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Abstract - Lights Out is a game featuring a grid of light-up buttons that begins with some
lights on and some off. The goal is to turn off all lights but pressing a button changes its
state and the states of the cardinal neighboring buttons. In this paper, we explore a Lights
Out game in which the board is placed on a cylinder and the lights have k states with a
specific starting configuration. We try to turn off all lights using a light chasing strategy in
which we methodically turn off the lights row by row. We model this process using recursive
equations. A connection to the Fibonacci sequence then allows us to determine the number
of rows of buttons the board should have in order for us to turn off all lights using our light
chasing strategy.
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1 Introduction

Lights Out is an electronic handheld game from the 1990s that features a 5 × 5 grid of
light-up buttons. In the classic version, the game begins with a random collection of the
lights turned on and others turned off. The goal is to turn all lights off. Pressing a button
changes its state (from on to off or vice versa) and changes the states of the cardinal
neighboring buttons (above, below, left, and right). See Figure 1.

This classic Lights Out game has been studied extensively using linear algebra. For
example, in [1] Anderson and Feil show that a strategy for winning can be obtained
using matrices, Gauss-Jordan elimination and facts about the column and null space of a
matrix, and in [10] Mart́ın-Sánchez and Parejo-Flores provide a dual analysis of the game
in which they demonstrate how the methodology for winning directly aligns with solving
a specific problem in matrix algebra. Other analyses of Lights Out or its generalizations
can be found in [3], [5], [6], [7], and [8].

A common variation of Lights Out allows for the lights to have more states that just
“on” and “off.” We can think of the states as different levels of brightness, and pressing
a button brings the state of its light and the states of all adjacent lights to the next
brightest setting. If a light is at the brightest setting, it turns off. Many of the sources
listed above use linear algebra explore this multi-state Lights Out game. In this paper
we consider a multi-state game in which the lights have k states for k ≥ 2, and we play
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Figure 1: The grids above represent the board of a classic Lights Out game in which blue
indicates the light is on, and white indicates the light is off. In the classic Lights Out
game pressing the starred button on the board on the left results in the board on the
right.

the game using a variation on a strategy that is popularly known as light chasing. Our
mathematical approach differs from the standard approach in that we do not use linear
algebra.

The light chasing strategy focuses on the fact that we can turn a light off by pressing
the button directly below it. So, the light chasing strategy starts by pressing the buttons
in the second row to turn off the lights in the first row. Then we press the lights in the
third row to turn off the lights in the second row, etc. In many cases, when we get to the
bottom of the board, i.e., when we press the lights in the last row to turn off the lights in
the second-to-last row, not all lights will be turned off. Hence, the game will not yet have
been won. However, depending on which lights remain on after pressing the buttons in
the last row, it may be possible to press specific buttons in the top row and proceed down
the board using the light chasing process again in order to turn off all lights. Knowing
what buttons to press at the top of the board requires access to a “look up” table that
can be found online at sites such as [13]. In [9], Leach shows how to use linear algebra to
generate the look up tables.

But what if we do not have access to a look up table (and we do not remember the
linear algebra necessary to generate one)? In this case, we want to know when does the
light chasing process turn off all lights on the first pass. We think of this strategy in
which we chase the lights to the bottom of the board and then stop instead of pressing
buttons at the top again as naive light chasing. This paper explores naive light chasing
for a Lights Out game in which the lights have k states and the board is wrapped around
the cylinder so that the left side connects to the right. (See Figure 2). Our approach to
studying this question depends on the starting configuration of the lights. In this paper
we focus on starting with the lights in each row alternating between the brightest state
and the off state. Hence, our goal is to explore the question below. (For an analysis of a
similar game in which all lights start at the same setting see [2].)

Main Question Suppose we use a naive light chasing strategy in a Lights Out game with
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k states for the lights and in which the board wraps around a cylinder. Further, suppose
the game begins with the lights in each row alternating between the brightest state and the
off state. How many rows of buttons must the board have in order for naive light chasing
to turn off all lights?

We analyze this game using recursion and modular arithmetic instead of linear algebra,
and a connection to the Fibonacci numbers allows us to generate answers to the Main
Question using known results about the Fibonacci numbers under various moduli. In the
next section we formally define the Lights Out game with k states for the lights and whose
board wraps around a cylinder, provide details on the naive light chasing process, and
introduce terminology used throughout the paper. In Section 3 we develop the recursion
that models the naive light chasing process, and in Section 4 we develop the relationship
between the recursion and the Fibonacci numbers that allows us to provide answers to
the Main Question.

2 The k-State Alternating-Start Cyl-Lights Out Game

We consider a cylindrical Lights Out game in which the board is an m×n grid of light-up
buttons on a cylinder. Hence, the board “wraps around” in the sense that pressing the
leftmost button in a row changes the state of the rightmost button (as well as the buttons
above, below and to the right of the leftmost button, as in the classic game). Similarly,
pressing the rightmost button in a row changes the state of the leftmost button.

