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Abstract - We apply the method of inverse iteration to the Laplace eigenvalue prob-
lem with Robin and mixed Dirichlet-Neumann boundary conditions, respectively. For each
problem, we prove convergence of the iterates to a non-trivial principal eigenfunction and
show that the corresponding Rayleigh quotients converge to the principal eigenvalue. We
also propose a related iterative method for an eigenvalue problem arising from a model for
optimal insulation and provide some partial results.
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1 Introduction

1.1 The Dirichlet Eigenvalue Problem

Let Ω ⊂ Rn, n ≥ 2, be a smooth and bounded domain. The Dirichlet eigenvalue problem
for the standard Laplace operator on Ω is to find a pair (λ, u) ∈ R×H1

0 (Ω) satisfying{
−∆u = λu in Ω,

u = 0 on ∂Ω.
(1)

We recall some well-known facts about (1), referring to [7, Section 6.5] and [12, Section
7.41] for details. The eigenvalues of (1) are discrete and strictly positive [7, Section
6.5], and the principal (smallest, non-zero) eigenvalue, which we denote λ1

D, admits a
variational characterization in terms of the Rayleigh quotient

R(v) :=

∫
Ω
|∇v|2 dx∫
Ω
v2 dx

. (2)

Specifically,
λ1
D = min

v∈H1
0 (Ω)

R(v).

Any eigenfunction corresponding to the eigenvalue λ1
D must be either strictly positive

or strictly negative in Ω. Furthermore, λ1
D is simple, i.e. any two eigenfunctions with

eigenvalue λ1
D are scalar multiples of each other.
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1.2 The Robin Eigenvalue Problem

Given a function h ∈ C1(∂Ω), the Robin eigenvalue problem is to find a pair (λ, u) ∈
R×H1(Ω) satisfying {

−∆u = λu in Ω,

u+ h∂νu = 0 on ∂Ω,
(3)

where ν is the outward-pointing normal vector to ∂Ω and ∂νu = ∇u · ν is the normal
derivative of u. Note that when h ≡ 0, we recover the Dirichlet eigenvalue problem (1).
We will assume, from here onward, that h is strictly positive on ∂Ω. As we discuss in
Section 2.1, the Robin eigenvalue problem (3) also has a discrete spectrum of strictly
positive eigenvalues. The principal eigenvalue, which we denote λ1

R, has a variational
characterization in terms of the Rayleigh quotient

R(v) :=

∫
Ω
|∇v|2 dx+

∫
∂Ω

v2

h
dσ∫

Ω
v2 dx

. (4)

Specifically,

λ1
R = min

v∈H1(Ω)
R(v).

Note that the boundary integral appearing in the Rayleigh quotient R(v) is well-defined by
the fact that h is strictly positive on ∂Ω and by the trace theorem1 for Sobolev functions
[7, Section 6.5]. Finally, similar to the principal eigenfunctions for the Dirichlet problem,
any eigenfunction corresponding to the principal Robin eigenvalue λ1

R must be either
strictly positive or strictly negative in Ω, and λ1

R is simple, i.e. any two eigenfunctions
with eigenvalue λ1

R are scalar multiples of each other.
The eigenvalue problem (3) is tied to the heat diffusion problem on a homogeneous,

conductive medium Ω surrounded by an insulating layer described by the function h (see
Figure 1). More specifically, let v(x, t) be the solution of the heat equation with Robin
boundary condition 

vt −∆v = 0 in Ω,

v + h∂νv = 0 on ∂Ω,

v(x, 0) = v0(x).

The solution v(x, t) represents the temperature distribution at x ∈ Ω at time t given
the insulation h and initial temperature distribution v0(x). The long-time behavior of
v(x, t) is governed by the eigenvalues in (3); indeed, v(x, t) approaches equilibrium with
an asymptotic rate e−λ1

Rt as t → ∞.

1In order to keep our notation concise, we will not explicitly denote the trace operator in boundary
integrals throughout this work.
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Figure 1: A conductor Ω with insulation h.

1.3 Mixed Boundary Conditions

Suppose now that ∂Ω consists of two disjoint, closed, connected components ΓD and ΓN

(i.e. ∂Ω = ΓD ∪ ΓN and ΓD ∩ ΓN = ∅, as in Figure 2). Fix ϵ > 0 and consider the Robin
eigenvalue problem (3) with piecewise constant insulation

h(x) =

{
ϵ on ΓD,
1
ϵ

on ΓN .

Taking a formal limit as ϵ → 0+, we obtain the mixed eigenvalue problem, which is to find
(λ, u) ∈ R× C satisfying 

−∆u = λu in Ω,

u = 0 on ΓD,

∂νu = 0 on ΓN ,

(5)

where

C := {v ∈ H1(Ω) : v|ΓD
= 0}. (6)

As discussed in Section 3.1, the eigenvalue problem (5) also has a discrete spectrum
of strictly positive eigenvalues. The principal eigenvalue, which we denote λ1

M , has a
variational characterization in terms of the Rayleigh quotient (2) given by

λ1
M = min

v∈C
R(v).

Moreover, any eigenfunction corresponding to the eigenvalue λ1
M must be either strictly

positive or strictly negative in Ω, and λ1
M is simple, i.e. any two eigenfunctions with

eigenvalue λ1
M are scalar multiples of each other.
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Figure 2: A doubly connected domain Ω with two connected boundary components ΓD

and ΓN .

