyperbolic
action with a loxodromic element, so does Wr/ ker ¢. By Proposition , it follows that
Wr does not have (NL), as desired. O

4 Other Coxeter Groups

In this section, we consider Coxeter groups that are not right-angled. A complete clas-
sification of which groups have Property (NL) in this more general setting seems to be
hard to tackle. However, in the case where the defining graph is disconnected, we have a
concrete answer.

Proposition 4.1 If I is a disconnected Coxeter graph, then the Coxeter group Wr does
not have Property (NL).

Proof. Let I' be a disconnected Coxeter graph on n vertices, si, ..., s,, with non-empty
connected components, ['1, 'y, ..., [';,. Let X; be the set of generators for Wr,. Recall that
D, is generated by two reflections r and s.

We define a map ¢ : Wr — D, as follows

o(sp) =r for all z, € X,
©o(s;) = s for all x; € X, and |
(s;) =1forall z; € XsU...UX,,,

and extend ¢ to Wr as a homomorphism.

Note that if a,b € X; (or X5) are vertices connected by an edge labelled p, then we
have (ab)? = 1 in Wr. Under the map ¢, this element is sent to (r?)? = (1)? = 1. Further,
there are no relations between elements of X; and elements of X5. Therefore, the map ¢
does not introduce any new relations and is thus a homomorphism.
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We now show that ¢ is surjective. Consider the element (rs)™r* € D., where m € Z
and k € {0,1}. Take any s, € X; and s; € X»; then we have that o((sps;)™zF) = (rs)™r*.
By the first isomorphism theorem,

Wr/ker p = Dy

By Proposition [2.8] we conclude that Wr does not have Property (NL). O

The above result limits our search for further Coxeter groups with Property (NL) to
those with a connected defining graph. As a starting point of this exploration, we focus
on Coxeter groups with 2 and 3 vertices. These groups are also known as dihedral groups
and triangle groups, respectively.

Proposition 4.2 Let Wr be a Coxeter group with exactly 2 generators, s, and so. Wrp
has Property (NL) if and only if its defining graph T' is complete.

Proof. Suppose the defining graph of Wt is complete with edge label m. Because
Wr only has two generators, all group elements can be represented as words of the form
(s152)Psq or (s281)? for some p,q € Z. Because s;s9 has order m, there are finitely many
possibilities for p and ¢q. Therefore, Wr is finite and has Property (NL).

The only Coxeter group with 2 vertices and an incomplete defining graph is D, which
does not have Property (NL). O

Definition 4.3 A triangle group is a Cozeter group whose defining graph has three ver-
tices and three edges. Fach edge is labelled by I, m,n, where [,m,n > 2 are integers.

Triangle groups can be visualized as groups generated by reflections across each of the
three sides of a triangle. The resulting group is then the group of symmetries of a tiling
by these triangles of one of three geometries: the sphere, Euclidean plane, or hyperbolic
plane. This justifies the nomenclature of triangle groups.

Given a Coxeter graph with three vertices and edge relations labeled [, m, n, the corre-
sponding triangle has interior angles T, -, and Z. The order of the relation between two
of these generating reflections is closely related to the angle between the associated sides
of the triangle. Consider a right triangle in the Euclidean plane. Reflecting across one
of the legs and then the perpendicular leg will result in a rotation by m, which is its own
inverse, and thus is an order 2 element. This is also why we call those Coxeter groups
with only weights 2 on the edges right-angled.

As explained above, we can see that in the right-angled case, when the reflections
intersect at an angle of 7, the order of the Coxeter relation between them is 2. Similarly,
a tiling of the Euclidean plane with equilateral triangles has generating reflections that
intersect at an angle of Z. Tt is straightforward to check that the composition of two of
these reflections three times will yield the original triangle, showing that these generators
have a Coxeter relation of order 3.

More generally, only certain choices of [, m,n will allow for Euclidean triangles, whose
interior angles must add up to 7. In fact, we can fully classify triangle groups by the sum

T T 4T Then,

of their interior angles. Let s =
I m n
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(1) s = m corresponds to a triangle tiling of the Euclidean plane,
(2) s > 7 corresponds to a triangle tiling of a sphere, and

(3) s < m corresponds to a triangle tiling of the hyperbolic plane.

