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Abstract - With recent advances in the field of nanotechnology, there has been increasing
interest in self-assembling nanostructures. These are constructed through the process of
branched junction DNAmolecules bonding with each other without external guidance. Using
a flexible tile-based model, we represent molecules as vertices of a graph and cohesive ends
of DNA strands as complementary half-edges. Due to the unpredictability of DNA self-
assembly in a laboratory setting, there is a risk that undesirable products are incidentally
constructed. Predicting what structures can be produced from a given list of components
(referred to as a “pot of tiles”) is useful but has been proven NP-hard. This research
introduces an algorithm that generates and visualizes a graph realized by a given pot. For
smaller cases, it also produces all possible graphs up to isomorphism. By adjusting the
construction parameters, the algorithm can produce graphs of any viable order with a given
collection of tile type multiplicities.
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1 Introduction

With recent advances in drug delivery, biosensors, and biomolecular computing, there
has been increasing interest in self-assembling nanostructures, particularly with DNA
molecules [1, 2, 3]. In the late 20th century, most of these DNA nanostructures were
created in laboratories with external guidance in a process called directed self-assembly
[4]. However, this took significant amounts of time and resources and limited the size and
quality of the desired nanostructures [5].

With the discovery of DNA self-assembly, these nanoparticles could be constructed
through a process of branched DNA molecules spontaneously bonding with each other
without external guidance. This allowed for the much-needed smaller and more complex
molecules to be created, but there is still a possibility of error. With this development
came the computational problem of generating and modeling these structures to predict
the nanostructures that could be developed in a laboratory setting. Today, we effectively
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model these self-assembled structures using a flexible tile-based model. This is described
in [1] as a model that uses flexible DNA molecules, called DNA tiles, so that the tiles can
bend or deform during the self-assembly process (see Figure 1). Because of the unique and
moldable properties of this model, we can construct complex 2D and 3D nanostructures
with DNA.

A DNA cube
nanostructure.[6]

A DNA cube represented by
the flexible tile-based model.

A DNA cube represented as
an unlabeled graph.

Figure 1: Various visual representations of a DNA cube
nanostructure built with branched junction molecules.

Given components of a nanostructure, we can therefore use the flexible tile-based
mathematical model to predict various structures that may result when the self-assembly
process occurs. However, determining with accuracy all the possible resulting structures
from a particular set of components is a time-consuming process, especially when only
valid graph-theoretical structures are considered, where each edge links two distinct ver-
tices. With a more extensive set of components, the time needed to solve this structure
generation problem increases rapidly. In particular, this task is an NP-hard problem as
proven in [7]. Therefore, the goal of this work is to automate this process of producing
valid graphs from a given list of components.

2 Background

First, we review background on the notation and definitions of common graph theory, as
well as algorithmic processes [1, 7, 8] that are used in this research.

2.1 Mathematically Modeling DNA Self-Assembly

In modeling self-assembled DNA nanostructures, as described before, we use a flexible
tile-based graph-theoretical model, which represents k-armed, branched-junction DNA
molecules as vertices of a graph based on research in [9]. However, for the rest of this paper,
we will refer to the branches as half-edges. These half-edges are labeled with unhatted (ex:
a) or hatted letters (ex: â), which represent the unbonded strands of the DNA molecules.
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In DNA self-assembly, unbonded strands can only bond with a complementary end to
form a complete DNA duplex, which we label with the same letter. So, for example, a
half-edge labeled a can only bond with a half-edge labeled with â, in other words, the
hatted letter represents the complement of the unhatted letter. Cohesive end types is the
term used for these half-edges that can only bond with their complementary cohesive end.
Each pair of complementary cohesive end types (a with â, b with b̂, etc.) is referred to as
a bond-edge type. These pairs bond with each other to connect the vertices and form an
edge in the graph-theoretical model (Figure 2). Note that these edges are assumed to be
flexible, not rigid.

Figure 2: Complementary half-edges. [7]

Definition 2.1 We define a tile as a vertex with labeled half-edges. A tile type is a
multiset of cohesive end types. Tiles are labeled according to type, as t1, t2, t3, etc.

Definition 2.2 The number of half-edges stemming from a particular tile is referred to
as that tile’s degree.

Definition 2.3 We define a pot as a set of tile types, denoted by P = {t1, t2, ..., tn}
(Figure 3). We use the notation of Σ(P ) to refer to the set of symbols from which we
draw the hatted and unhatted letters. We describe the contents of a pot with #Σ(P )
denoting the number of different bond-edge types in the pot, and #P denoting the number
of distinct tile types in the pot, also known as the size of the pot.

A pot P realizes a graph G if some number of tiles of the tile types contained within
it can bond with each other such that every vertex in G can be labeled with a tile type in
P . Note that tile types can be used multiple times to construct a graph. If every half-edge
of every tile bonds with another, that is, if every a in the graph can bond to an â and so
on, then G is considered a complete complex. We label the edges of a complete complex
with a bond-edge type, with the direction of the arrow pointing from an unhatted cohesive
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Figure 3: A pot of size 4: P = {{x, b, a}, {x̂, b̂, â}, {x, b̂, a}, {x̂, b, â}}
[7].

Figure 4: An example of a loop.
Figure 5: An example of a
multi-edge.

end type to a hatted cohesive end type. We will only be considering complete complexes
for the purposes of our research. The number of vertices in a realized graph G is defined
as the order of G.

Definition 2.4 If a vertex shares an edge with itself, we refer to that edge as a loop.

Definition 2.5 If a vertex shares more than one edge with a separate vertex, we refer to
those edges as multi-edges.

