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Abstract - We apply Hartnell’s model for firefighting on graphs. For rooted trees, we
propose an Unburning Algorithm, a greedy algorithm starting from the leaves and working
back towards the root. We show that the algorithm saves at least half the vertices of the
optimal solution and that this bound is sharp. We confirm a conjecture of Hartke about
integrality gaps when comparing linear and integer program solutions. For general graphs,
we propose a Containment Protocol, which looks ahead two time steps to decide where to
place firefighters. We show that the protocol performs near optimally on four well studied
infinite grids. The protocol is available for any graph and we realize this flexibility by
investigating an infinite pentagonal graph.
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1 Introduction

In 1995, Hartnell [5] proposed a model for fire spread on a graph through discrete time
steps. Each vertex is in one of three states: susceptible, burned, or protected. Once a
susceptible vertex is burned, the vertex remains burned and similarly for the protected
state. In other words, the only available response is that a finite number n of susceptible
vertices may be protected by a firefighter at each time step.

The fire begins with a single vertex burned. At each time step, we place n firefighters
and then the conflagration spreads from the burned vertices to any neighbors that remain
susceptible. The goal is to use the firefighters to contain the fire with as few vertices as
possible burned. The fire is contained when no burned vertex has a susceptible neighbor.
A secondary and related goal is to contain the fire in the least possible number of time
steps.

In this paper we use this model to investigate firefighting on two types of graphs, rooted
trees and infinite grids. For rooted trees, the fire begins with the root vertex burned and
we place one (i.e., n = 1) firefighter per time step. It is known that the greedy algorithm
of Hartnell and Li [6] will protect at least half as many vertices as an optimal solution.
We propose the Unburning Algorithm, which is another greedy algorithm, but working
backwards from the leaves towards the root. This algorithm also performs quite well.
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Theorem 1.1 The Unburning Algorithm saves at least half as many vertices as saved by
an optimal placement of firefighters.

We prove this in Section 2.1 where we also present an infinite family of trees that show
it is sharp. It turns out Hartnell and Li’s greedy algorithm is optimal for this infinite
family. We remark that there is a similar infinite family due to Hartke [3] with the roles
reversed: the Unburning Algorithm is optimal and the vertices saved by Hartnell and Li’s
algorithm become arbitrarily close to half; see the discussion at the end of Section 2.1.

Hartke [4] made some modifications to an integer program of MacGillivray and Wang
(see [7]) for firefighting in a rooted tree. This led him to a linear program that is a good
approximation to the optimal solution found by the integer program. Indeed, Hartke
conjectured that the linear program realizes the optimal solution for all trees of 12 or
fewer vertices. In Section 2.2 we verify this conjecture.

For infinite grids, we propose a Containment Protocol, which is a strategy for placing
firefighters based on looking ahead two time steps. The Containment Protocol is quite
robust and in Section 3 we show that it either matches or nearly matches the optimal
solution for four well studied infinite grids, the hexagonal, square, triangular, and strong
grids. The Containment Protocol could be applied to any graph. As an example, in
Section 4 we investigate an infinite pentagonal grid. We report on the best solutions
found by the protocol that, we conjecture, are optimal.

2 Trees

In this section we investigate firefighting on a rooted tree. At time step 0, the fire begins
with the root vertex burned. At each time step we place one firefighter. We will first
contrast Hartnell and Li’s greedy algorithm with our Unburning Algorithm. Then, in
Section 2.2, we verify a conjecture of Hartke [4].

2.1 Greedy Versus Unburning Algorithm

In a rooted tree with root v0, the level l(v) of vertex v is the distance or number of edges
between v0 and v: l(v) = d(v0, v). Let Tv denote the subtree rooted at vertex v. Let
ai be the vertex that is protected by a firefighter at time step i. An optimal firefighting
sequence a1, a2, . . . is one that saves the maximum number of vertices. Hartnell and Li,
and, independently, MacGillivray and Wang provided an important basic observation.

Theorem 2.1 ([6, 7]) If a1, a2, . . . is optimal, then l(ai) = i for all i.

In Hartnell and Li’s greedy algorithm, at each time step i, we protect the vertex at
level i that is the root of a biggest remaining subtree. This protects the vertex along with
all the vertices in its subtree. That is, if we define the weight of vertex v as the number
of vertices in the subtree rooted at v: wt(v) = |V (Tv)|, then at time i, Hartnell and Li’s
algorithm protects a vertex v that maximizes wt(v) among the remaining, unprotected
vertices with l(v) = i.

Hartnell and Li showed that their algorithm performs quite well, in general.
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Theorem 2.2 (Hartnell and Li [6]) Hartnell and Li’s algorithm saves at least half as
many vertices as saved by an optimal placement of firefighters.

We next propose a new algorithm that we call the Unburning Algorithm. We imagine
a fire sweeping through the tree and then attempt to ‘unburn’ it starting from the leaves.

In the Unburning Algorithm, we work backwards from the maximum level n, choosing
the sequence un, un−1, un−2, . . . in turn with l(ui) = i. To avoid some obvious poor choices,
the weight of vertices at level i are updated to reflect vertices protected below level i.
Suppose v has l(v) = i and that {uv

1, u
v
2, . . . , u

v
kv
} is the (possibly empty) set of vertices

in Tv included in the sequence un, un−1, . . . , ui+1. Let Uv be the vertices in Tv protected
by those firefighters:

Uv =
kv⋃
k=1

V (Tuv
k
).

We define
w̃t(v) = |V (Tv)| − |Uv|.

and choose ui among the vertices v with l(v) = i to maximize w̃t(v).
Our main observation is that, similar to Hartnell and Li’s Algorithm, the Unburning

Algorithm performs quite well, in general.

Theorem 1.1 The Unburning Algorithm saves at least half as many vertices as saved by
an optimal placement of firefighters.