1.4 Main Results

For physical applications, it is important to accurately approximate the principal eigen-
value and corresponding eigenfunctions for the problems (1), (3) and (5). For (1), an ap-
proximation procedure that has been investigated by several authors (see Subsection 1.5
below for specific references) is inverse iteration. At a high level, this method generates a
sequence of functions and positive real numbers converging to the principal eigenfunction
and eigenvalue respectively by repeatedly updating and solving appropriate boundary-
value problems for the Poisson equation. The appeal of such an iterative method is that
solving eigenvalue problems becomes equivalent to solving a (countably infinite) family
of Poisson problems. Our main results concern the convergence of analogous inverse it-
eration schemes for computing the principal eigenvalues and eigenfunctions for both the
Robin and mixed eigenvalue problems (3) and (5). We follow the proof strategy outlined
in [1, 11] for a different class of eigenvalue problems.

Theorem 1.1 Let u0 ∈ C1(Ω) ∩ L∞(Ω) be a strictly positive function on Ω. For each
k ∈ N, let uk+1 be the unique, classical solution of{

−∆uk+1 = R(uk)uk in Ω,

uk+1 + h∂νuk+1 = 0 on ∂Ω.
(7)

Then lim
k→∞

R(uk) = λ1
R and uk converges strongly in H1(Ω) to a positive principal eigen-

function for the Robin eigenvalue problem (3).
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Theorem 1.2 Let u0 ∈ C1(Ω) ∩ L∞(Ω) be a strictly positive function on Ω satisfying
R(u0) > 0. For each k ∈ N, let uk+1 be the unique, classical solution of

−∆uk+1 = R(uk)uk in Ω,

uk+1 = 0 on ΓD,

∂νuk+1 = 0 on ΓN .

(8)

Then lim
k→∞

R(uk) = λ1
M and uk converges strongly in H1(Ω) to a positive principal eigen-

function for the mixed eigenvalue problem (5).

Remark 1.3 Interestingly, the convergence of the Rayleigh quotients of the iterates to
the principal eigenvalue can be shown before establishing convergence of the sequence of
iterates to an eigenfunction (see Propositions 2.4 and 3.4). In fact, the convergence of
the Rayleigh quotients plays an essential role in the proof of convergence of the iterates.

We also investigate an inverse iteration scheme related to an eigenvalue problem arising
from the optimal insulation of conducting bodies studied in [5]. While we obtain some
positive results about our proposed iteration, we are unable to establish convergence to a
solution of the optimization problem. We refer to Section 4 for more details on the results
we obtained and the difficulties we encountered.

1.5 Comparison With Existing Literature

As stated above, inverse iteration for the principal Dirichlet eigenvalue problem has been
studied extensively [1, 4, 11, 3, 10]. In fact, each of these works considers the Dirichlet
eigenvalue problem for various elliptic operators that generalize standard Laplacian. In-
verse iteration for the Robin eigenvalue problem with constant h has been considered in
[9, 13]. Inverse iteration for the mixed boundary-value problem has not, to the best of
our knowledge, been studied explicitly in any prior work.

Let us highlight some of the differences between the works [9, 13] and the present
manuscript. The authors of [13] consider the case where the insulation h is identically
equal to a positive constant (denoted β−1 in [13]). Moreover, their sequence of iterates
are normalized at each step to have unit L2 norm. Our work generalizes the results of
[13] to the case of positive h ∈ C1(∂Ω), as well as the (formal) limiting case of the mixed
eigenvalue problem. We also avoid any additional normalization step. Let us note that
while [13] demonstrates the existence of a subsequence of iterates converging to a principal
eigenfunction, the convergence of the full sequence of iterates is not properly addressed.
We provide a complete proof of this convergence in Section 2.3.

The work [9] investigates an inverse iteration scheme for a class of abstract variational
problems involving homogeneous functionals on Banach spaces that includes the Dirichlet
and Robin eigenvalue problems as specific examples. For the Robin boundary condition
(see [9, Examples 2.11 and 3.12]), the iteration considered in [9] is{

−∆vk+1 = vk in Ω,

vk+1 + h∂νvk+1 = 0 on ∂Ω.
(9)
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Note the absence of a Rayleigh quotient term on the right-hand side, as compared to
(7). One of the main results of [9] is that if the sequence of functions (λ1

R)
kvk converges

to a non-trivial function v, then v is a principal eigenfunction for the Robin problem.
Moreover, if v is non-trivial, then

λ1
R = lim

k→∞

∥vk−1∥L2(Ω)

∥vk∥L2(Ω)

.

As discussed in [9], (λ1
R)

kvk may converge to the zero function, depending on the choice of
v0; a sufficient condition is for v0 to be bounded below by a positive principal eigenfunction
(see discussion after displayed equation (2.4) in [10]). By comparison, our work shows
that, under mild hypotheses on u0, the sequence of inverse iterates converge to a non-
trivial principal eigenfunction, and the corresponding Rayleigh quotients converge to the
principal eigenvalue. No prior knowledge of the eigenvalue or eigenfunctions is necessary
to obtain a non-trivial limit.

Let us comment on how the sequence of iterates {uk}∞k=0 defined as in Theorem (1.1)
are related to the sequence {vk}∞k=0 defined as in (9) and studied in [9]. By unique
solvability of the Poisson problem and an induction argument, it is not difficult to see
that

(λ1
R)

kvk =
uk

k−1∏
j=0

(
R(uj)

λ1
R

) .
Since Theorem 1.1 shows uk converges to a non-trivial eigenfunction for a large family
of initial choices u0, the convergence of (λ1

R)
kvk to a non-trivial function hinges on the

convergence of the infinite product
∏∞

j=0
R(uj)

λ1
R

, which holds if and only if

∞∑
j=0

(
R(uj)− λ1

R

)
< ∞. (10)

While our work shows R(uj)− λ1
R ↘ 0 as j → ∞, we do not know how fast this conver-

gence is occurring and it is unclear what properties of u0 will ensure (10) holds. Indeed,
establishing any rate of convergence of the Rayleigh quotients to the principal eigenvalue
appears to be a challenging problem.