Since the lights in our game have k states for some natural number k ≥ 2, we think
of the states as different levels of brightness and denote them by 0, 1, 2, . . . , k− 1 where 0
is the off state and k − 1 is the brightest state. Pressing a button one time increases the
state of its light by 1 (mod k). In particular, if we press a button whose light is at the
k − 1 state (i.e., brightest state) one time, the light changes to the 0 state (i.e., it turns
off). Going forward, we write −1 for the k − 1 state. See Figure 2 and Figure 3. The
goal of the game is still to turn off all lights, which means the goal is to get all lights to
a state of 0.

Figure 2: Wrapping an original Lights Out board around a cylinder turns it into a Cyl-
Lights Out board.

Definition 2.1 (k-State Cyl-Lights Out Game) We refer to a Lights Out game in
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which the board is an m×n grid of light up buttons on a cylinder and in which the lights
have k states as a k-state Cyl-Lights Out game.

Example 2.2 In Figure 3 we show an example of a 4-state Cyl-Lights Out game. The
lights have states 0, 1, 2, and 3, and since the grid of buttons is on a cylinder, pressing
the button marked with a star on the left results in the board on the right.

Figure 3: An example of a 4-State Cyl-Lights Out Game. Pressing the starred button on
the left affects the five shaded buttons and results in the board on the right.

In this paper, we further assume that the board has an even number of columns and
at the start of the game the lights in each row alternate between the brightest state and
the off state. This inspires the following definition.

Definition 2.3 (k-state alternating-start Cyl-Lights Out game) A k-state
alternating-start Cyl-Lights Out game is a k-state Cyl-Lights Out game with 2n columns
for n ≥ 2 with the following starting configuration: the lights in each row alternate
between the −1 state and the 0 state such that the lights in each column have the same
starting state. See Figure 4.

Figure 4: The board on the left is the starting configuration of a k-state alternating-start
Cyl-Lights Out game. The board on the right is not. (It is possible to consider games
with the starting configuration as show on the right, however the mathematical analysis
is not as nice.)

We approach the k-state alternating-start Cyl-Lights out game using a strategy that we
call naive light chasing. Naive light chasing begins in the same way as classic light chasing;
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we work down the board, turning off the lights in a row by pressing the appropriate buttons
in the row below. However, we stop the process after pressing the last row, i.e., we do
not generate a look up table, and we do not start pressing buttons at the top again. It
is not always possible to turn off all lights of a k-state Cyl-Lights Out game using naive
light chasing. (i.e, see Figure 5.) This inspires the following definition.

Definition 2.4 (Naively Solvable) If naive light chasing turns off all lights of a k-state
Cyl-Lights Out game, then we say the game is naively solvable.

The goal of this paper is to determine what size board a k-state alternating-start Cyl-
Lights Out game should have in order to ensure that it is naively solvable. If a board has
2n columns for n ≥ 2 (i.e., the number of columns is an even number greater than 2),
then no two neighboring buttons have the same starting state. This means that lights in a
given row with the same starting state are all affected in the same way by the naive light
chasing process. (If the board has an odd number of columns, then there will be a pair of
adjacent buttons in the same row that have the same starting state, and the naive light
chasing process would affect these buttons differently than the rest of the buttons in their
row.) Thus, since we are assuming that the board has 2n columns for n ≥ 2, the number
of columns will not affect whether a game is naively solvable. Hence, in this paper we
investigate how many rows of buttons a k-state alternating-start Cyl-Lights Out game
must have in order to be naively solvable.

Example 2.5 Consider a 3-state alternating-start Cyl-Lights Out game. If the board
consists of four rows of buttons, then the game is not naively solvable. We show the naive
light chasing strategy for this game in Figure 5; notice that the strategy does not turn off
all lights. (We will see in Section 3 that such a 3-state game must have at least 11 rows
in order to be naively solvable.)

Figure 5: The naive light chasing strategy applied to a 3-state alternating-start Cyl-Lights
Out game with four rows of buttons. This game is not naively solvable.
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To determine if a k-state alternating-start Cyl-Lights Out game is naively solvable we
rely on the fact that naive light chasing is recursive. This means that the state of the
lights in the ith row after turning off the lights in the (i− 1)st row (i.e., after pressing the
lights in the ith row) is determined by the states of the lights above it. The remainder of
this paper is dedicated to developing and analyzing a recursion for the k-state alternating-
start Cyl-Lights Out game. We then use the recursion to determine how many rows are
needed to ensure that the game is naively solvable.

3 A Recursive Approach

To build a recursion for the k-state alternating-start Cyl-Lights Out game we need to
keep track of the starting state of each light in a row and how many times we press each
button during the naive light chasing process. However, since we are assuming the game
has an even number of columns, every light with the same starting state in a row will be
pressed the same amount of times. This means that the naive light chasing process is only
affected by the number of rows of buttons and not by the number of columns. Further,
since there are two starting states (−1 and 0) for the lights in each row, the ith term of
the recursion consists of two equations; one gives the state of the lights in the ith row that
start at −1, and another one gives the state of the lights in the ith row that start at 0.

More precisely, we let Bi be the state of the lights that start at the −1 state in the
ith row after turning off all lights in the (i − 1)st row, and we let Ci be the state of the
lights that start at the 0 state in the ith row after turning off all lights in the (i−1)st row.
We think of the lights in the 0th row as being already turned off, making B0 = C0 = 0.
Then B1 and C1 give the states of the lights in the first row at the start of the naive light
chasing process, and so B1 = −1 and C1 = 0. We develop formulas for Bi and Ci for
i ≥ 2 using the fact that the states of the lights in the ith row are affected when we press
the buttons in the ith and (i− 1)st rows.