Proof. We adapt Hartke’s [3] charging argument for Hartnell and Li’s algorithm. Fix
an optimal sequence of firefighters b1, b2, . . . , bk that saves the largest number of vertices
and let u1, u2, . . . , uℓ be the vertices selected by the Unburning Algorithm. Whenever a
vertex ui is in the subtree Tbj for some bj we will assign or ‘charge’ ui to bj. This means
i ≥ j. We can assume that no bi is in the subtree Tbj with j < i as we would then save
the same number of vertices by removing bi from the sequence. Then each ui is charged
to at most one bj. Let Cbj = {ui | ui is charged to bj} denote the set of vertices charged
to bj.

Let So =
∑k

i=1wt(bi) denote the number of vertices saved by the optimal sequence.

Similarly, let Su =
∑ℓ

i=1 w̃t(ui) denote the number of vertices saved by the Unburning
Algorithm. If, for some i, w̃t(ui) < wt(bi), it must be that Cbi ̸= ∅ as otherwise the
Unburning Algorithm would have chosen ui = bi. Since the Unburning Algorithm chooses
ui rather than bi, we know that the w̃t(ui) together with the weights of the uj assigned
to bi is at least as big as wt(bi). That is,

wt(bi) ≤ w̃t(ui) +
∑
u∈Cbi

w̃t(u).

On the other hand, this inequality remains valid in case w̃t(ui) ≥ wt(bi).
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Summing over the vertices in the optimal sequence,

So =
k∑

i=1

wt(bi)

≤
k∑

i=1

w̃t(ui) +
∑
u∈Cbi

w̃t(u)

 .

Fix an index i0 in 1, . . . , ℓ. There are at most two occurrences of ui0 in the sum. It
will appear in w̃t(ui) when i = i0. Also, ui0 is the descendant of at most one bj. So, ui0

may occur again in Cbj when i = j. Since each ui0 occurs at most twice in the sum, we
conclude that So ≤ 2Su, which means Su ≥ 1

2
So. □

q q q q p

p

p

p
k

edges

k + 1 k

Figure 1: The (k, p, q) tree.

We next show that this bound is tight by providing a family of trees for which the
number of vertices saved by the Unburning Algorithm can be made arbitrarily close to half
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of those saved optimally. Let (k, p, q) denote a tree of the type illustrated in Figure 1. The
root vertex has degree k+2. The k+1 subtrees to the left are identical, each consisting of
a path of length k with q pendant vertices as leaves. The remaining subtree to the right,
includes k subtrees, each with p leaves at the ends of paths of length increasing from 0 to
k − 1.

o1

o2

o3

o4

o5

u1

u2

u3

u4

u5

Figure 2: The (3, 6, 2) tree.

For example, Figure 2 illustrates the situation when (k, p, q) = (3, 6, 2). For this graph,
Hartnell and Li’s algorithm is optimal. The vertices for this optimal solution o1, o2, . . . , o5
are as shown in the graph with total weight So = 25 + 5 + 4 + 3 + 1 = 38. We have
also labelled the vertices u1, u2, . . . , u5 of the vertices for the Unburning Algorithm with
a total weight Su = 6 + 7 + 7 + 7 + 1 = 28.

To generalize the (3, 6, 2) example we will impose conditions on k, p, and q. Compare
the vertices at level one. Note that w̃t(o1) = 4 < 6 = wt(u1). In general, the subtree at
the right in a (k, p, q) tree will have w̃t(o1) = k(k − 1)/2 + 1 while the equivalent k + 1
subtrees to the right have wt(u1) = k+ q+1. To maintain the relationship between these
weights, we will require k(k− 1)/2 + 1 < k+ q + 1, or equivalently, q > k(k− 3)/2. Next
look at the vertices at level two where wt(u2) = 7 > 5 = wt(o2). In a (k, p, q) tree we will
have wt(u2) = p + 1 and wt(o2) = k + q. To maintain that relationship, we require that
p+ 1 > k + q or p > k + q − 1.

Assuming these conditions on k, p, and q, we can determine formulas for the number
of vertices saved by the optimal placement of firefighters (which agrees with Hartnell and
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Li’s algorithm) and the Unburning Algorithm. For the optimal solution,

wt(o1) = 1 + (p+ 1) + (p+ 2) + · · ·+ (p+ k)

= 1 + kp+ k(k + 1)/2.

The weights of o2, o3, o4, . . . ok+1 go down by one at each step:

k+1∑
i=2

wt(oi) = (q + k) + · · ·+ (q + 2) + (q + 1)

= kq + k(k + 1)/2.

Adding in wt(ok+2) = 1, we have

So = 1 + kp+ k(k + 1)/2 + kq + k(k + 1)/2 + 1 = k(k + p+ q + 1) + 2.

For the Unburning Algorithm, we have w̃t(u1) = wt(u1) = k+1+q, w̃t(ui) = wt(ui) =
p+ 1 for 2 ≤ i ≤ k + 1, and w̃t(uk+1) = wt(uk+1) = 1 so that

Su = k + 1 + q + k(p+ 1) + 1 = k(p+ 2) + q + 2.

One way to satisfy our conditions on k, p, and q is by setting q = k(k − 3)/2 + 1 and

p = k + q = k + k(k − 3)/2 + 1 = k(k − 1)/2 + 1.

With these choices,

Su/So =
k(k(k − 1)/2 + 3) + k(k − 3)/2 + 3

k (k + k(k − 1)/2 + 1 + k(k − 3)/2 + 2) + 2

=
1
2
k3 + 3

2
k + 3

k (k + 3 + k(k − 2)) + 2

=
1
2
k3 + 3

2
k + 3

k3 − k2 + 3k + 2
.

Taking the limit as k goes to infinity, the ratio becomes arbitrarily close to 1
2
.