2.1.1 Laboratory Constraints: Scenarios 1, 2, and 3

In a laboratory setting, DNA self-assembly is largely an undirected process once it is
initiated, and so there is a risk of unintended outcomes. Unbonded strands of DNA
molecules have the potential to bond with any other proximal, complementary unbonded
strands, whether they be from a new separate molecule, a molecule that has already
been bonded with, or the same molecule if it contains both an unbonded strand and its
complement [8]. As cohesive ends will only bond with their complement, it is possible for
there to be a remaining half-edge that cannot find its corresponding complement. In other
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Figure 6: Acceptable graphs under Scenario 1 realized by pot P = {{a4}, {â}, {â2}} =
{t1, t2, t3}. Throughout this paper, arrows in figures point in the direction of unhatted
towards hatted characters.
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Figure 7: Acceptable graphs under Scenario 2 realized by pot P =
{{a, â2}, {a3, b}, {b̂, c}, {ĉ, d}, {d̂, a}, {â}} = {t1, t2, t3, t4, t5, t6}. Throughout this
paper, different colored arrows in figures represent different bond-edge types.

words, if caution is not exercised, the self-assembly process can result in the formation of
smaller complexes than desired [8].

Considering this issue, when aiming to construct a target nanostructure with rep-
resentative graph G of order O, there are three scenarios with various conditions and
restrictions that may be considered, as described in [1]:

• Scenario 1. The incidental construction of a complex of order less than or equal to
O is acceptable.

• Scenario 2. The incidental construction of a complex of greater order than O is
acceptable, and the incidental construction of complexes of order O that are not
isomorphic to G is acceptable.

• Scenario 3. The incidental construction of a complex is acceptable if and only if it
satisfies either of these conditions:

– The order of the complex is greater than O.

– The order of the complex is O and the representative graph is isomorphic to
G.
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Figure 8: Acceptable graphs under Scenario 3 realized by the pot P =
{{a, b, c, d}, {â4}, {ĉ4}, {â, b̂2, c}, {a, â, c, d̂}} = {t1, t2, t3, t4, t5}.

Generally, complexes of a larger order thanO are always allowed regardless of scenario
because larger-than-minimal complexes appear infrequently [1].

Definition 2.6 The minimum number of tile types necessary to realize a target graph G
under Scenario i is denoted Ti(G) (see 2.1.1).

Definition 2.7 The minimum number of bond-edge types necessary to realize a target
graph G under Scenario i is denoted Bi(G) (see 2.1.1).

Considering these various scenarios, and their respective effects on Bi(G) and Ti(G),
allows researchers to model DNA self-assembly depending on the desired laboratory re-
sults. More restrictive scenarios typically require more resources and precision in the lab,
but offer greater accuracy and dependability. On the other hand, less restrictive scenarios
often result in the construction of more unwanted DNA complexes incidentally, but are
more accessible and less time-consuming to create [1]. This is evident in the results for
the three scenarios in various graph families, such as book graphs [10], wheel graphs [11],
and lollipop graphs [12].

The algorithm 3.1 can be used for any of the three scenarios. For Scenario 1, it can
be used simply to show that a graph can indeed be realized by an inputted pot. For
Scenarios 2 and 3, since the output of the algorithm shows all graphs that can be realized
by the inputted pot, it can be tested whether the pot satisfies the scenario with respect
to the target graph; this isomorphism problem is discussed further in Section 3.3.

2.2 Construction Matrices for Graphical Models

The following definition is from [1].

Definition 2.8 Let P = {t1, t2, t3, ..., tn} be a pot. Let zi,j = u−v where u is the number
of unhatted half-edges of type αi on tile type tj and v is the number of hatted half-edges
of type α̂i on tile type tj. Let m be the number of distinct bond-edge types in G, and let
ri be the proportion of tiles of type ti used in constructing G.
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Then for a complete complex, since each half-edge must be paired with its comple-
ment, we have the following system of equations:

z1,1r1 + z1,2r2 + ...+ z1,nrn = 0

...

zm,1r1 + zm,2r2 + ...+ zm,nrn = 0

r1 + r2 + ...+ rn = 1

These equations can be represented as an augmented construction matrix, where each
column corresponds to a tile tj and each row corresponds to the bond-edge type αi on
each tile:

M(P ) =

t1 t2 ... tn


z1,1 z1,2 ... z1,n 0 αi
...

...
. . .

...
...

...
zm,1 zm,2 ... zm,n 0 αm

1 1 ... 1 1

(1)

Construction matrices, when in row-reduced echelon form, can be used to determine
the minimum possible order of a graph realized by a given pot by finding the least common
denominator of the values in the solution vector. The proportion of each tile type in the
pot used to realize a graph is given by the respective components in the solution vector,
with the first corresponding to t1, the second t2, and so on [7]. Finding these values
is useful for determining the proportions of each tile type that are necessary to realize
a graph, and to check whether graphs of smaller orders than a target order could be
incidentally created from a particular pot.

Definition 2.9 Given a solution to this system of equations, we can deduce a viable tile
type multiplicity for a pot, defined as a list of non-negative integers that determines the
number of tiles to use of each tile type. If the tile type multiplicity we use is viable, we
can construct a complete complex using the corresponding multiset of tiles.

We can find viable tile type multiplicities by multiplying a solution vector by a mul-
tiple of the least common denominator. When multiplying by exactly the least common
denominator, the resulting list of integers is setwise coprime, and gives us a tile type
multiplicity to construct a graph of minimal order for the given tile proportion.

If row reducing a construction matrix results in one or more free variables, it indicates
that multiple proportions of tile types in the corresponding pot can form a complete
complex [7]. Determining the minimum possible order and the proportions that are viable
requires a particular process, which we describe in Section 3.2.1.
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2.3 Graph Generation

Two algorithms, each introduced by Andrew Lavengood-Ryan [13], offer an approach to
the problem of generating a complete complex given a pot of the form {{am}, {a}, {ân}}.
These begin with either a path or a cycle consisting of a chain of tiles of type {am} and {ân}
connected by a series of single bonds, leaving the other half-edges on each tile unbonded.
The next steps systematically attach more bonds of these tiles to each other, as well as
adding more tiles to the structure when necessary. By implementing this algorithm in
Sage using a method similar to that in Lavengood-Ryan’s earlier work [14], we gain insight
into the process of algorithmically connecting tiles and visually representing the result.
However, a limitation of Lavengood-Ryan’s algorithms is that they can only generate
graphs for pots with one bond-edge type. The algorithm 3.1 extends this prior work to
allow for pots with more than one bond-edge type.