We will consider each of these types of triangle groups individually and deduce in each
case if the group has Property (NL) or not. In what follows, we will use the notation
A(l,m,n) to denote the triangle group with edge labels [, m, n. We start with the spherical
and Euclidean cases.

Proposition 4.4 Spherical triangle groups have Property (NL).

Proof. There are only finitely many triangles in the tiling of the sphere. Thus, the
group of symmetries of this tiling is a finite group. As we have seen, all finite groups have
Property (NL), so spherical triangle groups must have Property (NL). O

Lemma 4.5 No triangle group surjects onto the integers or D.

Proof. We first claim that no triangle group surjects onto the integers. The only element
of finite order in the group of the integers is 0 (the identity). In order for a triangle group
to map onto the integers, elements of finite order must be sent to elements of finite order.
Thus, all generators of the triangle group would have to be sent to the identity, and so
the map would be the trivial homomorphism. We conclude that no triangle group can
surject onto the integers.

Now consider some triangle group A(l,m,n) with generators a, b, and c¢. By way of
contradiction, assume there exists some surjective homomorphism ¢ from A(l,m,n) to
D. Observe that for this homomorphism to be surjective, at least two of the generators
must map to distinct non-trivial involutions in D.,. Otherwise the image of the homo-
morphism would be trivial or a finite subgroup of D, with only 2 elements, which implies
¢ is not surjective.

Recall D, is generated by the involutions r and s. Then involutions in D, are either
of the form (rs)Pr or (sr)?s for some p,q € N.

We claim that the images of at least two generators under ¢ have to be distinct
involutions. Let = be a reflection in D, and suppose ¢(a) = ¢(b) = ¢(c) = = or ¢(a) =
¢(b) = = and ¢(c) = id. Then ¢ (A(l,m,n)) is finite and therefore not equal to D..

Without loss of generality, let a,b be the two generators whose images are distinct
involutions.

We now have two cases. In the first case, ¢(a) = (rs)Pr and ¢(b) = (sr)%s for some
p,q € N. So, ¢(ab) = (rs)PT4™!. As a,b are connected by an edge labelled by one of
[,m,n, ab is a finite order element in A(l,m,n). But then (rs)P*™! has finite order in
D.,. This is a contradiction because rs is a translation and has infinite order.

In the second case, a and b are mapped to involutions that both start with the same
generator. So without loss of generality, suppose ¢(a) = (rs)Pr and ¢(b) = (rs)?r for
some p,q € N. If p > ¢, ¢(ab) = (rs)?~9 and if ¢ > p, ¢p(ab) = (sr)9P. In either instance
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we obtain a contradiction as ab has finite order, but (sr)~! = rs has infinite order. So no

surjective homomorphisms can exist from the triangle groups to D. 0J

Proposition 4.6 FEuclidean triangle groups have Property (NL).

Proof. Unlike the spherical case, the triangle tiling of the plane extends infinitely, so the
associated triangle group is not finite. However, there are only three triangle groups that
satisfy condition (1) above for the Euclidean case: A(3,3,3), A(2,4,4) and A(2,3,6).
These are all well-documented in the classification of Coxeter groups, see for example
[10].

All three Euclidean triangle groups are virtually abelian of finite rank (in fact virtually
7?). Indeed, since these groups admit proper and cobounded actions on Z?, it follows from
the Svarc-Milnor Lemma that they are all quasi-isometric to Z* and thus contain a finite
index subgroup isomorphic to Z? [14]. (See also [11] for a more precise description of the
structure of these groups). By Lemma , none of these groups surject onto D, or Z.
Therefore, by Proposition 2.9 the Euclidean triangle groups have Property (NL). O

Proposition 4.7 Hyperbolic triangle groups do not have Property (NL).