We remark that, for the (k, p, q) trees, Hartnell and Li’s algorithm is optimal and the
Unburning Algorithm does worse, tending to saving half as many vertices as k increases.
In contrast, in his thesis, Hartke [3] shows that the bound of Theorem 2.2 is tight using
a family of trees that are the right subtrees of the (k, p, q) trees of Figure 1, that is, the
analogs of the subtrees To1 of Figure 2. For those trees, it is the Unburning Algorithm that
agrees with the optimal placement of firefighters, while Hartnell’s and Li’s approach saves
half as many vertices, in the limit. This family of trees was part of our initial motivation
in developing the Unburning Algorithm.

In general, Hartnell and Li’s algorithm and the Unburning Algorithm are complemen-
tary in that if one performs poorly on a given tree, the other tends to correct for that
weakness. While the two algorithms share strengths in that they are both straightforward
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to apply and perform at least half as well as the optimal firefighting sequence, an even
better general approach would be to apply both algorithms and pick the one that saves
more vertices.

Perhaps there are even better ways to combine the two approaches. In particular, the
Unburning Algorithm sometimes protects subtrees that were already protected, meaning
some ui nodes are no longer needed in step i. Is there a way to redeploy these superfluous
nodes as part of a new algorithm that combines the benefits of both?

2.2 Integrality Gap Conjecture

In this subsection we verify Conjecture 2.2 of Hartke [4], to which we refer the reader
for further details. MacGillivray and Wang [7] formulated an integer program to find an
optimal sequence a1, a2, . . . for firefighting in a tree T . For each vertex v, define x(v) = 1 if
v is protected and 0 otherwise. Recall that l(v) = d(v0, v) is the number of edges between
v and the root vertex v0 and wt(v) = |V (Tv)| is the number of vertices in the subtree
rooted at v. If vertex u is in Tv, we will write v ⪰ u.

With this notation, we can state MacGillivray and Wang’s integer program as follows.

maximize m =
∑

v∈V (T )

wt(v)x(v)

subject to:
∑

l(v)=L

x(v) ≤ 1, for each level L, (1)

∑
v⪰u

x(v) ≤ 1, for each leaf vertex u, and (2)

x(v) ∈ {0, 1}, for each vertex v. (3)

By relaxing constraint (3) to 0 ≤ x(v) ≤ 1, we instead obtain a linear program (LP)
whose maximum m∗ is an upper bound for the maximum m of the integer program (IP).
We say there is an “integrality gap” when m∗ > m. Since a linear program is much more
efficient computationally, it is useful to understand the occurrence and size of integrality
gaps.

Hartke [4] attempts to reduce the occurrence of integrality gaps by adding an additional
linear constraint, constraint (6).

(6)
∑
v⪰u

x(v) +
∑

u⪰v,l(v)=i

x(v) ≤ 1, for each vertex u and i > l(u).

Although this improves the situation, there remain trees with an integrality gap in-
cluding the one on 13 vertices shown in Figure 3. The two black vertices give the optimal
(IP) solution with m = 7 vertices saved. The nonzero x(v) appear in the figure and give
the LP optimum m∗ = 7.5.

We can now state Hartke’s conjecture.
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1/2 1/2

1/2 1/2

1/2 1/2

Figure 3: A tree, due to Hartke [4], on 13 vertices with integrality gap when using
constraint (6).

Conjecture 2.3 (Conjecture 2.2 of [4]) The tree in Figure 3 is the smallest tree such
that the LP optimal when using constraint (6) is not the IP optimal.

1/2 1/2

1/2 1/2

1/2 1/2

Figure 4: A second tree on 13 vertices with integrality gap when using constraint (6).

Here, “smallest” refers to the number of vertices. Hartke explained that he had verified
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the conjecture for trees of 11 or fewer vertices. To complete the proof of the conjecture
then, we used Sage [10] to run through the 4766 trees on 12 vertices and check that none
of those have an integrality gap using constraint (6). We also checked trees on 13 and
14 vertices. Among the 12486 trees on 13 vertices, there are exactly two with integrality
gap. Figure 4 shows the second graph. The black vertices realize m = 8, while the given
x(v) show that m∗ = 8.5. We found that of the 32973 trees on 14 vertices, there are ten
trees that have an integrality gap. Moreover, each of these ten is formed from one of the
two examples on 13 vertices by adding a leaf and its edge. There are six ways to add a
leaf to the graph of Figure 3 and four ways for the graph of Figure 4. All 12 examples
have m∗ −m = 0.5.

To summarize, the integrability gap is zero for trees on 12 or fewer vertices and at
most 1

2
for those of 13 or 14 vertices. This suggests that there may be a way to bound

the size of the integrability gap in terms of the tree size.

3 Infinite Regular Graphs

In this section we look at firefighting on four infinite regular graphs. Three correspond
to tessellations of the plane by regular polygons: the hexagonal, square, and triangular
grids. A fourth model is the strong grid, which is regular of degree eight. We describe a
Containment Protocol to bring a fire on a graph under control in a finite number of steps.
We show that this strategy matches, or nearly matches the best known results on these
four grids.

We begin by describing the Containment Protocol. At each time step, we imagine
allowing the fire to spread for two time steps. Based on this idea, we make the following
definitions.

Definition 3.1 At time step T , we denote by ABV, already burned vertices, the set of
vertices that were burned at a time t < T , BV1, burned vertices of type 1, the vertices
burned in time step T , and BV2, burned vertices of type 2, those burned in time step T+1
(assuming no firefighters are placed at time T ). We refer to vertices where firefighters
were placed at times t < T as PPF, previously placed firefighters. For a v ∈ PPF that is
adjacent to a BV1 vertex, we say that v is a good PPF if at most half of its neighbors are
in ABV ∪ BV1. Otherwise, v is a bad PPF.

In the Containment Protocol, we place n firefighters at each time step according to the
following three criteria: 0) each firefighter is placed at a vertex v that is in neither ABV
nor PPF, 1) each firefighter is placed adjacent to an ABV, and 2) each firefighter is at
most distance two from either another firefighter placed at that time step, or a firefighter
placed at an earlier time step, a PPF.