3 Results

3.1 Algorithm Overview

We provide an algorithm, illustrated in Figure 9, that takes a pot as input and outputs
all possible non-isomorphic graphs that can be realized by that pot.

Algorithm:
In particular, the algorithm 3.1 takes the following user-specified parameters:

• A pot in the form of a string (for example, {{a, b̂}, {a, b}, {â2, b̂}, {â2, b}} would be
written as ‘a,−b; a, b;−a2,−b;−a2, b’) with hatted letters preceded by a negative,
and exponents (if applicable) listed after each letter that is being exponentiated,
except for letters having an exponent of 1.

• A desired order for a target graph, which can be preceded with a negative to indicate
the production of graphs of only that order (or the next smallest if the entered order
is not applicable), or 0 if the user wants the program to first calculate the minimum
possible order and then generate all graphs of that order.

• A number of parameters that may affect graph generation. Each parameter can be
specified independently, allowing for any combination of settings:

– avoid_loops

∗ Prioritizes generating graphs without loops

– avoid_multiple_edges

∗ Prioritizes generating graphs without multiple edges

– ordering_to_use

∗ Specifies the tile type ordering to use (as in Section 3.2.2)

– order
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∗ Forces the algorithm to only display graphs of a particular, inputted order
(as a negative value)

– choose_tile_ratios

∗ Allows the user to choose certain viable tile type multiplicities used in the
graph generation and only generates graphs that adhere to those propor-
tions

With these specified inputs and parameters, the algorithm first analyzes the pot
(Section 3.2) to find the orders of possible graphs that can be generated and find all
possible tile type multiplicities that can be used to generate a graph of the corresponding
order (Section 3.2.1). Then, the algorithm uses a strategy of ordering and connecting tiles
(Section 3.2.2), together with the management of multi-edges and loops (Section 3.2.3),
to construct a graph. Finally, from the constructed graph, the algorithm generates vari-
ous arrangements of the edges of the graph, identifying the non-isomorphic graphs using
canonical labeling (Section 3.3). With some visualization techniques (Section 3.4), the al-
gorithm finally returns all non-isomorphic graphs that can be generated from the inputted
pot. In the following sections, we provide more details and an in-depth explanation of
this process.

Figure 9: Flow chart overview of the algorthim
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3.2 Analyzing the Pot

When given a pot, the algorithm is given the task of reading the pot and converting it
into data that can be used to generate the graphs. The algorithm does this by converting
the pot into a numerical representation called a pot matrix. This step is important for
generating the viable tile type multiplicities.

Definition 3.1 A pot matrix is similar to a construction matrix, with some notable
differences: To construct a pot matrix for a pot P = {t1, t2, t3, ..., tn}, let zi,j = ui,j − vi,j
where ui,j is the number of unhatted half-edges of type αi on tile tj and vi,j is the number
of hatted half-edges of type αi on tile tj. Let m be the number of distinct bond-edge
types in P .

Then we have the following system of expressions:

z1,1r1 + z1,2r2 + ...+ z1,prp

...

zm,1r1 + zm,2r2 + ...+ zm,prp

These expressions can be represented as a pot matrix, where the typical values in the
construction matrix are used, but without the last row of 1’s and the last column of 0’s:

t1 t2 ... tn z1,1 z1,2 ... z1,n ai
...

...
. . .

...
...

zm,1 zm,2 ... zm,n am

(2)

The inputted pot is also translated into a quantitative format known as a vector pot,
which is a list of lists encoding the tile types in the pot.

Definition 3.2 A vector pot is a quantitative representation of a pot used for graph
construction and visualization. It is a 2D array that provides the number of each hatted
and unhatted letter for each tile type, making the dimensions of the vector pot 2(#Σ(P ))×
#P , where #Σ(P ) is the number of bond-edge types and #P is the number of tile types
in the pot. To construct a vector pot, let P = {t1, t2, t3, ..., tn} be a pot and let each
vector correspond to each tile type. The numbers in each vector in the vector pot are
ordered by a, â, b, b̂, etc and quantitatively represent how many half-edges of each cohesive
end type there are in a tile type.
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Example 3.3 Given the pot P = {{a, â2}, {a3, b}, {b̂, c}, {ĉ, d}, {a, d̂}, {â}}, a pot which
realizes an order 8 lollipop graph, the vector pot would be:

[1, 2, 0, 0, 0, 0, 0, 0],

[3, 0, 1, 0, 0, 0, 0, 0],

[0, 0, 0, 1, 1, 0, 0, 0],

[0, 0, 0, 0, 0, 1, 1, 0],

[1, 0, 0, 0, 0, 0, 0, 1],

[0, 1, 0, 0, 0, 0, 0, 0]

This format of the pot allows the program to easily read the number of tile types
and the number of each cohesive end type in each tile type. Looking at the first vector,
it has a length of eight, meaning that #Σ(P ) = 8/2 = 4, and we know there is one a and
two â in the first tile type. This format allows for easy access of the attributes of the pot.
We use the vector pot to efficiently store and manage information about the pot in the
algorithm, but it will not be used in any mathematical proofs and will only be referred
to as a vector pot.

After the pot has been analyzed, the algorithm will have all necessary formats and
information to continue to the next part of the algorithm, finding the viable tile type
multiplicities for the pot using the pot matrix.