1.6 Outline

In Section 2, we will study the Robin eigenvalue problem (3), establish some basic prop-
erties of the sequence generated by (7), and prove Theorem 1.1. In Section 3, we will
provide a similar analysis for the sequence generated by (8) and prove Theorem 1.2. Fi-
nally, in Section 4 we will investigate an iterative scheme relating to a nonlinear eigenvalue
problem in optimal insulation and provide some partial results.
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2 Inverse Iteration for the Robin Eigenvalue Problem

2.1 Background

By adapting the techniques in, for instance, [7, Section 6.5, Theorems 1-2] and [12, The-
orems 7.41.5-7.41.6], one can prove the following:

1. The eigenvalues of (3) are discrete, positive, and diverge to infinity.

2. The principal eigenvalue λ1
R admits the variational characterization

λ1
R = min

v∈H1(Ω)
R(v),

where the Rayleigh quotient R(v) is defined as in (4).

3. The principal eigenfunctions have a sign on Ω.

4. The principal eigenvalue λ1
R is simple; that is, any two principal eigenfunctions are

scalar multiples of each other.

If a function u ∈ H1(Ω) satisfies∫
Ω

∇u · ∇φdx+

∫
∂Ω

uφ

h
dσ = λ1

R

∫
Ω

uφ dx ∀φ ∈ H1(Ω), (11)

then u is called a weak solution of the Robin eigenvalue problem (3) with λ = λ1
R.

Consider the bilinear form on H1(Ω) defined by

B [u, v] :=

∫
Ω

∇u · ∇v dx+

∫
∂Ω

uv

h
dσ.

Since h is strictly positive and ∂Ω is compact, it follows from [12, Theorem 7.43.1] that
B [·, ·] is an inner product, and its induced norm ∥·∥B is equivalent to the H1(Ω) norm.
We can recast (11) as

B [u, φ] = λ1
R ⟨u, φ⟩L2(Ω) ∀φ ∈ H1(Ω) (12)

and the Rayleigh quotient can be written as

R(v) =
∥v∥2B

∥v∥2L2(Ω)

. (13)

Remark 2.1 Since the B-norm is equivalent to the H1(Ω)-norm, the functional

u 7→ B [u, φ]

belongs to the dual of H1(Ω) for any fixed φ ∈ H1(Ω). As a result, if uk ⇀ u weakly in
H1(Ω) then

lim
k→∞

B [uk, φ] = B [u, φ]

for any φ ∈ H1(Ω).
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The iteration (7) in Theorem 1.1 relies on solvability of the Poisson problem{
−∆v = f in Ω,

v + h∂νv = 0 on ∂Ω.
(14)

By [12, Theorem 6.10.10], if f ∈ C1(Ω) ∩ L∞(Ω), then (14) has a unique solution v ∈
C2(Ω) ∩ C1(Ω). Moreover, if f ≥ 0 and f ̸≡ 0, then the maximum principle implies
that v attains its infimum at some point x0 ∈ ∂Ω. By Hopf’s Lemma [7, Section 6.4],
∂νv(x0) < 0. Since h(x0) > 0, we must have v(x0) > 0. Thus v must be strictly positive in
Ω. Applying this observation to the iteration (7), we see that since u0 is strictly positive
on Ω, uk is strictly positive on Ω for all k ∈ N.

2.2 Basic Properties of the Sequence uk

Before we can prove Theorem 1.1, we will need some useful properties of the iterates
{uk}∞k=0 generated by (7). When proving these properties, we will refer to the weak
formulation of (7), which is

B [uk+1, φ] = R(uk) ⟨uk, φ⟩L2(Ω) , ∀φ ∈ H1(Ω). (15)

Proposition 2.2 For each of the iterates uk generated by (7), we have

R(uk+1) ∥uk+1∥L2(Ω) ≤ R(uk) ∥uk∥L2(Ω) , (16)

∥uk+1∥B ≥ ∥uk∥B , (17)

∥uk+1∥L2(Ω) ≥ ∥uk∥L2(Ω) , (18)

R(uk+1) ≤ R(uk). (19)

Proof. [of (16)] Fix k ≥ 0. Using uk+1 as a test function in (15) yields

∥uk+1∥2B = R(uk) ⟨uk, uk+1⟩L2(Ω) .

Applying the Cauchy-Schwarz inequality to the right-hand-side gives us

∥uk+1∥2B ≤ R(uk) ∥uk∥L2(Ω) ∥uk+1∥L2(Ω) .

Using the expression for the Rayleigh quotient in (13), we conclude that

R(uk+1) ∥uk+1∥L2(Ω) ≤ R(uk) ∥uk∥L2(Ω) .

□
Proof. [of (17)] Fix k ≥ 0. Using uk as a test function in (15) yields

B [uk+1, uk] = R(uk) ∥uk∥2L2(Ω) = ∥uk∥2B .

Applying the Cauchy-Schwarz inequality to the inner product B[·, ·], we find that

∥uk∥2B = B [uk+1, uk] ≤ ∥uk∥B ∥uk+1∥B
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Consequently,
∥uk∥B ≤ ∥uk+1∥B .

□
Proof. [of (18)] As we discussed at the beginning of this subsection, uk ̸≡ 0 for any k ∈ N.
Thus, by (16) and (13), we have

∥uk+1∥2B
∥uk+1∥L2(Ω)

≤ ∥uk∥2B
∥uk∥L2(Ω)

for all k ≥ 0. (20)

Now apply (17) to (20) to get (18). □
Proof. [of (19)] This follows from (18) and (16). □

Using the monotonicity properties derived above, we can obtain an H1(Ω) bound on
the sequence of iterates. This will provide the compactness necessary in the proof of
convergence.