In rule CP5 below, we calculate the distance of the placement from the PPF vertices.
For each v in a candidate placement, let d(v,PPF) be the distance to the PPF set. That
is,

d(v,PPF) = min
u∈PPF

d(v, u),
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where d(v, u) is the number of edges in the shortest path from v to u.
We choose among the allowed firefighter placements at a given time step according to

the following five rules.

CP1 Choose a placement that minimizes |BV2|. If there is more than one placement
that minimizes |BV2| eliminate all placements that do not and continue to the next
rule.

CP2 Choose placements that minimize the number of PPF adjacent to an BV2. If there
is more than one that minimize this, continue with those placements that minimize.

CP3 If there is a placement that includes a good PPF, eliminate all placements that
have no good PPF. If more than one remains, continue to the next rule.

CP4 If there remains a placement with no bad PPF, then eliminate all that have one. If
more than one placement remains, continue to the next rule.

CP5 Use a placement that minimizes the total distance
∑

v d(v,PPF). If there is more
than one placement that minimizes the total distance, eliminate all that do not and
choose one at random from the remaining placements.

In addition we have a rule regarding the initial placement of vertices:

CP0 If it is possible to place the initial firefighters in time step 0 such that each firefighter
is adjacent to at least one other firefighter, then eliminate all placements that do
not and continue to rule CP1.

3.1 Hexagonal Grid

The hexagonal grid is an infinite graph based on a tiling of the plane by regular hexagons.
Vertices are vertices of the hexagons and edges are sides. The hexagon grid is a 3-regular
infinite graph. It is conjectured [2, 8] that placing one firefighter per time step is not
enough to contain the fire. On the other hand, it’s easy to see that, with two firefighters
per time step, the fire will be contained after two time steps.

Let’s see how this plays out for the Containment Protocol. Suppose the fire starts at
vertex x0 at time t = 0. Let N(x0) = {x1, x2, x3}. As we must place firefighters adjacent
to vertices in ABV = {x0}, the two firefighters at time t = 1 are two of the three in N(x0).
By symmetry, all three choices are equivalent. Since there’s only one possible placement
(up to symmetry) we do not need to consider the five rules, CP0 to CP5, to make a choice.
Let’s say that the firefighters are placed at x1 and x2. In time step 1, the fire spreads to x3.
Let N(x3) = {x0, x4, x5}. Again, there is only one possible placement of the firefighters,
namely, at vertices x4 and x5, which contains the fire. Thus, the Containment Protocol
matches the best known containment strategy in the case of the hexagonal grid.
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3.2 Square Grid

The square grid is an infinite 4-regular graph based on a tessellation of the plane by
squares. It is sometimes called the rectangular or Cartesian grid and is the Cartesian
product P∞□P∞ of two infinite paths. It is known [1, 9] that one firefighter per time step
is not enough to contain the fire. With n = 2 firefighters per time step, the best strategy
requires eight time steps for containment with 18 vertices burned [3, 9]. We will see that
the Containment Protocol matches this optimal performance.

ABV

Firefighter

BV1

BV2

Figure 5: Two candidate placements at time 0.

Time step 0. Let’s say the fire begins at vertex (0, 0). Up to symmetry, there are two
ways to place two firefighters: 1) at vertices (−1, 0) and (0,−1) or 2) at vertices (−1, 0)
and (1, 0). Since neither has the two firefighters adjacent, following CP0, we continue with
both. As in Figure 5, CP1 says we should choose the first placement for which |BV2| = 5,
in contrast to |BV2| = 6 for the second placement.

Time step 1. Up to symmetry, there are two ways to place firefighters 1) (−1, 1)
and (0, 2); or 2) (−1, 1) and (1,−1). We choose placement 1) which yields |BV2| = 5 as
opposed to 2) for which |BV2| = 6.

Time step 2. There are three possible placements; 1) (1, 2) and (2, 1) with |BV2| =
6; 2) (1, 2) and (1,−2) with |BV2| = 5; and 3) (1,−2) and (2,−1) with |BV2| = 5,
see Figure 6. Using CP1, we eliminate the first placement as a candidate. Neither of
the remaining candidates has adjacent PPF and BV2 vertices, so CP2 does not help us
distinguish between them. However, placement 3) has a good PPF at (0, 2) (adjacent to
the BV1 vertex (1, 2) ) while placement 2) has none. So, by CP3, we use placement 3.

Time step 3. The possible placements are 1) (1, 3) and (2, 2); 2) (1, 3) and (3,−1); 3)
(3,−1) and (4, 0); and 4) (2, 2) and (3, 1), see Figure 7. All but the last (with |BV2| = 7)
yield |BV2| = 5. By CP1, we eliminate the last placement and continue with the first
three. Since arrangement 3) has the PPF at (0, 2) adjacent to the BV2 vertex (0, 3), we
eliminate that one using CP2 and continue to CP3 with the other two. Neither of the
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ABV

Firefighter

PPF

BV1

BV2

Figure 6: Three candidate placements at time 2.

ABV

Firefighter

PPF

BV1

BV2

Figure 7: Four candidate placements at time 3.

remaining placements has a good PPF, so we move on to CP4. Since placement 1) has a
bad PPF at (2,−1), we will use placement 2).

Time step 4. 1) (2, 3) and (3, 2) with |BV2| = 5; 2) (2, 3) and (4,−1) with |BV2| = 5;
and 3) (4,−1) and (5, 0) with |BV2| = 4. By CP1, we use arrangement 3).
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Time step 5. 1) (2, 4) and (3, 3) with |BV2| = 3; 2) (2, 4) and (5, 1) with |BV2| = 3;
3) (5, 1) and (4, 2) with |BV2| = 4; and 4) (3, 3) and (4, 2) with |BV2| = 5. By CP1,
we eliminate arrangements 3) and 4). CP2 does not allow us to eliminate either of the
remaining two candidates. However CP3 says we should choose arrangement 1) due to
the good PPF at (5, 0) (adjacent to the BV1 vertex (5, 1)).