3.2.1 Finding Proportions

While the problem of determining whether there is a graph of a given order that can be
realized by a given pot is known to be NP-hard, progress has been made by restricting
the problem to the case where the construction matrix has two or fewer free variables
[7]. For this case, the algorithm by Almodóvar et al. [7] uses the construction matrix to
determine if a smaller graph or graph of the same order can be realized by a pot of tiles.
When there are no free variables, the algorithm outputs the least common denominator of
the solution vector, giving the minimum possible order of a realized graph. Any multiple
of the least common denominator is also a viable order. When there are one or two
free variables, the algorithm must explore many possible solutions, which significantly
increases its time complexity [7]. For three or more free variables, the algorithm’s fast-
growing time complexity makes it impractical for use beyond very small examples. An
implementation of this algorithm handling any number of free variables can be found in
[15].

Since the situation where a pot’s construction matrix has three or more free variables
is common, we use SciPy to run an integer linear program to find viable tile type mul-
tiplicities. In this program, the total number of tiles used to generate the graph serves
as the objective function to be minimized, and the construction matrix gives us our con-
straints. This part of our code was in part inspired by similar linear programs used in a
related project [15].
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3.2.2 Ordering Tile Types

After identifying viable tile type multiplicities, we can impose an order onto the tile types
to facilitate generating possible graphs. It is important to explore different orderings
because each unique arrangement of the tile types can lead to the generation of different
graphs. This is valuable for our study, as it allows for the possibility to obtain non-
isomorphic graphs simply from tile type re-ordering.

We define the following three possible orderings.

• degree: puts tile types in decreasing order by degree (Definition 2.2)

• diversity: puts tile types in increasing order based on the number of different co-
hesive end types (e.g. ({a}, {â, b, b̂}) has tile types of diversity 1 then diversity
3)

• lexicographic: orders tile types lexicographically, that is, t1 comes before t2 when t1
has more of the first cohesive end type for which they differ. The order in which to
compare the cohesive end types is given by each letter in the alphabet, followed by
its corresponding hatted letter (e.g. a, â, b, b̂ . . . ).

Note that if there are multiple tile types that have the same degree or diversity, then
the order in which the user inputted the tile types is used as a tiebreaker in the total
order. Each of these possible orderings can be used to generate a valid graph, but there
is no guarantee that two orderings will result in different graphs. Below we provide some
example outputs from a given pot based on the ordering imposed.

Example 3.4 Given a pot P = {t1 = {a3, c}, t2 = {â, b}, t3 = {â, b̂, ê}, t4 = {â, d, e}, t5 =
{â, d̂}, t6 = {a3, ĉ2}, t7 = {a3, c2}, t8 = {a3, ĉ}}, we can see that each ordering, even when
using the same strategy to connect tiles as described in 3.2.3, generates a graph that
appears different, but may or may not be unique up to isomorphism.

1.) Ordering by degree, the list of tile types becomes

({a3, ĉ2}, {a3, c2}, {a3, c}, {a3, ĉ}, {â, b̂, ê}, {â, d, e}, {â, b}, {â, d̂})

This ordering generates the following graph:

t6
t3t3

t3

t7

t1

t4t4

t4

t8

t2t2

t2

t5
t5

t5
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2.) Ordering by diversity, the list of tile types becomes

({a3, c}, {â, b}, {â, d̂}, {a3, ĉ2}, {a3, c2}, {a3, ĉ}, {â, b̂, ê}, {â, d, e})

This ordering generates the following graph:

t1

t2

t2

t2

t6

t3

t3

t3

t5

t4

t5

t4

t5

t4

t7
t8

3.) Ordering lexicographically, the list of tile types becomes

({a3, c2}, {a3, c}, {a3, ĉ2}, {a3, ĉ}, {â, b}, {â, b̂, ê}, {â, d, e}, {â, d̂})

This ordering generates the following graph:

t7t2
t2

t2

t6

t8

t1
t3

t3

t3

t4 t4

t4

t5 t5

t5

3.2.3 Connecting Tiles

Given a tile type ordering, we propose four strategies to connect the tiles. The algorithm
3.1 can use any one of these strategies to connect the tiles.

• avoid multi-edges and loops

• allow multi-edges

• allow loops
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• allow multi-edges and loops

Example 3.5 Given a lexicographically ordered pot P = ({a, â, b̂, ĉ}, {a, c}, {â2, c4},
{b2, ĉ}) with tile type multiplicity ⟨4, 2, 1, 2⟩, we show the beginning steps of connecting
tiles using lexicographic order and the avoid multi-edges and loops strategy.

First, we write a new list where each tile type is repeated according to its multiplicity,
so that each tile type from the pot appears exactly as many times as indicated by its
corresponding multiplicity (as shown in Table 1).

tiles:

{a, â, b̂, ĉ}
{a, â, b̂, ĉ}
{a, â, b̂, ĉ}
{a, â, b̂, ĉ}
{a, c}
{a, c}
{â2, c4}
{b2, ĉ}
{b2, ĉ}

Table 1: List of tiles made from the pot in Example 3.5, where each tile type from the
pot appears exactly as many times as indicated by its corresponding multiplicity.

We start with the first tile in our list (Table 1), {a, â, b̂, ĉ}. Note that the first cohesive
end type is a, so as shown in Figure 10, our first step is to search for an â to bond with
the a by looking through the rest of the cohesive end types in the current tile (if loops
are allowed); if it does not find a match, it continues to the other tiles. In this example,
we are avoiding loops, so we do not want a to bond with the â in the first tile since this
would create a loop. Instead, the algorithm moves to the second tile in Table 1. Note
that the first and second tiles are different tiles but of the same type, so they are both
labeled as t1 in Figure 10. We see in Step 2 of 10 that the algorithm finds an â from the
second tile to bond with the a from the first tile.

Next, the algorithm continues with the first tile and determines the next half-edge
that has not been bonded. In this example, Step 3 of Figure 10 shows that the next
half-edge has cohesive end type â.