Proof. By definition, a hyperbolic Coxeter group G tiles the hyperbolic plane, and
therefore the action on H? is cobounded (the fundamental domain is given by the triangle
with angles 7/l,7/m,7/n). Furthermore, for any bounded set B € H? we have that
{glgBN B # 0} is a finite set, so the action is proper. By the Svarc-Milnor Lemma, there
is a finite generating set Y of G such that the Cayley graph I'(G,Y") is quasi-isometric
to H2. Since hyperbolicity is preserved under quasi-isometries, we have that I'(G,Y) is
hyperbolic and thus G is an infinite hyperbolic group. Therefore G does not have Property
(NL). O

Acknowledgments

The authors would like to thank the summer REU program held at Georgia Institute of
Technology in 2023 for bringing them all together to work on topics of common interest. A
special thanks to Dan Margalit for organising and supervising all the projects conducted
in geometric group theory of the CUBE group of the REU, and for providing helpful
feedback on drafts of this paper. We thank Wade Bloomquist, Ryan Dickmann, and
Abdoul Karim Sane for further mentorship during the REU program. Finally, we thank
the anonymous referee for their careful reading of this paper and their feedback.

References

[1] C.R. Abbott, S. Balasubramanya, D. Osin, Hyperbolic structures on groups, Algebr. Geom, Topol,
19 (2019), 1747-1835.

[2] M. Bestvina, Groups acting on hyperbolic spaces - a survey, available online at the URL: https:
//arxiv.org/abs/2206.12916 (2022).

THE PUMP JOURNAL OF UNDERGRADUATE RESEARCH 8 (2025), 472-485 484


https://arxiv.org/abs/2206.12916
https://arxiv.org/abs/2206.12916

3]

S.H. Balasubramanya, F. Fournier-Facio, A. Genevois, A. Sisto, Property (NL) for group actions on
hyperbolic spaces, Groups Geom. Dyn., (2024), available online at the URL: https://ems.press/
journals/ggd/articles/14297900 (Published online first).

M.R. Bridson, A. Haefliger, Metric Spaces of non-positive curvature, Springer-Verlag, Berlin, Hei-
delberg, 1999.

F. Dahmani, V. Guirardel, D. Osin, Hyperbolically embedded subgroups and rotating families in
groups acting on hyperbolic spaces, Mem. Amer. Math. Soc., 245 (2017).

D. Groves, J.F. Manning, Dehn filling in relatively hyperbolic groups, Israel J. Math, 168 (2008),
317-429.

M. Gromov, Hyperbolic Groups, Essays in group theory , 8 (1987), 75-263.

S. Kim, T. Koberda, The geometry of the curve graph of a right-angled artin group, Int. J. Algebra
Comput., 24 (2014), 121-169.

W. Magnus, Non-Fuclidean tessellations and their groups II, Academic Press, 1974.

D. Mondal, Introduction to reflection groups, available online at the URL: https://www.cmi.ac.
in/~pdeshpande/projects/triangle’,20groups.pdf

M.A. Albar, W.M. Al-Hamdan, The triangle groups, Rend. Sem. Mat. Univ. Padova, 89 (1993),
103-111.

D. Osin, Acylindrically Hyperbolic groups, Trans. Amer. Math. Soc., 368 (2016), 851-888.
J.P. Serre, Arbres, amalgames, SLs, Société Mathématique de France, Paris, 1977.

Y. Shalom, Harmonic analysis, cohomology, and the large-scale geometry of amenable groups, Acta.
Math, 192 (2004), 119-185.

Sahana Balasubramanya

Lafayette College

Easton, PA, USA

E-mail: hassanba@lafayette.edu

Georgia Burkhalter

University of North Georgia

Dahlonega, GA, USA

E-mail: georgiaburkhalter@gmail.com

Rachel Niebler

Haverford College

Haverford, PA, USA

E-mail: rlpniebler@gmail.com

Roberta Shapiro
Georgia Institute of Technology

Alt

anta, GA, USA

E-mail: shapirorh@gmail.com

Received: October 4, 2024 Accepted: November 17, 2025
Communicated by Mitja Mastnak

THE PUMP JOURNAL OF UNDERGRADUATE RESEARCH 8 (2025), 472485 485


https://ems.press/journals/ggd/articles/14297900
https://ems.press/journals/ggd/articles/14297900
https://www.cmi.ac.in/~pdeshpande/projects/triangle%20groups.pdf
https://www.cmi.ac.in/~pdeshpande/projects/triangle%20groups.pdf

	Introduction
	Background
	Group Actions
	Hyperbolic Spaces
	Types of isometries in hyperbolic actions.
	Infinite Dihedral Group

	Coxeter Groups
	Property (NL)

	Right-Angled Coxeter Groups and Property (NL)
	Other Coxeter Groups