Time step 6. 1) (4, 3) and (5, 2) with |BV2| = 3; 2) (4, 3) and (6, 1) with |BV2| = 2;
and 3) (6, 1) and (5, 2) with |BV2| = 2. By CP1, we eliminate arrangement 1). CP2 and
CP3 do not allow us to distinguish, but CP4 indicates arrangement 2) due to the bad
PPF at (3, 3) in arrangement 3).

Figure 8: The containment protocol stops the fire in eight time steps.

By Time Step 7, there is only one placement of the two firefighters that satisfy our
criteria and that choice ends the fire after eight steps and with 18 vertices burned, see
Figure 8. For the square grid, the containment protocol matches the known best solution.

3.3 Triangular Grid

A triangular grid is the infinite 6-regular graph that corresponds to a tessellation of the
plane by equilateral triangles. For convenience, we place this graph in the plane with
vertices at lattice points (m,n) ∈ Z2 as in Figure 9. Although Fogarty [1] proposed an
argument showing that two firefighters per time step do not suffice to contain the fire,
there is a flaw (see [2]) and this remains a conjecture. It is known that the fire can be
contained by placing three firefighters at each time step. In fact, Messinger [8] conjectures
that the optimal solution sees 17 vertices burned with containment in six time steps. We
now show that the Containment Protocol matches or nearly matches this best known
result.

Time step 0. Let’s say the fire begins at vertex (0, 0). Up to symmetry, there are
three ways to place three firefighters: 1) at vertices (−1, 0), (−1,−1), and (0,−1); 2) at
vertices (−1, 0), (−1,−1), and (1, 0); and 3) at vertices (−1, 0), (1, 1), and (0,−1), see
Figure 9. By CP0, we use the first placement, the only one that has each of the three
firefighters adjacent to at least one other firefighter.
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Figure 9: Three placements for time step 0.

Time step 1. Up to symmetry, there are 15 ways to place the three firefighters.
Of these, only one, with firefighters at (−1, 1), (0, 2), and (1,−1), realizes the minimum
|BV2| = 7.

Time step 2. There are seven vertices adjacent to an ABV, meaning there are(
7
3

)
= 35 placements. However, two of these involve placing a firefighter more than

distance two from the other firefighter sites and PPF vertices, namely 1) (1, 3), (2,−1),
and (3, 2) (for which (3, 2) is too far from the other firefighters) and 2) (2,−1), (3, 0), and
(3, 3) (with the last one too distant). Of the remaining placements, only one, at (1, 3),
(2,−1), and (3, 0), realizes the minimum |BV2| = 6.

Figure 10: Two placements with |BV2| = 5 and total distance four.

Time step 3. There are six vertices adjacent to an ABV and
(
6
3

)
= 20 placements.

Four of these realize the minimum |BV2| = 5. CP2 says we must remove one of the four,
with firefighters at (2, 4), (3, 4), and (4, 4), due to the BV2 vertex (4, 0) adjacent to the
PPF at (3, 0). The remaining three all survive CP3 and CP4, and two have the same
minimal total distance of four. The one eliminated due to a larger total distance of five,
has firefighters at (2, 4), (4, 4), and (4, 1).

Although the Containment Protocol says we should choose at random between the
remaining two placements, we will continue with both to show that they both perform
well. Going forward we will compare Solution 1, based on firefighters at (2, 4), (3, 4), and
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(4, 1), with Solution 2, which uses the placement (2, 4), (4, 1), and (4, 2).
Solution 1: Time step 4. There are five vertices adjacent to an ABV with

(
5
3

)
= 10

placements. Of these, only one realizes the minimum |BV2| = 3: (4, 5), (5, 5), and (5, 2).

Figure 11: Solution one contains the fire in six time steps.

This also means we can contain the fire by placing three firefighters at the three BV2
vertices: (6, 3), (6, 4), and (6, 5). The complete solution is illustrated in Figure 11. With
this solution, the Containment Protocol matches the best known result with 17 vertices
burned and containment after six time steps.

Solution 2: Time step 4. As with solution 1, there are five available vertices
and ten ways to place firefighters. Five of them realize the minimum |BV2| = 4. Two
are eliminated by CP2. The placement (3, 5), (4, 5), and (5, 5) has a BV2 vertex (5, 2)
adjacent to the PPF at (4, 2). The placement (5, 3), (5, 4), and (5, 5) has BV2 (2, 5)
adjacent to PPF (2, 4). The remaining three survive CP3 and CP4 and two realize the
minimum total distance four. The one with a larger total distance of five is eliminated
by CP5: (3, 5), (5, 3), and (5, 5). Again, although the protocol indicates that we should
choose one of the remaining two placements at random, we will continue with both to see
that they preform equally well. For Solution 2a, we continue with the placement (3, 5),
(4, 5), and (5, 3) while we will denote the placement (3, 5), (5, 3), and (5, 4) as Solution
2b.

Solution 2a: Time step 5. There are four vertices available, so
(
4
3

)
= 4 possible

placements. One placement realizes the minimum |BV2| = 2: (5, 6), (6, 4), and (6, 6).
This means we can contain the fire in one more time step. In fact, we only need two
firefighters for the last step. In total, 18 vertices are burned, see Figure 12.

Solution 2b: Time step 5. Again, there are four vertices and four possible place-
ments. One, (4, 6), (6, 5), and (6, 6), realizes the minimum |BV2| = 2. As in Solution 2a,
we contain the fire in seven time steps (with only two firefighters needed in the last step)
and 18 vertices burned, see Figure 12.

In summary, the Containment Protocol would have us choose at random between three
possible solutions. One of these matches the best known solution with 17 vertices burned
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Figure 12: Solutions 2a (left) and 2b (right) contain the fire in seven time steps.

and containment in six time steps. The other two are nearly as good with 18 vertices
burned and containment in seven time steps.