Again, the algorithm searches for a half-edge to bond with the â. However, the
algorithm has already created an edge with a half-edge from the second tile. Since we
are avoiding multi-edges in this example, the algorithm should not create another edge
between the first and second tile. So, the algorithm continues to the third tile, which is
a different tile but is still labeled t1 because it is of the same type as the first two tiles.
Step 4 of Figure 10 shows that it finds an a to bond with the â from the first tile. This
process continues until the graph is realized as shown in Figure 11.
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To summarize, the algorithm starts at the first tile. It goes down the list of tiles,
starting at the next tile because we are avoiding loops, to try to find at most one bond
per tile before moving on in order to avoid multi-edges. It continues this process until all
the half-edges of the first tile are bonded. Then it goes to the second tile and repeats this
process.

Step 1:
t1a

Step 2:
t1a

t1â

Step 3:
t1

t1

â

a

Step 4:

t1

t1

â

t1

aa

Figure 10: First 4 steps of the avoid multi-edges and loops strategy using tiles from Table
1.

t1t1

t1

t4

t2

t2

t4

t3

t1

Figure 11: Graph realized by continuing the avoid multi-edges and loops strategy started
in Figure 10, using tiles from List 1.

Example 3.6 Continuing with the same pot, we now show an example of connecting the
tiles using the allow multi-edges strategy.

We start with the first tile in our list (Table 1), {a, â, b̂, ĉ}. Note that the first cohesive
end type is a, so as shown in Figure 12, our first step is to search for an â to bond with
the a. We are avoiding loops, so we do not want any of the half-edges to bond with each
other, i.e. the a and â cannot bond with each other.
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Now since we are allowing multi-edges, the algorithm goes to the second tile to try
to find anything that can bond with the half-edges in the first tile. Like the previous
example, note that the second tile is a different tile but is still labeled t1 because it has
the same tile type as the first tile. As shown in Step 2 of 12, it finds the cohesive end
type â of the second tile, so that bonds with the a in the first tile.

Next, the second cohesive end type of the first tile is an â. Since we are allowing
multi-edges, Steps 3 and 4 of Figure 12 show that this â is allowed to bond with the a
from the second tile. If multi-edges had not been allowed, then the algorithm would have
tried to go to the third tile to find a half-edge to bond with the â from the first tile.

The second tile no longer has any other half-edges that can bond with the half-edges
in the first tile. So, the algorithm goes to the third tile. The third tile and fourth tile
do not have any half-edges that can bond with the remaining unbonded b̂ and ĉ in the
first tile. So the algorithm goes to the fifth tile: {a, c}, which is labeled t2 because it is a
different tile type from the first four tiles. As shown in Step 4 of Figure 12, it sees that
the c in the fifth tile can bond with the ĉ in the first tile. This process continues until the
graph is realized, which is shown in Figure 13.

To summarize, the algorithm starts at the first tile and goes through the rest of the
list, starting at the second tile, until all the half-edges of the first tile are bonded. Starting
the search at the next tile helps avoid loops. Then it moves to the second tile and goes
through the rest of the list until all of its half-edges are bonded. This process makes it
possible for multi-edges to exist because two half-edges of one tile could bond with two
half-edges from a different single tile.

Step 1:
t1

a
â

b̂
ĉ

Step 2:

t1
a

â

b̂

ĉ

t1
a

â

Step 3:

t1

â

b̂

ĉ

t1a

a

Step 4:

t1
b̂

ĉ

t1

t2
c

a

a

Figure 12: First 4 steps of allow multi-edge strategy using tiles from Table 1.

The allow loops strategy starts at the first tile and allows any of its half-edges to
bond with each other. If there are half-edges that still aren’t bonded, then it goes through
the rest of the tile list until all the half-edges of the first tile are bonded. Note that this
strategy explicitly avoids multi-edges, so during this process, a half-edge can bond with
at most one half-edge of a given tile in order to avoid multi-edges. Then, after all the
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t1

t1

t2

t4

t2

t1

t1

t3
t4

Figure 13: Graph realized by continuing the allow multi-edges strategy started in Figure
12, using tiles from Table 1.

half-edges of the first tile are bonded, it goes to the second tile, allows any of its half-edges
to bond with each other, and goes through the rest of the list until all the half-edges of
the second tile are bonded. This process continues. Figure 14 and Figure 15 show the
first few steps and resulting graph, respectively.

Step 1:

t1
a

Step 2:

t1
a

â

Step 3:

t1 a

Step 4:

t1

b̂
t4

b

a

Figure 14: First 4 steps of allow loops strategy using tiles from Table 1.

The allow multi-edges and loops strategy starts at the first tile and allows any
of its half-edges to bond with each other, allowing for loops. If there are half-edges that
still aren’t bonded, then it goes through the rest of the tile list until all the half-edges of
the first tile are bonded. Note that two half-edges from the first tile are allowed to bond
with more than one half-edge of one given tile. Then it goes to the second tile, allows
any of its half-edges to bond with each other, and goes through the rest of the list until
all the half-edges of the second tile are bonded while allowing for multi-edges.
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t1

t4

t2

t1 t2

t1

t4
t3

t1

Figure 15: Graph realized by continuing the allow loops strategy started in Figure 14,
using tiles from Table 1.

3.3 Isomorphism

Given a pot and a list of viable tile type multiplicities, the algorithm 3.1 uses a tile type
ordering and a strategy for connecting tiles to realize a possible graph. However, there are
multiple choices for the ordering and for the connecting strategy. While these differing
choices may sometimes give a unique graph in each instance, it is not guaranteed that
each differing choice will produce a unique graph up to isomorphism. Further, it is not
guaranteed that we will obtain all possible graphs that can be realized by the pot by
varying the connection strategies. We would like to ensure that we can obtain all possible
unique graphs, which is essential for determining whether a pot satisfies Scenario 2 or 3.
Recall from Section 2.1.1, Scenario 2 allows for any graph of the same order as the target
graph, and Scenario 3 only allows for the target graph and graphs of higher order. Thus,
to cover all cases, we enumerate all possible unique realized graphs of a given order up to
isomorphism. In particular, in Section 3.3.1, we employ canonical labeling to establish a
consistent method for encoding graphs and determining the non-isomorphic ones. Before
identifying non-isomorphic graphs, we first generate all possible graphs by considering
edge permutations, as discussed in Section 3.3.2. The following sections detail the process
of generating all potential graphs by permuting edges and then using canonical labeling
to systematically identify the non-isomorphic ones.