To develop a formula for Bi we note that that state of the lights in the ith row that
start at −1 is affected when we press the buttons in the (i − 1)st row that are directly
above the buttons whose state is Bi in order to turn off the corresponding lights in the
(i−2)nd row. We need to press the buttons enough times so that the lights in the (i−2)nd

row turn to the 0 state. Since pressing a button adds one (mod k) to the state of its light,
we can think of the number of times we need to press the buttons as −Bi−2 (mod k).

Next, the state of the lights in the ith row that start at −1 is also affected when we
press the buttons in the ith row to turn the lights in the (i−1)st row to the 0 state. First,
we press the buttons whose state is given by Bi to turn off the light directly above them.
The number of times we need to press these buttons is −Bi−1 (mod k). Then the state
of the lights in the ith row that start at −1 is affected when we press the two buttons on
either side to turn off the lights above those buttons. These lights start at the 0 state.
Since their state is given by Ci−1, we turn them off by pressing −Ci−1 (mod k) times.
Thus, for i ≥ 2, Bi = −1 − Bi−2 − Bi−1 − 2Ci−1. The equation for Ci is analogous; the
only difference being that these lights start at the 0 state.
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Recursion 3.1 In the k-state alternating-start Cyl-Lights Out game, let Bi be the state
of the lights that start at the −1 state in the ith row after turning off the lights in the
(i− 1)st row, and let Ci be the state of the lights that start at the 0 state in the ith row
after turning off the lights in the (i− 1)st row. Then B0 = C0 = 0, B1 = −1, C1 = 0, and
Bi and Ci are given by the following equations.

Bi = −1−Bi−2 −Bi−1 − 2Ci−1

Ci = −Ci−2 − Ci−1 − 2Bi−1.

The first 13 terms of Recursion 3.1 are shown in Table 1.

i 0 1 2 3 4 5 6 7 8 9 10 11 12
Bi 0 -1 0 -4 7 -20 52 -137 356 -936 2447 -6408 16776
Ci 0 0 2 -2 8 -20 52 -136 358 -934 2448 -6408 16776

Table 1: The first 13 terms of Recursion 3.1

The following fact will allow us to use Recursion 3.1 to determine the number of rows
needed for a k-state alternating-start Cyl-Lights Out game to be naively solvable.

Fact 3.2 The k-state alternating-start Cyl-Lights Out game with i rows is naively solv-
able if and only if Bi ≡ Ci ≡ 0 (mod k).

For example, from Table 1 we see that both the 4-state and 5-state alternating-start
Cyl-Lights Out games are naively solvable when the board had 5 rows because −20 is
divisible by both 4 and 5. On the other hand, the 8-state game is not naively solvable
when the board has 4 rows because while C4 is divisible by 8, B4 is not.

Our goal is then to determine when Bi ≡ Ci ≡ 0 (mod k). To help us in this endeavor,
from Table 1 we notice that Bi and Ci are closely related.

Lemma 3.3 Let Bi and Ci be the ith terms of Recursion 3.1. Then

Bi =


Ci − 1 if i ≡ 1 or i ≡ 4 (mod 6)

Ci − 2 if i ≡ 2 or i ≡ 3 (mod 6)

Ci if i ≡ 0 or i ≡ 5 (mod 6).

Proof. Writing i as i = 6x + r for some non-negative integers x and r with 0 ≤ r ≤ 5,
we proceed by induction on x. For the base case, let x = 0. If i = 1 or i = 4, from Table
1 we see that B1 = −1 and C1 = 0 and, B4 = 7 and C4 = 8, as desired. Similarly, if i = 2
or i = 3 then B2 = 0, C2 = 2, B3 = −4, and C3 = −2. Finally, if i = 0 or i = 5, we see
that B0 = C0 = 0 and B5 = C5 = −20.

For the induction step we assume that the statement holds for an arbitrary non-
negative integer x and show that it holds for x+ 1. Thus, we assume the following:

B6x = C6x and B6x+5 = C6x+5,
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B6x+1 = C6x+1 − 1 and B6x+4 = C6x+4 − 1,

B6x+2 = C6x+2 − 2 and B6x+3 = C6x+3 − 2.

We will show

B6(x+1) = C6(x+1), B6(x+1)+1 = C6(x+1)+1 − 1, and B6(x+1)+2 = C6(x+1)+2 − 2.

The proofs of that B6(x+1)+5 = C6(x+1)+5, B6(x+1)+4 = C6(x+1)+4 − 1, and B6(x+1)+3 =
C6(x+1)+3 − 2 are analogous.

We first show B6(x+1) = C6(x+1). By definition,

B6(x+1) = B6x+6 = −1−B6x+4 −B6x+5 − 2C6x+5.

Then from the inductive hypothesis it follows that B6x+4 = (C6x+4−1) and B6x+5 = C6x+5.
Thus, we have

B6(x+1) = −1−B6x+4 −B6x+5 − 2C6x+5

= −1− (C6x+4 − 1)− C6x+5 − 2B6x+5

= C6(x+1).