3.4 Strong Grid

The strong grid is an eight regular infinite graph that, similar to the square and triangular
grid, we can realize by placing vertices at the lattice points (m,n) ∈ Z2. As in Figure 13,
each (m,n) is adjacent to its eight nearest neighbors in the plane, those points that are
at most

√
2 away. Messinger [8] shows that four firefighters per time step are required to

contain a fire in the strong grid and conjectures that the best solution requires eight time
steps. She demonstrates a solution in eight time steps for which 35 vertices are burned.

Let’s see how the Containment Protocol handles a fire on the strong grid.
Time step 0. Let’s say the fire begins at vertex (0, 0). Up to symmetry, there are

five ways to place four firefighters such that each is adjacent to at least one of the others.
Of these, only one results in the minimum |BV2| = 10; (−1,−1), (−1, 0), (0,−1), and
(1 − 1). By CP1, we reject the other three : (−1,−1), (0,−1), (1, 0), and (1, 1) with
|BV2| = 12; (−1,−1), (−1, 0), (0,−1), and (1, 0) with |BV2| = 13; (−1,−1), (0,−1),
(0, 1), and (1, 0) with |BV2| = 14; and (−1, 0), (0,−1), (0, 1), and (1, 0) with |BV2| = 16.

Time step 1. There are
(
10
4

)
= 210 placements of the four firefighters, but only one

realizes the minimum |BV2| = 10: (−2, 0), (−2, 1), (−2, 2), and (2,−1).
Time step 2. Again, there are

(
10
4

)
= 210 placements of the four firefighters. Of

these, five realize the minimum |BV2| = 10. Note that two others would also give a
low BV2 count, but they are not allowed placements as there is a firefighter more than
distance two from the others: (−2, 3), (−1, 3), (3,−1), and (3, 3); and (−2, 3), (3,−1),
(3, 0), and (3, 3), both of which have (3, 3) too distant from the other firefighters and
the PPF set. The five placements are not distinguished by CP2, but four have a good
PPF. The one that does not is (−2, 3), (−1, 3), (3,−1), and (3, 0). The remaining four
are not distinguished by CP4. Two of them minimize the total distance as five. The two
that do not are (−2, 3), (2, 3), (3,−1), and (3, 3); and (−2, 3), (3,−1), (3, 2), and (3, 3).
As usual, although the Containment Protocol requires us to choose one of the remaining
two placements at random, we will instead continue with both to see how the protocol
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performs. For Solution 1: (−2, 3), (−1, 3), (0, 3), and (3,−1); and Solution 2: (−2, 3),
(3,−1), (3, 0), and (3, 1).

Solution 1: Time step 3. Again there are
(
10
4

)
= 210 placements of the four

firefighters and five realize the minimum |BV2| = 10. Two others would give a low count
but are not allowed as there is a firefighter too far from the others: (0, 4), (1, 4), (4,−1),
and (4, 4) where (4, 4) is too far; and (0, 4), (4,−1), (4, 0), and (4, 4), again with (4, 4)
too far. The remaining five placements are not distinguished by CP2. Three have a good
PPF and the other two, which are eliminated, are (0, 4), (1, 4), (4,−1), and (4, 0); and
(0, 4), (4,−1), (4, 0), and (4, 1). Of the remaining three, two have a bad PPF and are
eliminated by CP4: (0, 4), (3, 4), (4,−1), and (4, 4); and (0, 4), (4,−1), (4, 3), and (4, 4),
both having a good PPF at (3,−1) and a bad one at (0, 3). The remaining placement is
the one we will continue with; (0, 4), (1, 4), (2, 4), and (4,−1) with a good PPF at (3,−1).

Solution 1: Time step 4. Once again, there are
(
10
4

)
= 210 placements of the four

firefighters and seven realize the minimum |BV2| = 10. Another, (2, 5), (5,−1), (5, 0)
and (5, 5) would also give a low count but the firefighter at (5, 5) is more than distance
two from the others. We reject one of the seven using CP2: (2, 5), (3, 5), (4, 5), and (5, 5)
due to the BV2 vertex at (4,−2) which is adjacent to the PPF (4,−1). CP3 allows us
to eliminate two placements that have no good PPF: (2, 5), (3, 5), (5,−1), and (5, 0);
and (2, 5), (5,−1), (5, 0), and (5, 1). Two more are removed due to a bad PPF: (2, 5),
(4, 5), (5, 5), and (5,−1); and (2, 5), (5,−1), (5, 4), and (5, 5), both having a good PPF
at (4,−1) and a bad one at (2, 4). The remaining two placements are distinguished by
CP5. The minimum total distance is five for (2, 5), (3, 5), (4, 5), and (5,−1) and we will
continue with this placement. We reject the placement with total distance six: (2, 5),
(3, 5), (5,−1), and (5, 5).

Solution 1: Time step 5. We continue to have
(
10
4

)
= 210 placements. In this case,

there is a unique placement that realizes the minimum |BV2| = 8: (4, 6), (5, 6), (6, 6),
and (6,−1).

Solution 1: Time step 6. Now there are
(
8
4

)
= 70 placements. Of these, three

realize the minimum |BV2| = 6 and none of those have a PPF adjacent to a BV2. Two
have a good PPF. By CP3, we eliminate the third: (7,−1), (7, 0), (7, 5), and (7, 6). The
remaining two have no bad PPF and both have a total distance of five. Ordinarily, the
Containment Protocol would have us choose one of them at random. Instead we will
continue with both. For Solution 1a: (7,−1), (7, 4), (7, 5), and (7, 6) with a good PPF at
(6,−1); for Solution 1b: (7,−1), (7, 0), (7, 1), and (7, 6) with a good PPF at (6, 6).