Proposition 2.3 The sequence {uk}∞k=1 is uniformly bounded in H1(Ω).

Proof. By (16), we have for any k ≥ 0

R(uk+1) ∥uk+1∥L2(Ω) ≤ R(u0) ∥u0∥L2(Ω) .

Since R(uk+1) ≥ λ1
R, we conclude that

∥uk+1∥L2(Ω) ≤
R(u0)

λ1
R

∥u0∥L2(Ω) . (21)

Combining this with (19), we find

∥∇uk+1∥2L2(Ω) ≤ ∥uk+1∥2B = R(uk+1) ∥uk+1∥2L2(Ω)

≤ R(u0)
3

(λ1
R)

2
∥u0∥2L2(Ω) .

□
By (19), we see that ρ := lim

k→∞
R(uk) exists and ρ ≥ λ1

R. It is natural to ask if ρ = λ1
R;

we prove this fact now.

Proposition 2.4
lim
k→∞

R(uk) = λ1
R.

Proof. Let w be the non-negative solution of
−∆w = λ1

Rw in Ω,

w + h∂νw = 0 on ∂Ω,

∥w∥L2(Ω) = 1.
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Using w as a test function in (15) yields

B [uk+1, w] = R(uk) ⟨uk, w⟩L2(Ω) .

On the other hand, we know from (12) that

B [w, uk+1] = λ1
R ⟨w, uk+1⟩L2(Ω) .

Therefore, by symmetry of the bilinear form B,

λ1
R ⟨uk+1, w⟩L2(Ω) = R(uk) ⟨uk, w⟩L2(Ω) . (22)

Let αk := ⟨uk, w⟩L2(Ω). Since uk is strictly positive on Ω for all k ∈ N and w is nonnegative

and not identically 0, αk > 0 for all k ∈ N. Since R(uk) ≥ λ1
R, we see that {αk}∞k=1 is a

non-decreasing sequence of positive real numbers. By the Cauchy-Schwarz inequality and
(21), we also know that

αk ≤ ∥uk+1∥L2(Ω) ≤
R(u0)

λ1
R

∥u0∥L2(Ω) .

Consequently, α := lim
k→∞

αk exists and is strictly positive. Taking the limit as k → ∞ in

(22), we conclude that lim
k→∞

R(uk) = λ1
R. □

2.3 Convergence of the Iteration

All that is left to prove in Theorem 1.1 is the convergence of {uk}∞k=0 to a principal
eigenfunction. For readability, we break the remainder of the proof of Theorem 1.1 into
three parts:

1. First we will show that there exists a subsequence of {uk}∞k=1 that converges strongly
in L2(Ω) and weakly in H1(Ω) to a principal eigenfunction u∞.

2. Next we will show that any two subsequences that converge strongly in L2(Ω) and
weakly in H1(Ω) will converge to the same eigenfunction.

3. Finally, we will prove that the whole sequence converges to a principal eigenfunction
strongly in H1(Ω).

Part 1: By Proposition 2.3, the sequence {uk}∞k=1 is uniformly bounded in H1(Ω). Hence,
by the Rellich-Kondrachov compactness theorem, we may assume there exists a subse-
quence {uk(j)}∞j=1 such that uk(j) converges weakly in H1(Ω) and strongly in L2(Ω) to a
non-negative function u∞ ∈ H1(Ω).

We may also choose the subsequence so that {uk(j)+1}∞j=1 converges weakly in H1(Ω)
and strongly in L2(Ω) to some non-negative function w∞ ∈ H1(Ω) (possibly different from
u∞). Also note that both u∞ and w∞ are not identically zero by (18).
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Observe that, by (16), we have

R(uk(j+1))
∥∥uk(j+1)

∥∥
L2(Ω)

≤ R(uk(j)+1)
∥∥uk(j)+1

∥∥
L2(Ω)

≤ R(uk(j))
∥∥uk(j)

∥∥
L2(Ω)

for all j ≥ 0.

Since lim
k→∞

R(uk) = λ1
R, we can take j → ∞ and obtain

∥w∞∥L2(Ω) = ∥u∞∥L2(Ω) . (23)

From the weak formulation (15), we have

B
[
uk(j)+1, φ

]
= R(uk(j))

〈
uk(j), φ

〉
L2(Ω)

∀φ ∈ H1(Ω). (24)

By Remark 2.1, we may take the limit as j → ∞ in the weak formulation (24) using the
weak convergence in H1(Ω) to obtain

B [w∞, φ] = λ1
R ⟨u∞, φ⟩L2(Ω) ∀φ ∈ H1(Ω). (25)

Choosing φ = w∞ in (25) and using the Cauchy-Schwarz inequality and (23), we find that

λ1
R ∥w∞∥2L2(Ω) ≤ R(w∞) ∥w∞∥2L2(Ω)

= ∥w∞∥2B
= λ1

R ⟨u∞, w∞⟩L2(Ω)

≤ λ1
R ∥u∞∥L2(Ω) ∥w∞∥L2(Ω)

= λ1
R ∥w∞∥2L2(Ω) .

Consequently, we must have equality in the Cauchy-Schwarz inequality, and so u∞ =
cw∞ for some constant c > 0 (recall that both u∞ and w∞ are non-negative). Since
∥w∞∥L2(Ω) = ∥u∞∥L2(Ω), we conclude that c = 1 and u∞ = w∞. Therefore, by (25), u∞ is
a weak solution of the eigenvalue problem{

−∆u∞ = λ1
Ru∞ in Ω,

u∞ + h∂νu∞ = 0 on ∂Ω.

Part 2: We now want to show that any two subsequences of {uk}∞k=1 that converge strongly
in L2(Ω) and weakly in H1(Ω) converge to the same limit u∞ obtained in the previous
part.