Similarly, to show that B6(x+1)+1 = C6(x+1)+1 − 1 we start with

B6(x+1)+1 = B6x+7 = −1−B6x+5 −B6x+6 − 2C6x+6.

Then by the inductive hypothesis and by what we showed above, it follows that B6x+5 =
C6x+5 and B6x+6 = C6x+6. Hence,

B6(x+1)+1 = −1− C6x+5 − C6x+6 − 2B6x+6

= C6(x+1)+1 − 1.

Finally,

B6(x+1)+2 = B6x+8 = −1−B6x+6 −B6x+7 − 2C6x+7

= −1− C6x+6 − (C6x+7 − 1)− 2(B6x+7 + 1)

= −C6x+6 − C6x+7 − 2B6x+7 − 2

= C6(x+1)+2 − 2.

□
Since a k-state alternating-start Cyl-Lights Out game with i rows is only naively

solvable when both Bi and Ci are congruent to 0 (mod k), from Lemma 3.3 we immediately
see that there are infinitely many board sizes for which the game is not naively solvable
for any k ≥ 2.

Theorem 3.4 Let k ≥ 2 be a natural number and let i ≡ 1 (mod 3). Then the k-state
alternating-start Cyl-Lights Out game with i rows is not naively solvable.
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Proof. First, i ≡ 1 (mod 3) means that i ≡ 1 (mod 6) or i ≡ 4 (mod 6). By Lemma
3.3, if i ≡ 1 (mod 6) or i ≡ 4 (mod 6), then Ci = Bi + 1. Hence, Bi and Ci are relatively
prime. It follows that Bi and Ci are not both congruent to 0 (mod k) for any k ≥ 2. □

On the other hand, in Table 1 we see that Bi and Ci are both even except when i ≡ 1
(mod 3). It turns out that this is true for all i ̸≡ 1 (mod 3).

Lemma 3.5 Let Bi and Ci be the ith terms of Recursion 3.1. If i ≡ 0 or i ≡ 2 (mod 3)
then both Bi and Ci are even.

Proof. Letting i = 3x or i = 3x + 2, respectively, for some non-negative integer x we
proceed by induction on x. For the base case, let x = 0 so that i = 0 or i = 2. From
Table 1, we see that B0 = C0 = 0, B2 = 0, and C2 = 2.

For the inductive step let x be an arbitrary non-negative integer and suppose that
B3x, B3x+2, C3x, and C3x+2 are even. We show that B3(x+1) and C3(x+1) are even. The
proofs that B3(x+1)+2 and C3(x+1)+2 are even are analogous. First, by definition,

B3(x+1) = B3x+3 = −1−B3x+1 −B3x+2 − 2C3x+2

= −1−B3x+1 − (−1−B3x −B3x+1 − 2C3x+1)− 2C3x+2

= B3x + 2C3x+1 − 2C3x+2

By the inductive hypothesis, B3x is even. Thus, since B3(x+1) is a sum of even numbers,
it is even as well.

Similarly,

C3(x+1) = C3x+3 = −C3x+1 − C3x+2 − 2B3x+2

= −C3x+1 − (−C3x − C3x+1 − 2B3x+1)− 2B3x+2

= C3x + 2B3x+1 − 2B3x+2,

which is even as well. □
We now know the number of rows needed for the 2-state alternating-start game to be

naively solvable.

Theorem 3.6 The 2-state alternating-start Cyl-Lights Out game with i rows is naively
solvable if and only if i ≡ 0 (mod 3) or i ≡ 2 (mod 3).

Proof. If i ≡ 1 (mod 3), then the 2-state alternating-start game is not naively solvable
by Theorem 3.4. If i ≡ 0 or i ≡ 2 (mod 3) then the 2-state alternating-start game is
naively solvable by Fact 3.2 and Lemma 3.5. □

In the next lemma we show that when k > 2, the k-state alternating-start game only
has a chance of being naively solvable when i ≡ 0 or i ≡ 5 (mod 6).

Lemma 3.7 Let k > 2. If the k-state alternating-start Cyl-Lights Out game is naively
solvable then i ≡ 0 or i ≡ 5 (mod 6).
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Proof. Let k > 2. First, by Theorem 3.4, if i ≡ 1 or i ≡ 4 (mod 6) then the k-state
alternating-start game is not naively solvable. It remains to show that if i ≡ 2 or i ≡ 3
(mod 6) then the k-state alternating-start game is also not naively solvable.

If i ≡ 2 or i ≡ 3 (mod 6), then by Lemma 3.3 it follows that Bi = Ci − 2, and by
Lemma 3.5, both Bi and Ci are even. Thus, there is an integer z such that Bi = 2z
and Ci = 2z + 2 = 2(z + 1). Since z and z + 1 are relatively prime, it follows that
gcd(Bi, Ci) = 2. Hence, there is no k > 2 for which Bi and Ci are congruent to 0 (mod
k), and so by Fact 3.2 there is no k > 2 for which the k-state alternating-start game with
i rows is naively solvable. □

The converse of Lemma 3.7 is not true; it is not the case that the k-state alternating-
start game will always be naively solvable when i ≡ 0 (mod 6) or i ≡ 5 (mod 6). For
example, in Table 1 we see that B5 = C5 = −20 and B6 = C6 = 52. Since neither of these
are divisible by 3, it follows that the 3-state alternating-start Cyl-Lights Out game is not
naively solvable when the board has five or six rows.