Solution 1a: Time step 7. We are down to
(
6
4

)
= 15 placements. There are three

that realize the minimum |BV2| = 4. This means all three are complete in one more time
step with the same amount of vertices burned. There is one that we eliminate by CP3, as
it’s the only one lacking a good PPF: (8,−1), (8, 0), (8, 3), and (8, 4). From the remaining
two, we randomly chose the first: (8,−1), (8, 2), (8, 3), (8, 4) with a good PPF at (7,−1),
rather than the second: (8,−1), (8, 0), (8, 1), and (8, 4) with a good PPF at (7, 4).

This leads to the solution shown at left in Figure 13; the fire is contained in nine time
steps with 41 vertices burned.

Solution 1b: Time step 7. We are down to
(
6
4

)
= 15 placements. Of these, three
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Figure 13: Solutions 1a (left) and 1b (right) contain the fire in nine time steps.

realize the minimum |BV2| = 4. One lacks a good PPF and is rejected by CP3: (8, 1),
(8, 2), (8, 5), and (8, 6). The other two are equal with respect to CP4 and CP5 and also
in terms of the number of vertices burned and time steps for the final solution. So, we
choose one at random: (8, 1), (8, 2), (8, 3), and (8, 6) with a good PPF at (7, 6); and reject
the other (8, 1), (8, 4), (8, 5), and (8, 6) with a good PPF at (7, 1).

This leads to the solution shown at right in Figure 13; again, the fire is contained in
nine time steps with 41 vertices burned.

Solution 2: Time step 3. There are
(
10
4

)
= 210 placements of which eight would

yield |BV2| = 10. One of these, (−2, 4), (−1, 4), (4, 1), and (4, 4), has (4, 4) more than
two away from the other firefighters and is not allowed for that reason. Another is rejected
due to CP2: (4, 1), (4, 2), (4, 3), and (4, 4), since the BV2 (−3, 3) is adjacent to the PPF
(−2, 3). Next, there are placements that have a good PPF, so we reject the two that
do not: (−2, 4), (−1, 4), (0, 4), and (4, 1); and (−2, 4), (−1, 4), (4, 1), and (4, 2). Of the
remaining four placements, we reject two that have a bad PPF: (−2, 4), (3, 4), (4, 1), and
(4, 4); and (−2, 4), (4, 1), (4, 3), and (4, 4), both of which have (3, 1) as a bad PPF.

The remaining two placements are distinguished by total distance (see CP5). The
minimal distance is five, which is achieved by (−2, 4), (4, 1), (4, 2), and (4, 3), with which
we continue. The final placement (−2, 4), (4, 1), (4, 2), and (4, 4) is rejected due to a total
distance of six.

Solution 2: Time step 4. There are
(
10
4

)
= 210 placements only one of which

realizes the minimum |BV2| = 8: (−2, 5), (5, 3), (5, 4), and (5, 5).
Solution 2: Time step 5. There are

(
8
4

)
= 70 placements and three realize the

minimum |BV2| = 6. Two have a good PPF, so, by CP3, we reject the third: (−2, 6),
(−1, 6), (4, 6), and (5, 6). The remaining two placements are not distinguished by CP4
or CP5. Ordinarily, the Containment Protocol would have us choose between them at
random, but we will carry both forward to see how the protocol performs in all cases. For
solution 2a, we place firefighters at (−2, 6), (−1, 6), (0, 6), and (5, 6). In this case, (5, 5)
is a good PPF. For solution 2b, we continue with (−2, 6), (3, 6), (4, 6), and (5, 6) which
has (−2, 5) as a good PPF.

Solution 2a: Time step 6. There are
(
6
4

)
= 15 placements and two realize the

minimum |BV2| = 4. One has a good PPF, so, by CP3, we reject the other: (0, 7), (3, 7),
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Figure 14: Solutions 2a (left) and 2b (right) contain the fire in eight time steps.

(4, 7), and (5, 7) and continue with (0, 7), (1, 7), (2, 7), and (5, 7). In the next time step,
we place firefighters at the four BV2 vertices and contain the fire in eight time steps with
35 vertices burned, see Figure 14.

Solution 2b: Time step 6. There are
(
6
4

)
= 15 placements and three realize the

minimum |BV2| = 4. Of these, only one has a good PPF, so by CP3, we reject the
other two: (−2, 7), (−1, 7), (0, 7), and (3, 7); and (−2, 7), (−1, 7), (2, 7), and (3, 7). We
continue with the placement (−2, 7), (1, 7), (2, 7), and (3, 7). We next place firefighters
at the four BV2 vertices to terminate the fire in eight time steps, with 35 vertices burned,
see Figure 14.

In summary, the Containment Protocol produces one of four solutions, all with equal
likelihood. Two of the four match the best known solution with containment in eight time
steps and 35 vertices burned. The other two are close to optimal with 41 vertices burned
after nine time steps.

4 The Pentagon Graph

We have seen that the Containment Protocol performs quite well, often meeting the best
known outcome for some well studied regular infinite graphs. One virtue of the protocol
is that it can be applied to firefighting on any graph. As an example, we investigate a
graph resulting from a pentagonal tiling of the plane as in Figure 15. This results in an
infinite graph that is not regular as it has vertices of degree three and four.

Conjecture 4.1 One firefighter per time step is not sufficient to control a fire on the
Pentagon Graph.

It is easy to see that, much like the hexagonal grid, a fire that begins on a degree three
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Figure 15: A pentagonal tiling (left). The resulting graph on the lattice (right).

vertex can be contained in two time steps if there are two firefighters placed per time
step. Let’s see how the Containment Protocol handles this situation. As in Figure 15,
we imagine the fire beginning at (0, 1). Up to symmetry there are two ways to place the
two firefighters: (−1, 1) and (0, 0) with |BV2| = 2; and (−1, 1) and (1, 1) with |BV2| = 3.
Both placements fail to have the firefighters adjacent (see CP0), and CP1 says we should
continue with the first placement. We next place our two firefighters at the two BV2
vertices to contain the fire in two steps with two vertices burned, which is the optimal
solution.

We next consider a fire that starts at the degree four vertex (0, 0) and allow ourselves
two firefighters per time step.