Suppose {uk1(j)}∞j=1 and {uk2(j)}∞j=1 are two subsequences converging strongly in L2(Ω)
and weakly in H1(Ω) to u1,∞ and u2,∞, respectively. Note that Proposition 2.4 implies
R(u1,∞) = R(u2,∞) = λ1

R. Arguments as in Part 1 may be used to show that both u1,∞
and u2,∞ are non-negative principal eigenfunctions.
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We claim u1,∞ = u2,∞. To do this, we construct two new subsequences {uj1(ℓ)}∞ℓ=1 ⊂
{uk1(j)}∞j=1 and {uj2(ℓ)}∞ℓ=1 ⊂ {uk2(j)}∞j=1 by setting j1(1) = k1(1), then inductively choosing

j2(ℓ) = min
n≥1

{k2(n) : k2(n) > j1(ℓ)}, ℓ ≥ 1,

j1(ℓ) = min
n≥1

{k1(n) : k1(n) > j2(ℓ− 1)}, ℓ ≥ 2.

Clearly {uj1(ℓ)}∞ℓ=1 and {uj2(ℓ)}∞ℓ=1 converge strongly in L2(Ω) and weakly in H1(Ω) to the
original limits u1,∞ and u2,∞ respectively, while j1(ℓ) < j2(ℓ) and j2(ℓ) < j1(ℓ+ 1) for all
ℓ. Thus, by repeated application of the monotonicity relation (16), we find

R(uj2(ℓ))
∥∥uj2(ℓ)

∥∥
L2(Ω)

≤ R(uj1(ℓ))
∥∥uj1(ℓ)

∥∥
L2(Ω)

R(uj1(ℓ+1))
∥∥uj1(ℓ+1)

∥∥
L2(Ω)

≤ R(uj2(ℓ))
∥∥uj2(ℓ)

∥∥
L2(Ω)

.

Taking ℓ → ∞ in both inequalities above and then dividing by λ1 yields ∥u1,∞∥L2(Ω) =

∥u2,∞∥L2(Ω). Since both u1,∞ and u2,∞ are first eigenfunctions, they must be multiples of
each other; this shows they are equal because they are both nonnegative.
Part 3: Note that Part 1 and Part 2 show that every subsequence that converges strongly
in L2(Ω) and weakly in H1(Ω) converges to the same principal eigenfunction u∞ obtained
in Part 1. By the Rellich-Kondrachov compactness theorem, this implies the full sequence
{uk}∞k=1 converges to the principal eigenfunction u∞ strongly in L2(Ω) and weakly in
H1(Ω).

We will complete the proof of Theorem 1.1 by showing that this convergence is in fact
strong in H1(Ω). If we subtract the weak formulations (12) and (15) for the eigenvalue
problem and the iteration, we obtain

B [uk+1 − u∞, φ] = R(uk) ⟨uk, φ⟩L2(Ω) − λ1 ⟨u∞, φ⟩L2(Ω) .

Let φ = uk+1 − u∞. Since uk+1 → u∞ in L2(Ω), taking the limit as k → ∞ yields

lim
k→∞

∥uk+1 − u∞∥2B = 0.

By the equivalence of ∥·∥B and ∥·∥H1(Ω), uk converges to u∞ strongly in H1(Ω). □

3 Inverse Iteration for the Mixed Eigenvalue Problem

3.1 Background

Again, by adapting the techniques in [7, Section 6.5, Theorems 1-2] and [12, Theorems
7.41.5-7.41.6], we have the following:

1. The eigenvalues in (5) are discrete, positive, and diverge to infinity.

2. The principal eigenvalue admits the variational characterization

λ1
M = min

v∈C
R(v),

where the Rayleigh quotient R(v) is as in (2) and C is as in (6).
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3. The principal eigenfunction has a sign on Ω.

4. The principal eigenvalue λ1
M is simple.

We say that u ∈ C is a weak solution of (5) with λ = λ1
M if it satisfies∫

Ω

∇u · ∇φdx = λ1
M

∫
Ω

uφ dx ∀φ ∈ C. (26)

We will first show that C is closed under weak convergence.

Lemma 3.1 If {uk}∞k=1 ⊆ C converges weakly to u ∈ H1(Ω), then u ∈ C.

Proof. Let {uk}∞k=1 ⊆ C be such that uk converges weakly to u ∈ H1(Ω). For fixed
φ ∈ L2(ΓD), we let Lφ be the linear functional on H1(Ω) defined as

Lφ(v) :=

∫
ΓD

vφ dσ.

Note that Lφ is bounded for all φ ∈ L2(ΓD) since

|Lφ(v)| =
∣∣∣∣∫

ΓD

vφdσ

∣∣∣∣
≤ ∥v∥L2(ΓD) ∥φ∥L2(ΓD)

≤ ∥v∥L2(∂Ω) ∥φ∥L2(ΓD)

≤ C ∥v∥H1(Ω) ∥φ∥L2(ΓD) ,

where the last inequality follows from the trace theorem [7, Section 5.5]. Therefore

lim
k→∞

Lφ(uk) = Lφ(u).

But Lφ(uk) = 0 for all k ∈ N because uk ∈ C. Thus, Lφ(u) = 0. Since this holds for all
φ ∈ L2(ΓD) we must have u = 0 almost everywhere on ΓD, i.e. u ∈ C. □

The iteration (8) in Theorem 1.2, relies on the solvability of the Poisson problem with
mixed boundary conditions 

−∆v = f in Ω,

v = 0 on ΓD,

∂νv = 0 on ΓN .