4 A Connection to the Fibonacci Numbers

In order to determine the number of rows needed for a k-state alternating-start Cyl-Lights
Out game to be naively solvable we connect Recursion 3.1 to the Fibonacci numbers. We
then use known results about the Fibonacci numbers (mod k) to draw conclusions on
when the game is naively solvable.

Recall that the Fibonacci sequence is defined by F0 = 0, F1 = 1, and Fi = Fi−1+Fi−2.
We show the first 16 terms of this sequence in Table 2. In Theorem 4.2 we show that the
sum Bi+Ci can be recognized as a product of Fibonacci numbers. We need the following
identity for the proof.

Fact 4.1 (Cassini’s Identity) Let Fi be the ith Fibonacci number. Then

Fi−1Fi+1 − F 2
i = (−1)i.

For multiple proofs of the identity see [4].

Theorem 4.2 Let Bi and Ci be the ith terms of Recursion 3.1 for i ≥ 0. Then

Bi + Ci = (−1)iFiFi+1.

Proof. We proceed it by induction on i. For the base cases let i = 0 and i = 1. Then

B0 + C0 = 0 = (−1)0F0F1 and B1 + C1 = −1 = (−1)1F1F2.

For the inductive step, let n be an arbitrary natural number and assume Bi + Ci =
(−1)iFiFi+1 for all i ≤ n. We show Bn+1 + Cn+1 = (−1)n+1Fn+1Fn+2. In other words,
using Recursion 3.1, we show

Bn+1 + Cn+1 = −1−Bn−1 −Bn − 2Cn − Cn−1 − Cn − 2Bn = (−1)n+1Fn+1Fn+2. (1)
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Looking at the left side of Equation 1, by adjusting some terms and using the inductive
hypothesis, we get

−1−Bn−1 −Bn − 2Cn − Cn−1 − Cn − 2Bn = −1− (Bn−1 + Cn−1)− 3(Bn + Cn)

= −1− (−1)n−1Fn−1Fn − 3(−1)nFnFn+1

= −1 + (−1)nFn−1Fn − 3(−1)nFnFn+1

= −1 + (−1)nFn(Fn−1 − 3Fn+1).

Now looking at the right side of Equation 1, by applying the definition of the Fibonacci
numbers, adjusting some terms, and using Fact 4.1, we get

(−1)n+1Fn+1Fn+2 = −(−1)n(Fn−1 + Fn)(Fn + Fn+1)

= −(−1)n(Fn−1Fn + Fn−1Fn+1 + F 2
n + FnFn+1)

= −(−1)n(Fn−1Fn + ((−1)n + F 2
n) + F 2

n + FnFn+1)

= −(−1)2n − (−1)n(Fn−1Fn + 2F 2
n + FnFn+1)

= −1− (−1)n(Fn−1Fn + 2Fn(Fn+1 − Fn−1) + FnFn+1)

= −1− (−1)n(3FnFn+1 − Fn−1Fn)

= −1 + (−1)nFn(Fn−1 − 3Fn+1).

Therefore, Equation 1 holds and Bi + Ci = (−1)iFiFi+1 for all i. □
We use Theorem 4.2 to determine the amount of rows needed for a k-state alternating-

start game to be naively solvable. Since we know that the game is not naively solvable
when the number of rows i is not congruent to 0 or 5 (mod 6), we focus on i ≡ 0 and
i ≡ 5 (mod 6). The following corollary follows directly from Theorem 4.2 and Lemma 3.7.

Corollary 4.3 Let Bi and Ci be the ith terms of Recursion 3.1. If i ≡ 0 (mod 6) or i ≡ 5
(mod 6) then

Bi = Ci =
1

2
(−1)iFiFi+1.

From Lemma 3.7 and Corollary 4.3, it follows that when k > 2, the k-state alternating-
start game with i rows will be naively solvable when i ≡ 0 (mod 6) or i ≡ 5 (mod 6) and
either Fi ≡ 0 (mod k) or Fi+1 ≡ 0 (mod k). The Fibonacci numbers have been extensively
studied under different moduli. See for example [11] and [12]. The following definition
and lemma first appeared in [12] and are well-known to Fibonacci number enthusiasts.

Definition 4.4 [Restricted Period of the Fibonacci Numbers, α(k)] The restricted period
of the Fibonacci sequence (mod k), denoted α(k), is the least positive integer i such that
Fi ≡ 0 (mod k).