Definition 3.7 An isomorphism between two graphs G and H is a bijection f : V (G) →
V (H) such that (u, v) ∈ E(G) if and only if (f(u), f(v)) ∈ E(H) for all u, v ∈ V (G). In
other words, there exists a map between the vertices in graph G and those in graph H
such that two vertices are connected by an edge in G if and only if their corresponding
vertices are connected by an edge in graph H. When two graphs G and H are isomorphic,
we denote this by G ∼= H [16].
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3.3.1 Canonical Labeling

Given two graphs, we can determine if they are isomorphic by looking at their canonical
graphs. First, we define a partition as a coloring of vertices that allows us to partition the
set of vertices into disjoint subsets. An equitable partition is a coloring of the graph such
that vertices of the same color (partition) are adjacent to the same number of vertices of
each color, and is done in a way that uses the least number of colors [17]. This process
of subdividing cells (sets of vertices of the same color) to get to the equitable partition is
known as partition refinement [17].

This first equitable partition, which we call our initial refined coloring, now serves as
the root of a search tree (as shown in Figure 16). The root node has associated with it an
empty sequence. The children of each node in the tree append onto the sequence a vertex
from a specified cell given by a target cell selector function. The selector function uses
a further refinement of the coloring on each child node to determine the next target cell
[17]. The final sequence given by each leaf in the tree determines a labeling of the graph.
Given this search tree, one can define an order on the labeled graphs (e.g., lexicographic),
and the greatest labeled graph is called the canonical label. For any graph G, its canonical
graph is denoted by c(G) [17].

Theorem 3.8 Two graphs are isomorphic, that is G1
∼= G2, if and only if their canonical

graphs are identical, that is c(G1) = c(G2). [17, 18]

3.3.2 Permutations of Graphs

Before identifying the non-isomorphic graphs, we must first generate all possible graphs
from a given pot. Once all the graphs are generated, we can apply Theorem 3.8 to identify
which graphs are non-isomorphic.

To make the graph generation process more efficient, we introduce a bond dictio-
nary 3.9 that stores and tracks edges and vertices, allowing the algorithm to access this
information quickly and easily.

Definition 3.9 We can represent a graph G with a bond dictionary. This bond dictionary
reports the edges that correspond to each bond-edge type that is used. The ordering of
the vertex indices within each edge represents the direction in which the unhatted half-
edge points to the hatted half-edge. In a theoretical sense, each set of edges of the same
bond-edge type is unordered, but in the algorithm their order emerges from the order in
which they are constructed by the steps in 3.2.3. This order remains fixed, since the edges
are stored in an array.

Example 3.10 Given a pot P = {{a, b̂}, {a, b}, {â2, b̂}, {â2, b}}, one possible graph G
that is realized has the bond dictionary

dict(G) = {a : [1, 2], [3, 2], [4, 5], [6, 5], b : [4, 1], [2, 5], [6, 3]},

as shown in Figure 17. In the figure we can see that the edges [1, 2], [3, 2], [4, 5], [6, 5] have
bond-edge type a, and edges [4, 1], [2, 5], [6, 3] have bond-edge type b.
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Figure 16: Search tree used to find the canonical labeling of a graph [17].

Figure 17: Example of the bond dictionary dict(G) of a possible graph G realized by pot
P = {{a, b̂}, {a, b}, {â2, b̂}, {â2, b}}.

Given a pot and a viable tile type multiplicity determined by the process outlined in
Section 3.2.1, we can construct one possible graph as we described in Sections 3.2.2 and
3.2.3. This graph can then be represented using a bond dictionary, which allows us to
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explore all possible permutations of edge swaps on the graph. We consider three methods
for obtaining these permutations.

Method 1: Brute Force Edge Swapping Algorithm
Given the bond dictionary of one possible graph realized by a pot, since the number

of edges and their bond-edge type remain fixed, we can find all other possible graphs
realized by the given pot with the same tile type multiplicity by permuting the edges.
This process can then be repeated for all other viable tile type multiplicities.

To see how we can encode edge swapping, let’s use Example 3.10. To understand
swaps, let’s focus our attention on edges of one bond-edge type by determining possible
swaps of edges of type b. First, consider swapping edges [4, 1] and [2, 5]. We switch their
second components to get [4, 5] and [2, 1]. This gives us the graph G′ with bond dictionary

dict(G′) = {a : [1, 2], [3, 2], [4, 5], [6, 5], b : [4, 5], [2, 1], [6, 3]}.

This first process is shown in Figure 18. Next, consider swapping the edges [2, 1] and [6, 3]
to get [2, 3] and [6, 1]. This gives us graph G′′ with bond dictionary

dict(G′′) = {a : [1, 2], [3, 2], [4, 5], [6, 5], b : [4, 5], [2, 3], [6, 1]},

shown in Figure 19.

Figure 18: Showing the procedure of starting at graph G and its bond dictionary from
Figure 17, then swapping edges [4, 1] and [2, 5], then the swap resulting in graph G′ which
its bond dictionary dict(G′).

We represent any number of swaps of edges of the same bond-edge type using a
single bond-edge type permutation, where the value of the element at each position in
the permutation represents which new target vertex the edge of each source points to.
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Figure 19: Showing the procedure of starting at graph G′ and its bond dictionary from
Figure 18, then swapping edges [2, 1] and [6, 3], then this swap resulting in graph G′′ which
its bond dictionary dict (G′′).

Following our examples in Figures 18 and 19, the composition of these two swaps can be
represented as the permutation (2, 3, 1), since the source of the original 1st edge is now
connected to the target of the original 2nd edge, the source of the original 2nd edge is now
connected to the target of the original 3rd edge, and the source of the original 3rd edge is
now connected to the target of the original 1st edge. This process is shown in Figure 20.