(27)

By [12, Theorem 6.20.5], if f ∈ C1(Ω) ∩ L∞(Ω) and Ω is bounded and smooth then (27)
has a unique classical solution v ∈ C2(Ω)∩C1(Ω). Then by the strong maximum principle,
either v attains an infimum of 0 on ΓD or it attains its infimum at some x0 ∈ ΓN . In the
second case, ∂νv(x0) < 0, which is a contradiction, so the minimum must be attained on
ΓD and so v ≥ 0 in Ω. Applying this observation to the iteration (8), we see that since
u0 is strictly positive on Ω, uk is non-negative in Ω for all k ∈ N.
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3.2 Basic Properties of the Sequence uk

Before we can prove Theorem 1.2 we will need some useful properties of the iterates
{uk}∞k=0 generated by (8). When proving these properties, we will refer to the weak
formulation of (8), which is∫

Ω

∇uk+1 · ∇φdx = R(uk)

∫
Ω

uφ dx ∀φ ∈ C. (28)

Proposition 3.2 For each of the iterates uk generated by (8), we have

R(uk+1) ∥uk+1∥L2(Ω) ≤ R(uk) ∥uk∥L2(Ω) , (29)

∥∇uk+1∥L2(Ω) ≥ ∥∇uk∥L2(Ω) , (30)

∥uk+1∥L2(Ω) ≥ ∥uk∥L2(Ω) , (31)

R(uk+1) ≤ R(uk). (32)

The proofs below are very similar to those in Section 2.2, but the bilinear form in the
weak formulation (28) is not an inner product, so we have elected to provide the necessary
details.
Proof. [of (29)] Fix k ≥ 0. Using uk+1 as a test function in (28) yields∫

Ω

|∇uk+1|2 dx = R(uk)

∫
Ω

ukuk+1 dx.

Applying the Cauchy-Schwarz inequality to the right-hand-side gives us∫
Ω

|∇uk+1|2 dx ≤ R(uk) ∥uk∥L2(Ω) ∥uk+1∥L2(Ω) .

Using the definition of R(uk+1), we conclude that

R(uk+1) ∥uk+1∥L2(Ω) ≤ R(uk) ∥uk∥L2(Ω) .

□
Proof. [of (30)] Fix k ≥ 0. Using uk as a test function in (28) yields∫

Ω

∇uk+1 · ∇uk dx = R(uk) ∥uk∥2L2(Ω) .

Applying the Cauchy-Schwarz inequality to the left-hand-side yields

∥∇uk∥L2(Ω) ∥∇uk+1∥L2(Ω) ≥ R(uk) ∥uk∥2L2(Ω) = ∥∇uk∥2L2(Ω) .

Consequently,
∥∇uk∥L2(Ω) ≤ ∥∇uk+1∥L2(Ω) .

□
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Proof. [of (31)] We first observe that by (29) and the definition of the Rayleigh quotient,
we have

∥∇uk+1∥2L2(Ω)

∥uk+1∥L2(Ω)

≤
∥∇uk∥2L2(Ω)

∥uk∥L2(Ω)

for all k ≥ 0. (33)

We may note here that uk ̸≡ 0 as long as u0 ̸≡ 0 as we have shown that {∥∇uk∥2L2(Ω)}∞k=1

is an increasing sequence. Now apply (30) to (33) to get (31). □
Proof. [of (32)] This follows from (31) and (29). □

Using the monotonicity properties above, we can derive an H1 bound on the sequence
of iterates.

Proposition 3.3 The sequence {uk}∞k=1 is uniformly bounded in H1(Ω).

Proof. Using the monotonicity properties established in Proposition 3.2, an identical
argument to the proof of Proposition 2.3 shows that

∥uk+1∥L2(Ω) ≤
R(u0)

λ1
M

∥u0∥L2(Ω) , (34)

and

∥∇uk+1∥2L2(Ω) ≤
R(u0)

3

(λ1
M)2

∥u0∥2L2(Ω) .

□
By (32), we see that ρ := lim

k→∞
R(uk) exists and ρ ≥ λ1

M . It is natural to ask if ρ = λ1
M ;

we show this to be true and the proof is quite similar to that of Proposition 2.4 in Section
2.2.

Proposition 3.4
lim
k→∞

R(uk) = λ1
M .

Proof. Let w ∈ C be the non-negative solution of
−∆w = λ1

Mw in Ω,

w = 0 on ΓD,

∂νw = 0 on ΓN ,

∥w∥L2(Ω) = 1.

In particular, w is strictly positive in Ω in accordance with the spectral theory outlined
in Section 3.1. Using w as a test function in (28) yields∫

Ω

∇w · ∇uk+1 dx = R(uk) ⟨uk, w⟩L2(Ω) .
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On the other hand, we know from the weak formulation (26) for w that∫
Ω

∇w · ∇uk+1 dx = λ1
M ⟨w, uk+1⟩L2(Ω) .

Therefore,
λ1
M ⟨uk+1, w⟩L2(Ω) = R(uk) ⟨uk, w⟩L2(Ω) . (35)

Let αk := ⟨uk, w⟩L2(Ω). Since uk and w are both strictly positive on Ω, αk > 0 for all

k. Since R(uk) ≥ λ1
R, we see that {αk}∞k=1 is an non-decreasing sequence of positive real

numbers. By the Cauchy-Schwarz inequality and (34), we also know that

αk ≤ ∥uk+1∥L2(Ω) ≤
R(u0)

λ1
M

∥u0∥L2(Ω) .

Consequently, α := lim
k→∞

αk exists and is strictly positive, so taking the limit as k → ∞
in (35) we conclude that lim

k→∞
R(uk) = λ1

M . □

3.3 Convergence of the Iteration

We break up the remainder of the proof into three parts, as in Section 2.3:

1. First we will show that there exists a subsequence of {uk}∞k=1 that converges strongly
in L2(Ω) and weakly in H1(Ω) to a principal eigenfunction u∞.