Lemma 4.5 (Theorem 3, [12]) Let Fi be the i
th term of the Fibonacci sequence and let

α(k) be the restricted period of the Fibonacci sequence (mod k). Then Fi ≡ 0 (mod k) if
and only if i ≡ 0 (mod α(k)).

the pump journal of undergraduate research 8 (2025), 225–241 235



For example, Table 2 shows the first 16 terms of the original Fibonacci sequence along
with the sequence taken mod 3, mod 4, and mod 5. Notice that F4 ≡ 0 (mod 3). Thus,
α(3) = 4, and by Lemma 4.5, Fi ≡ 0 (mod 3) if and only if i ≡ 0 (mod 4). Taking the
Fibonacci sequence mod 4, we see that the first 0 occurs at F6. Hence, α(4) = 6 and
Fi ≡ 0 (mod 4) if and only if i ≡ 0 (mod 6). Similarly, α(5) = 5 so Fi ≡ 0 (mod 5) if and
only if i ≡ 0 (mod 5). More values for α(k) can be found on [14].

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Fi 0 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610

Fi (mod 3) 0 1 1 2 0 2 2 1 0 1 1 2 0 2 2 1
Fi (mod 4) 0 1 1 2 3 1 0 1 1 2 3 1 0 1 1 2
Fi (mod 5) 0 1 1 2 3 0 3 3 1 4 0 4 4 3 2 0

Table 2: The first 16 terms of the Fibonacci sequence, the Fibonacci sequence (mod 3),
and the Fibonacci sequence (mod 4). Notice that α(3) = 4, α(4) = 6, and α(5) = 5.

If we know the restricted period of the Fibonacci numbers (mod k), the following
theorem gives us a quick way to find infinitely many board sizes for which the k-state
alternating-start game is naively solvable.

Theorem 4.6 Let k > 2, and let α(k) be the restricted period of the Fibonacci sequence
(mod k). If i ≡ 0 (mod lcm(α(k), 6)) or i ≡ −1 (mod lcm(α(k), 6)), then the k-state
alternating-start game with i rows is naively solvable.

Proof. If i ≡ 0 (mod lcm(α(k), 6)) then i ≡ 0 (mod 6) and i ≡ 0 (mod α(k)). In
this case, by Theorem 4.2, Bi = Ci = 1

2
FiFi+1, and by Lemma 4.5, Fi ≡ 0 (mod k).

Thus, Bi = Ci ≡ 0 (mod k), making the game naively solvable. Similarly, if i ≡ −1
(mod lcm(α(k), 6)), then i ≡ 5 (mod 6) and Fi+1 ≡ 0 (mod k). Again, it follows that
Bi = Ci =

1
2
FiFi+1 ≡ 0 (mod k). □

While the above theorem gives infinitely many board sizes for which the k-state
alternating-start game is naively solvable, it does not give all possible board sizes. For
example, when k = 5, α(5) = 5 and lcm(α(5), 6) = 30. Thus, using Theorem 4.6 we
see that the 5-state alternating-start game is naively solvable when the number of rows
is congruent to 0 or −1 (mod 30). However, from Table 1 we see that B5 = C5 = −20,
and thus the 5-state game is also naively solvable when the board has five rows. In the
remainder of this section we seek to identify all possible board sizes for which a k-state
alternating-start Cyl-Lights Out game is naively solvable. Specifically, we focus on all
values of k > 2 for which we do not run into a product of zero divisors (mod k) when
Bi = Ci. (Recall from Lemma 3.7 that when k > 2 the game with i rows is not naively
solvable when Bi ̸= Ci.) This inspires the following definition.

Definition 4.7 (No Consecutive Zero Divisors) We say the Fibonacci sequence has
no consecutive zero divisors (mod k) if for all i ≡ 0 (mod 6) and all i ≡ 5 (mod 6),
FiFi+1 ≡ 0 (mod k) implies either Fi ≡ 0 (mod k) or Fi+1 ≡ 0 (mod k).
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When we assume that the Fibonacci sequence has no consecutive zero divisors (mod k)
we are able to fully characterize the conditions on i under which the k-state alternating-
start game with i rows is naively solvable.

Theorem 4.8 Let k > 2. Assume that the Fibonacci sequence has no consecutive zero
divisors (mod k), and let α(k) be the restricted period of the Fibonacci sequence (mod k).
Then the k-state alternating-start Cyl-Lights Out game with i rows is naively solvable if
and only if one of the following properties hold:

Property 1: α(k) and 6 both divide i,

Property 2: α(k) and 6 both divide i+ 1,

Property 3: α(k) divides i and 6 divides i+ 1, or

Property 4: α(k) divides i+ 1 and 6 divides i.

Proof. The k-state alternating-start Cyl-Lights Out game with i rows is naively solvable
if and only if Bi = Ci ≡ 0 (mod k). Using Lemma 3.7 and Corollary 4.3, since we assume
that the Fibonacci sequence has no zero divisors (mod k), it follows that Bi = Ci ≡ 0
(mod k) if and only if i ≡ 0 (mod 6) or i ≡ 5 (mod 6) and either Fi ≡ 0 (mod k) or
Fi+1 ≡ 0 (mod k). By the definition of α(k), i ≡ 0 (mod 6) and Fi ≡ 0 (mod k) if and
only if Property 1 holds, and i ≡ 0 (mod 6) and Fi+1 ≡ 0 (mod k) if and only if Property
3 holds. Properties 2 and 4 hold if and only if i ≡ 5 (mod 6) and Fi+1 ≡ 0 (mod k) and
i ≡ 5 (mod 6) and Fi ≡ 0 (mod k), respectively. □