For all edges of a given bond-edge type, we can consider all possible single bond-
edge type permutations. Then the Cartesian product of all sets of single bond-edge type
permutations gives us all possible edge swappings of our original graph. Since we can
enumerate the swappings in this way, we can simply count them to find an upper bound
on the number of resulting non-isomorphic graphs.

Proposition 3.11 Given a graph G realized by the ordered pot P = (t1, t2, . . . , tn) and a
tile type multiplicity r = (r1, r2, ..., rn), if the pot has bond-edge types Σ(P ) = {a, b, c, . . . },
we have an upper bound on the number of graphs up to isomorphism that can be realized
by P with r:

number of possible graphs ≤
∏

α∈Σ(P )

eα(G)!

where eα(G) is the total number of edges of type α in G.

Proof. In the worst case, each distinct permutation of edge swaps produces a unique
graph up to isomorphism. We consider this case to determine the upper bound on the
number of unique graphs.

Given any bond-edge type α ∈ Σ(P ), there are eα(G) edges of type α in G, and thus
there are eα(G) edges of type α in the bond dictionary of G. Then the permutations
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Figure 20: The process of one swap illustrated in Figure 18 followed by another swap
illustrated illustrated in Figure 19 can be represented as a permutation (2, 3, 1).

of these edges are represented by permutations of length eα(G). Thus, there are eα(G)!
distinct permutations of edges of type α. Then the number of elements of the Cartesian
product of these sets of single bond-edge type permutations is given by the product of
the number of elements of each set. □

Example 3.12 Consider the pot P = ({a, b}, {a, b̂}, {â2, b}, {â2, b̂}) with tile type mul-
tiplicity r = (2, 2, 1, 1). Let G be the graph from Example 3.10 which can result from P
with r. Then

number of possible graphs ≤ (ea(G)!)(eb(G)!)

= (4!)(3!)

= 144.

Method 2: Accounting for Redundancy
Method 1 may involve redundant edge swaps, such as swapping two edges that share

a source, which results in the same graph. By considering the number of bond-edges of
the same type on each tile, we can reduce the bound of Method 1.

Proposition 3.13 Given a graph G realized by the ordered pot P = (t1, t2, . . . , tn) with n
tiles and the proportion of tiles r = (r1, r2, ..., rn), if the pot has bond-edge types Σ(P ) =
{a, b, c, . . . }, we have

number of possible graphs ≤
∏

α∈Σ(P )

eα(G)!

degα(v1)!degα(v2)! · · · degα(vk)!
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where the vi’s are the vertices of G, and degα(vi) is the number of bond-edges of type α
with vi as their source.

Proof. Given a graph G, consider a vertex v of G, with tile type t = {αd1
1 , α̂

d′1
1 . . . , αdn

n ,

α̂
d′n
n }. Fixing an i, we have degαi

(v) = di. Let ei = eαi
(G). Then in dict(G), there are ei

edges under the αi heading that can be swapped with each other. Out of these ei edges,
there are di edges all stemming from the same vertex v. Swapping any of these di edges
with each other leaves exactly the same graph. Thus, we will want to consider any single
bond-edge type permutations that differ only by swaps of these edges to be equivalent.
From this, we change the count in our upper bound by dividing out by all the ways these
edges can be swapped. This amounts to the number of permutations of those edges, which
there are di! of. Repeating this for each vertex gives the final formula.

□

Example 3.14 Consider the pot P = ({â, b}, {â, b̂}, {a2, b}, {a2, b̂}) with tile type multi-
plicity r = (2, 2, 1, 1). Then given a resulting graph G, shown in Figure 21, the number
of possible realized graphs is bounded by(

ea(G)!

dega(v2)!dega(v5)!

)(
eb(G)!

degb(v1)!degb(v3)!degb(v5)!

)
=

(
4!

(2!)(2!)

)(
3!

(1!)(1!)(1!)

)
= 36.

This improved bound allows us to check a smaller total number of edge swaps. How-
ever, to actually construct those edge swaps in the algorithm, we need a different process.
To not generate any redundant permutations, we designate a canonical form for a single
bond-edge type permutation, as in the next example.

Example 3.15 Consider the same pot P = ({â, b}, {â, b̂}, {a2, b}, {a2, b̂}) with tile type
multiplicity r = (2, 2, 1, 1). This pot, with r, realizes the graph G, depicted in Figure 21.

dict(G) = {a : [2, 1], [5, 4], [2, 3], [5, 6],
b : [1, 4], [3, 6], [5, 2]}

4

1

5

2

6

3

b b b

a

a

a

a

Figure 21: One possible graph realized by pot P = {{â, b̂}, {â, b}, {a2, b̂}, {a2, b}}

Focusing on the bond-edge type a as an example, we assign an index to each edge
under the a heading in dict(G). The index 1 refers to [2, 1], the index 2 refers to [5, 4], the
index 3 refers to [2, 3], and the index 4 refers to [5, 6]. Using those indices, we can note that
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the permutations (1, 3, 2, 4), (2, 3, 1, 4), (1, 4, 2, 3), and (2, 4, 1, 3) are all equivalent, since
they each change the set of edges to {[2, 1], [5, 3], [2, 4], [5, 6]}. To determine a canonical
permutation, we choose the permutation with “increasing” indices, which in this case is
(1, 3, 2, 4). Each sublist of indices in this permutation corresponding to the same source
vertex is increasing. For example, the sublist (1, 2) corresponding to source vertex 2 is
increasing. This sublist contains the indices of the a-type edges whose original target
vertices become the new targets for a-type edges stemming from source vertex 2.