2. Next we will show that any two subsequences that converge strongly in L2(Ω) and
weakly in H1(Ω) will converge to the same eigenfunction.

3. Finally, we will prove that the whole sequence converges to a principal eigenfunction
strongly in H1(Ω)

With the properties proven in Section 3.2, the proofs of Parts 1 and 2 follow nearly
identically to that of Theorem 1.1 detailed in Section 2.3. The same test functions are all
valid because C is weakly closed by Lemma 3.1. However, the proof of Part 3 is different
enough that we provide some details below.
Proof. [of Part 3] Let u∞ denote the eigenfunction to which the sequence of iterates
{uk}∞k=1 converges to strongly in L2(Ω) and weakly in H1(Ω). If we subtract the weak
formulations (26) and (28) for the eigenvalue problem and the iteration, we obtain∫

Ω

∇(uk+1 − u∞) · ∇φdx = R(uk)

∫
Ω

ukφdx− λ1
M

∫
Ω

u∞φdx.

Plugging in φ = uk+1 − u∞ ∈ C and taking the limit as k → ∞ on both sides yields

lim
k→∞

∥∇(uk+1 − u∞)∥L2(Ω) = 0.

Since lim
k→∞

∥uk+1 − u∞∥L2(Ω) = 0 by strong L2(Ω) convergence, the desired claim follows.

□
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4 Inverse Iteration for an Eigenvalue Problem in Optimal Insu-
lation

4.1 Background

We now propose and investigate a promising inverse iterative scheme for a problem in
optimal insulation studied by Bucur, Buttazo, and Nitsch in [5]. For additional back-
ground on this optimization problem, we refer to [6] and [8, Section 7.2.3], and to [2] for
numerical results.

Recall the Rayleigh quotient (4) for the Robin eigenvalue problem:

R(v, h) =

∫
Ω
|∇v|2 dx+

∫
∂Ω

h−1v2 dσ∫
Ω
v2 dx

.

The dependency on h will be kept explicit for the purposes of this discussion. Given a
non-negative function h on ∂Ω, denote the principal Robin eigenvalue by λ1

R(h). The
optimization problem studied by [5] is to minimize λ1

R(h) among all h ∈ Hm, where

Hm :=

{
h : ∂Ω → [0,∞) :

∫
∂Ω

h dσ = m

}
is the class of insulation profiles of fixed mass m > 0. Let λm := min

h∈Hm

λ1
R(h). If uh is a

principal eigenfunction for the Robin eigenvalue problem (3), we can write

λm = min
h∈Hm

λ1
R(h)

= min
h∈Hm

R(uh, h)

= min
h∈Hm

min
v∈H1(Ω)

R(v, h)

= min
v∈H1(Ω)

min
h∈Hm

R(v, h).

Now, for any v ∈ H1(Ω) fixed, we have

min
h∈Hm

R(v, h) = min
h∈Hm

∫
Ω
|∇v|2 +

∫
∂Ω

h−1v2 dσ∫
Ω
v2 dx

=

∫
Ω
|∇v|2 +minh∈Hm

{∫
∂Ω

h−1v2 dσ
}∫

Ω
v2 dx

By the Cauchy-Schwarz inequality, we have for any positive h and v ∈ H1(Ω)(∫
∂Ω

h dσ

)(∫
∂Ω

v2

h
dσ

)
≥

(∫
∂Ω

|v| dσ
)2

.

Since h ∈ Hm, we have (∫
∂Ω

v2

h
dσ

)
≥ 1

m

(∫
∂Ω

|v| dσ
)2

. (36)
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Equality in (36) is achieved only when we have equality in the Cauchy-Schwarz inequality.
This means

∫
∂Ω

h−1v2 dσ achieves a minimum over h ∈ Hm if and only if

h =
m|v|∫

∂Ω
|v| dσ

.

Substituting this expression for h into the Rayleigh quotient R(v, h), we find that

λm = min
v∈H1(Ω)

Rm(v),

where

Rm(v) :=

∫
Ω
|∇v|2 + 1

m

(∫
∂Ω

|v| dσ
)2∫

Ω
v2 dx

.

By [5, Section 3], the existence of minimizers of Rm(v) follows via the direct method in
calculus of variations. Additionally, if û is a minimizer of Rm(v), then λm = min

h∈Hm

λ1
R(h)

is attained by the insulation profile

ĥ :=
m|û|∫

∂Ω
|û| dσ

.

Finally, by [5, Remark 2.5], any minimizer of Rm(v) solves the nonlocal eigenvalue problem{
−∆u = λmu in Ω,

0 ∈ m∂νu+H(u)
∫
∂Ω

|u| dσ on ∂Ω

where H(t) is the multi-valued mapping

H(t) ∈


{1} if t > 0,

{−1} if t < 0,

[−1, 1] if t = 0.

4.2 Inverse Iteration

We wish to develop an iterative approach to finding a minimizer û of Rm(·). Initialize the
iteration by choosing u0 ∈ C1(Ω) ∩ L∞(Ω) strictly positive on Ω and let

h0 :=
m|u0|∫

∂Ω
|u0| dσ

.

We now consider the following iteration:{
−∆uk+1 = Rm(uk)uk in Ω,

uk+1 + hk∂νuk+1 = 0 on ∂Ω.
hk+1 :=

m|uk+1|∫
∂Ω

|uk+1| dσ
(37)
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Because u0 is strictly positive, h0 is strictly positive. Therefore, by the regularity theory
for the Robin Poisson Problem (14), there exists a unique u1 ∈ C2(Ω) ∩ C1(Ω), strictly
positive on Ω, satisfying (37). Then h1 is also strictly positive. We can repeat this
argument to deduce that (37) is well-defined and that uk and hk are always strictly
positive.