While Theorem 4.8 characterizes the values for i for which the k-state alternating-start
game with i rows is naively solvable, it does not provide us with a nice way of computing
such i values. In the remaining results we provide insight into how to determine which
values of i satisfy the four conditions of Theorem 4.8. For example, α(k) and 6 both
divide i if and only if i ≡ 0 (mod lcm(α(k), 6)), and α(k) and 6 both divide i + 1 if and
only if i ≡ −1 (mod lcm(α(k), 6)). Hence, Theorem 4.6 is reflected in Properties (1) and
(2) of Theorem 4.8. Going one step further, in Theorem 4.9 we prove that if the Fibonacci
sequence has no consecutive zero divisors (mod k) and gcd(α(k), 6) ̸= 1 then Properties
(3) and (4) cannot occur, which turns Theorem 4.6 into an if and only if statement.

Theorem 4.9 Let k > 2. Assume that the Fibonacci sequence has no consecutive zero
divisors (mod k), and let α(k) be the restricted period of the Fibonacci sequence (mod k).
Further assume gcd(α(k), 6) ̸= 1. Then the k-state alternating-start Cyl-Lights Out game
with i rows is naively solvable if and only if i ≡ 0 (mod lcm(α(k), 6)) or i ≡ −1 (mod
lcm(α(k), 6)).

Proof. First, α(k) and 6 both divide i if and only if i ≡ 0 (mod lcm(α(k), 6)), and α(k)
and 6 both divide i+1 if and only if i ≡ −1 (mod lcm(α(k), 6)). It remains to show that
if gcd(α(k), 6) ̸= 1 then Conditions (3) and (4) of Theorem 4.8 do not occur.

We show that Condition (3) does not occur. The proof that Condition (4) does not
occur is analogous. Assume for contradiction that α(k) divides i and 6 divides i+1. Then
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the divisors of α(k) also divide i, and the divisors of 6 also divide i+1. Thus, gcd(α(k), 6)
divides both i and i+ 1. However, i and i+ 1 are relatively prime. This contradicts our
assumptions that gcd(α(k), 6) ̸= 1. □

Example 4.10 When k = 3, we see from Table 2 that the restricted period, α(3) = 4, so
gcd(α(3), 6) = 2 and lcm(α(3), 6) = 12. (Since 3 is prime we do not need to worry about
zero divisors.) Thus, by Theorem 4.9, the 3-state alternating-start game with i rows is
naively solvable if and only if i ≡ 0 (mod 12) or i ≡ 11 (mod 12).

Example 4.11 When k = 4, Table 2 also shows that α(k) = 6 and that the Fibonacci
sequence has no consecutive zero divisors (mod 4). (There are no consecutive zero divisors
in the first six terms, and the Fibonacci sequence (mod 4) is an infinite loop of those six
terms.) By Theorem 4.9, the 4-state alternating-start Cyl-Lights Out game with i rows
is naively solvable if and only if i ≡ 0 or i ≡ 5 (mod 6). Since α(4) = 6, it follows that
the 4-state alternating-start game is naively solvable for the most board sizes for k > 2.

As we saw after Theorem 4.6, the 5-state alternating-start game with i rows is naively
solvable for more values of i than just i ≡ 0 (mod lcm(α(5), 6)) or i ≡ −1 (mod
lcm(α(5), 6)). This is because when k = 5, there exists values for i for which Condi-
tions (3) and (4) of Theorem 4.8 hold. In the following lemma we show that such i always
exist when gcd(α(k), 6) = 1.

Lemma 4.12 Let α(k) be the restricted period of the Fibonacci sequence (mod k). Further
assume gcd(α(k), 6) = 1. Then

• there exists i such that α(k) divides i and 6 divides i+ 1, and

• there exists j such that α(k) divides j + 1 and 6 divides j.

Proof. Since gcd(α(k), 6) = 1, there exists integers r and s such that α(k)r + 6s = 1.
Then either r < 0 or s < 0. We consider each case separately. First, if r < 0 let i = |α(k)r|
and j = 5|α(k)r| − 1. Then α(k) divides i and i + 1 = |α(k)r| + 1 = |1 − 6s| + 1 =
(6s − 1) + 1 = 6s. Further, α(k) divides j + 1 and j = 5(6s − 1) − 1 = 6(5s − 1) so 6
divides j.

On the other hand, if s < 0, let j = |6s| and i = 5|6s| + 5. Then 6 divides j and
j + 1 = |6s| + 1 = |1 − α(k)r| + 1 = α(k)r. So, α(k) divides j + 1. Since i = 5|6s| + 5
then 6 divides i+ 1 and i = 5(α(k)r − 1) + 5 = 5α(k)r. So, α(k) divides i. □

When gcd(α(k), 6) = 1 we can characterize the values of i for which Properties (3) and
(4) of Theorem 4.8 occur in terms of the smallest of such i’s. More specifically, letting
i1 be the smallest natural number such that α(k) divides i1 and 6 divides i1 + 1 and i2
be the smallest natural number such that α(k) divides i2 + 1 and 6 divides i2, we first
show that both i1 and i2 are less than α(k)6, i.e., less than lcm(α(k), 6). This allows us
to view i1 and i2 as congruence classes (mod α(k)6). Then in Theorem 4.14 we show that
all other i’s that satisfy Properties (3) and (4) of Theorem 4.8 are congruent to i1 and i2
(mod α(k)6), respectively.
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Lemma 4.13 Let α(k) be the restricted period of the Fibonacci sequence (mod k) and
assume gcd(α(k), 6) = 1. If i1 is the smallest natural number such that α(k) divides i1
and 6 divides i1 +1 and i2 is the smallest natural number such that α(k) divides i2 and 6
divides i2 + 1 then

i1 < 6α(k) and i2 < 6α(k).