Time step 0. Up to symmetry, there are three ways to place two firefighters adjacent
to the initial degree four vertex at (0, 0). For none of those three are the two firefighters
adjacent, so CP0 does not apply. However, only one of them realizes the minimum
|BV2| = 4: (−2, 0) and (2, 0).

Time step 1. Up to symmetry, there are three ways to place the next two firefighters,
none of which can be distinguished by CP1 to CP5. Ordinarily, the Containment Protocol
would have us choose one at random, but we will continue our practice of following
through with all three: Solution 1: (−1, 1) and (1, 1); Solution 2: (−1,−1) and (−1, 1);
and Solution 3: (−1, 1) and (1,−1).

Solution 1: Time step 2. Among the
(
4
2

)
= 6 ways to place two firefighters, the only

one that realizes the minimum |BV2| = 2 is (−1,−2) and (1,−2). Placing two firefighters
at the BV2 positions contains the fire in four time steps with seven vertices burned.

Solutions 2 and 3 are similar, also stopping the fire in four time steps with seven
vertices burned, see Figure 16.

As the analysis of a fire starting at a single vertex was straightforward, we also inves-
tigated what would happen if a fire began with a pair of adjacent vertices burned. There
are three cases as the two vertices may have the same degree three or four, or different
degrees.

Two degree three vertices burned: Suppose a fire begins with two adjacent degree
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Figure 16: Starting from a single degree four vertex, Solution 1 (left), Solution 2 (center),
and Solution 3 (right).

three vertices at (0, 1) and (1, 1). Given Conjecture 4.1, it is likely not possible to contain
the fire with a single firefighter per time step, so we will allow ourselves two.

Time step 0. Up to symmetry, there are four ways to place two firefighters adjacent
to the burned vertices. None have the firefighters adjacent to one another, so CP0 does
not help. Two of the four realize the minimum |BV2| = 4, and we will continue with both,
even though the Containment Protocol says we should pick one at random. Solution 1:
(0, 0) and (1, 2) or Solution 2: (−1, 1) and (1, 2).

Solution 1: Time step 1. Up to symmetry, there are four ways to place the
two firefighters and all four result in |BV2| = 4. Using CP2, we eliminate all but one
placement: (−2, 1) and (3, 1).

Solution 1: Time step 2. Up to symmetry, there are four ways to place the two
firefighters and only one realizes the minimum |BV2| = 4: (−3, 2) and (4, 0).

Solution 1: Time step 3. Up to symmetry, there are four ways to place the two
firefighters. These four are all equivalent with respect to CP1 through 5. The Containment
Protocol would have us choose one at random. Instead we will continue with all four so
that we can compare the results: Solution 1a: (−2, 3) and (0, 3); Solution 1b: (−2, 3) and
(1,−1); Solution 1c: (−2, 3) and (3,−1); and Solution 1d: (0, 3) and (1,−1).

Figure 17: Solution 1a (left) and 1b (right).

Solution 1a: Time step 4. There are
(
4
2

)
= 6 ways to place firefighters and only

one realizes the minimum |BV2| = 2: (1,−2) and (3,−2). Covering those two vertices in
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the next step contains the fire in six time steps with 12 vertices burned, see Figure 17.
Solution 1b: Time step 4. Again, there are

(
4
2

)
= 6 ways to place firefighters and

only one realizes the minimum |BV2| = 2: (0, 4) and (3,−2). Placing firefighters at those
two vertices contains the fire in six time steps with 12 vertices burned, see Figure 17.

Figure 18: Solution 1c (left) and 1d (right).

Solution 1c: Time step 4. There are
(
4
2

)
= 6 ways to place firefighters and only

one realizes the minimum |BV2| = 2: (0, 4) and (1,−2). Covering those two vertices in
the next step contains the fire in six time steps with 12 vertices burned, see Figure 18.

Solution 1d: Time step 4. Again, there are
(
4
2

)
= 6 ways to place firefighters

and only one realizes the minimum |BV2| = 2: (−2, 4) and (3,−2). Covering those two
vertices in the next step contains the fire in six time steps with 12 vertices burned, see
Figure 18.

Solution 2: Time step 1. There are
(
4
2

)
= 6 ways to place firefighters and three

realize the minimum |BV2| = 4. However, only one has no PPF adjacent to an BV2, so
we continue with that one: (−2, 0) and (3, 1).

Figure 19: Solution 2.

Solution 2: Time step 2. There are
(
4
2

)
= 6 ways to place firefighters but only

one realizes the minimum |BV2| = 2: (−1,−1) and (4, 0). Then placing firefighters at
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the two BV2 vertices completes the fire in four time steps with eight vertices burned, see
Figure 19

In summary, for a fire that begins with two adjacent degree three vertices burned,
using the Containment Protocol, we found two types of solutions. Solutions 1a, 1b, 1c,
and 1d contain the fire in six time steps with 12 vertices burned. The best outcome is
solution 2 with eight vertices burned after four time steps.

Two vertices including one of degree four burned: If a fire begins with two
adjacent vertices burned, one of degree four, the analysis of the Containment Protocol
becomes quite involved, branching off into many possible solutions with a wide range of
time steps and number of vertices burned. Rather than chasing through all the details, we
will present the best solutions we found using the Containment Protocol. We conjecture
that these are the best possible solutions.
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Figure 20: Conjectural best solutions for a fire that starts with two adjacent vertices, one
of degree 4.

There are two cases. Suppose first that a fire begins with the adjacent vertices (0, 0),
of degree four, and (0, 1), of degree three. Using the Containment Protocol, the best
solution that we found is at left in Figure 20 and entails containing the fire in six time
steps with 15 vertices burned. Next, imagine a fire that starts with vertices (0, 0) and
(2, 0), both of degree four. To the right in Figure 20, we present the best solution we
found with the Containment Protocol, which sees the fire terminated in seven times steps
with 20 vertices burned.
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