Similar to (7) and (8), the iterates of (37) also satisfy several monotonicity proper-
ties, whose proofs we will provide below. Before doing so, we note that the following
consequence of the Cauchy-Schwarz inequality: for all v ∈ H1(Ω) and h ∈ Hm, we must
have

Rm(v) ≤ R(v, h) with equality if and only if h =
m|v|∫

∂Ω
|v| dσ

.

In particular, we have
Rm(uk) = R(uk, hk).

We will use the weak form of (37):∫
Ω

∇uk+1 · ∇φdx+

∫
∂Ω

uk+1φ

hk

dσ = Rm(uk)

∫
Ω

ukφdx ∀φ ∈ H1(Ω). (38)

We can restate this in terms of the bilinear forms

Bk[v, φ] :=

∫
Ω

∇v · ∇φ dx+

∫
∂Ω

vφ

hk

dσ

so that (38) is equivalent to

Bk[uk+1, φ] = Rm(uk) ⟨uk, φ⟩L2(Ω) ∀φ ∈ H1(Ω).

Proposition 4.1 Along a sequence of iterates generated by (37), we have the following
properties for all k ≥ 0:

Rm(uk+1) ∥uk+1∥L2(Ω) ≤ Rm(uk) ∥uk∥L2(Ω) , (39)

∥uk∥L2(Ω) ≤ ∥uk+1∥L2(Ω) , (40)

Rm(uk+1) ≤ Rm(uk). (41)

Proof. [of (39)] We use φ = uk+1 as a test function in (38) to obtain

Bk[uk+1, uk+1] = Rm(uk) ⟨uk, uk+1⟩L2(Ω)

≤ Rm(uk) ∥uk∥L2(Ω) ∥uk+1∥L2(Ω) .

Since Bk[uk+1, uk+1] = R(uk+1, hk) ∥uk+1∥2L2(Ω), dividing both sides through by ∥uk+1∥L2(Ω)

yields

R(uk+1, hk) ∥uk+1∥L2(Ω) ≤ Rm(uk) ∥uk∥L2(Ω) .

Then, the desired result is a consequence of the fact that Rm(uk+1) ≤ R(uk+1, hk). □

the pump journal of undergraduate research 8 (2025), 173–194 191



Proof. [of (40)] Using φ = uk as a test function in (38), we obtain

Bk[uk+1, uk] = Rm(uk) ∥uk∥2L2(Ω)

= R(uk, hk) ∥uk∥2L2(Ω)

= Bk[uk, uk].

Note that, since hk is strictly positive on ∂Ω, Bk[·, ·] defines an inner product on H1(Ω),
so by the Cauchy-Schwarz inequality

Bk[uk, uk] = Bk[uk+1, uk] ≤ (Bk[uk, uk])
1/2(Bk[uk+1, uk+1])

1/2.

Due to the positivity of the iterates uk, we may divide both sides by Bk[uk, uk] then square
both sides to obtain

Bk[uk, uk] ≤ Bk[uk+1, uk+1].

It is then immediate by our weak formulations that

R(uk, hk) ∥uk∥2L2(Ω) ≤ R(uk+1, hk) ∥uk+1∥2L2(Ω) .

Now, after applying (39), we have

R(uk+1, hk) ∥uk+1∥2L2(Ω) ≤ R(uk, hk) ∥uk∥L2(Ω) ∥uk+1∥L2(Ω) .

Therefore, ∥uk∥L2(Ω) ≤ ∥uk+1∥L2(Ω). □
Proof. [of (41)] This follows from (39) and (40). □

Proposition 4.2 The sequence {uk}∞k=1 is uniformly bounded in H1(Ω).

Proof. By (39) and the fact that λm ≤ Rm(v) for all v ∈ H1(Ω), we have

∥uk+1∥L2(Ω) ≤
Rm(u0)

λm

∥u0∥L2(Ω) . (42)

By (41), we have for each k ≥ 1

∥∇uk∥2L2(Ω) ≤ Rm(uk) ∥uk∥2L2(Ω) ≤ Rm(u0) ∥uk∥2L2(Ω) .

Then, by (42)

∥∇uk∥2L2(Ω) ≤
Rm(u0)

3

λ2
m

∥u0∥2L2(Ω) .

□
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4.3 Remarks on the Convergence of the Iteration

The properties developed in the previous subsection suggest that the arguments in Section
2.3 can be adapted to show that the iterates generated by (37) converge to a minimizer
of Rm. Unfortunately, our attempts to prove such a convergence result were unsuccessful,
primarily due to the fact that the boundary conditions change at each step of the iteration
because of the update to hk in (37). A more subtle issue is the fact that minimizers of
Rm may not be unique. Indeed, a major result of [5] is the following symmetry-breaking
phenomenon: if Ω is the unit ball, there exists m0 > 0 such that for m > m0, the
minimizer of Rm is unique and radial, while for m < m0, any minimizer of Rm must be
non-radial. Consequently, the optimal insulating layer is uniform if m > m0 and non-
uniform if m < m0. The intuitive explanation for this phenomenon, as outlined in [5,
Remark 3.2], is that it is better to distribute the insulation in a non-uniform manner if
the total amount of insulation is small.

We conjecture that a judicious choice of initial function u0 will guarantee convergence
of the iterative scheme (37), at least when Rm has a unique minimizer. For instance, if u0

is a radial function, then the iterates uk must also be radial, and so cannot converge to a
minimizer of Rm when m < m0. Numerical examples with different choices of u0 might
be helpful in identifying the properties necessary to guarantee convergence of (37), and
this is the subject of ongoing investigation.
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