Proof. Let i1 be the smallest natural number such that α(k) divides i1 and 6 divides i1+1.
We will show that i1 < 6α(k). The proof that i2 < 6α(k) is analogous. Since 6 divides
i1 + 1 and thus doesn’t divide i1, it follows that i1 ̸= lcm(α(k), 6) = 6α(k). Assume for
contradiction that i1 > 6α(k), so there exists an r > 0 such that i1 = 6α(k) + r. Because
6α(k) ̸= 0, i1 > r. Further, since i1 = 6α(k)+r, it follows that α(k) divides α(k)6+r and
6 divides α(k)6+ r+1. So α(k) divides r and 6 divides r+1. But this is a contradiction
because r < i1 and we assumed i1 is the smallest natural number such that α(k) divides
i1 and 6 divides i1 + 1. Therefore, i1 < 6α(k). □

Theorem 4.14 Let k > 2. Assume that the Fibonacci sequence has no consecutive zero
divisors (mod k), and let α(k) be the restricted period of the Fibonacci sequence (mod k).
Further assume gcd(α(k), 6) = 1. Then the k-state alternating-start Cyl-Lights Out game
with i rows is naively solvable if and only if one of the following conditions holds.

Condition 1: i ≡ 0 (mod 6α(k)),

Condition 2: i ≡ −1 (mod 6α(k)),

Condition 3: i ≡ i1 (mod 6α(k)) where i1 is the smallest natural number such that
α(k) divides i1 and 6 divides i1 + 1, or

Condition 4: i ≡ i2 (mod 6α(k)) where i2 is the smallest natural number such that
α(k) divides i2 + 1 and 6 divides i2.

Proof. By Theorem 4.8, the k-state alternating-start Cyl-Lights Out game with i rows
is naively solvable if and only if (1) α(k) and 6 both divide i, (2) α(k) and 6 both divide
i+ 1, (3) α(k) divides i and 6 divides i+ 1, or (4) α(k) divides i+ 1 and 6 divides i.

Since gcd(α(k), 6) = 1, it follows that lcm(α(k), 6) = 6α(k). Hence, α(k) and 6 both
divide i if and only if i ≡ 0 (mod 6α(k)), and α(k) and 6 both divide i+ 1 if and only if
i ≡ −1 (mod 6α(k)).

We now need to show that α(k) divides i and 6 divides i+1 if and only if i ≡ i1 (mod
6α(k)), and α(k) divides i+1 and 6 divides i if and only if i ≡ i2 (mod 6α(k)). We prove
the first statement. The proof of the second statement is analogous.

If i ≡ i1 (mod 6α(k)) then i = i1 + 6α(k)x for some integer x. (By Lemma 4.13,
i1 < 6α(k).) Since α(k) divides i1, it follows that α(k) divides i1 +6α(k), so α(k) divides
i. Similarly, since 6 divides i1 + 1 and i = i1 + 6α(k)x, it follows that 6 divides i+ 1.

Next we show that if α(k) divides i and 6 divides i+1 then i ≡ i1 (mod 6α(k)). Since
α(k) divides both i and i1, it follows that α(k) divides i − i1. Hence i ≡ i1 (mod α(k)).
Since 6 divides i+1 and 6 divides i1 +1, it follows that 6 divides i+1− (i1 +1) = i− i1,
and i ≡ i1 (mod 6). Therefore, i ≡ i1 (mod 6α(k)). □
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While there is no formula for calculating i1 and i2 of Theorem 4.14, they are often
easy to determine for specific k. We show an example below.

Example 4.15 (The 5-state alternating-start Cyl-Lights Out game) When k =
5, the restricted period α(k) = 5, so gcd(α(k), 6) = 1, and the 5-state alternating-start
game with i rows is naively solvable if and only if one of the conditions of Theorem 4.14
holds. To determine i1 of Condition (3) we see that i1 = 5 is the smallest integer such
that 5|i1 and 6|i1+1. Similarly, for i2 of Condition (4) we see that i2 = 24 is the smallest
integer such that 5|i2 + 1 and 6|i2. Therefore, since α(5) · 6 = 30, we see that the 5-state
alternating-start game with i rows is naively solvable if and only if one of the following
holds;

1. i ≡ 0 (mod 30),

2. i ≡ −1 (mod 30),

3. i ≡ 5 (mod 30), or

4. i ≡ 24 (mod 30).

So, the 5-state alternating-start game with i ≤ 100 rows is naively solvable for

i = 5, 24, 29, 30, 35, 54, 59, 60, 65, 84, 89, 90, 95.
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