To enumerate all canonical permutations, first we enumerate all the possible increas-
ing sublists corresponding to source vertex 2: (1, 2), (1, 3), (1, 4), (2, 3), (2, 4), and (3, 4).
This leaves us with a list of incomplete permutations: (1, , 2, ), (1, , 3, ), (1, , 4, ),
(2, , 3, ), (2, , 4, ), and (3, , 4, ). Now each sublist of blanks corresponds to source ver-
tex 5. We fill in each sublist of blanks with all possible increasing sublists, noting for each
permutation the indices that were already used for source vertex 2. In this case there
is only one possible increasing sublist to fill in the blanks with for each permutation, so
the final list of a-type permutations we need to check is (1, 3, 2, 4), (1, 2, 3, 4), (1, 2, 4, 3),
(2, 1, 3, 4), (2, 1, 4, 3), and (3, 1, 4, 2).

Now in the general case, given a bond dictionary dict(G) for any realized graph G,
we can assign to each edge of a given bond-edge type αi an index from the set [ei] =
{1, . . . , ei}. Let v be any source vertex for at least one αi-type edge in G, and let Iv ⊆ [ei]
be the set of indices corresponding to the edges with v as their source. In the algorithm,
we construct canonical single bond-edge type permutations p : [ei] → [ei] piecewise using
smaller maps pv : Iv → [ei] derived from each vertex. A permutation p : [ei] → [ei] is in
canonical form if each pv : Iv → [ei] has the property that for any m,n ∈ Iv, if m > n,
then pv(m) > pv(n).

To determine the simpler maps, we impose any arbitrary order on the relevant vertices
v1, . . . , vk, since the generation of each map will depend on the previous ones. Starting
with v1, we can choose any map pv1 : Iv1 → [ei] such that for any m,n ∈ Iv1 , if m > n,
then pv1(m) > pv1(n). The number of choices for pv1 is given by(

ei
|Iv1|

)
=

(
ei

degαi
(v1)

)
.

Now to construct each subsequent map pvj : Ivj → [ei], since some elements of [ei] are
already mapped to by pv1 or other previous maps, we first construct a map p̃vj : Ivj →
[ei]\ im(pv1)\ · · · \ im(pvj−1

), where \ is the set difference and im(f) is the image of f . We
again restrict the choice of p̃vj so that for any m,n ∈ Ivj , if m > n, then p̃vj(m) > p̃vj(n).
Then each pvj is defined by pvj(n) = p̃vj(n). Thus the number of choices for pvj is given
by (

ei − |Iv1 | − · · · − |Ivj−1
|

|Ivj |

)
=

(
ei − degαi

(v1)− · · · − degαi
(vj−1)

degαi
(vj)

)
.
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Once a choice for each map is made, the full permutation p : [ei] → [ei] is defined by

p(n) =


pv1(n) if n ∈ Iv1 ,
...

...

pvk(n) if n ∈ Ivk .

The number of choices for p is given by the product of the number of choices for each pvj .
Repeating this process for each bond-edge type, the number of edge swaps this procedure
generates is then ∏

α∈Σ(P )

(
eα(G)

degα(v1)

)(
eα(G)− degα(v1)

degα(v2)

)
· · ·(

eα(G)− degα(v1)− · · · − degα(vk−1)

degα(vk)

)
.

This expression is equal to the upper bound shown in 3.13, which can be seen by expanding
each binomial coefficient.

Method 3: Using Both Sides
After accounting for redundant permutations arising from edges that share a common

source, an additional optimization can be applied. Similar to Method 2, we can also
account for redundant permutations of edges that share a target rather than a source. In
this case, the right component of each edge remains fixed while the left components are
analyzed for potential swaps. We call the permutations of Method 2 left permutations,
which leave the left components fixed and change which right component they are paired
with, and we call the permutations of this new variant form right permutations, which
leave the right components fixed and change which left component they are paired with.

As shown in Method 2, the left permutations alone, when applied to our starting
graph as swaps, produce all possible non-isomorphic graphs. Similarly, the right permu-
tations alone also cover all possible non-isomorphic graphs. Ultimately, left and right
permutations encode the same information, that of which source half-edge to pair with
which target half-edge. We can translate any given right permutation into a left permu-
tation. After doing this, we can see that there is sometimes further redundancy.

Proposition 3.16 Given a bond dictionary, for any bond-edge type α, let L be the set of
canonical left single bond-edge type permutations as in Method 2, and let R be the similar
set of canonical right single bond-edge type permutations. Let R′ be the set of permutations
of R re-encoded as canonical left permutations. Then L∩R′ contains all necessary single
bond-edge type permutations to construct all possible non-isomorphic graphs from the same
pot and tile type multiplicity.

Example 3.17 Consider the pot P = ({a2}, {a, â}, {â2}) with tile type multiplicity
r = (1, 2, 1). This realizes a graph with bond dictionary {a : [1, 2], [1, 3], [2, 4], [3, 4]}.
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By Method 2, we find L and R. Consider the example right permutation p = (2, 4, 1, 3).
We can visualize this permutation using a 2× 4 matrix:(

1 2 3 4
2 4 1 3

)
.

Each column says that pmaps the top number to the bottom number. In this context, each
column says that we take the right component of the edge whose index is the top number,
and pair it with the left component of the edge whose index is the bottom number. When
permuting the columns, these pairings remain fixed, so this matrix encodes the same map:(

3 1 4 2
1 2 3 4

)
.

This alternate matrix was obtained by permuting the columns of the first matrix so that
the bottom row is ascending. This process is equivalent to applying the permutation p−1

to the columns of the matrix, since it undoes the order of the bottom row given by p.
Now the top row is given by p−1 = (3, 1, 4, 2). This permutation, when used as a left
permutation on the bond dictionary, is equivalent to p used as a right permutation, since
each column of the matrix says that we take the left component of the edge whose index
is the bottom number, and pair it with the right component of the edge whose index is
the top number.

The permutation p−1 as a left permutation swaps the edges of the graph in the same
way as p as a right permutation, but p−1 might not be in canonical form. So as a final
step, we sort each sublist of p−1 with indices corresponding to edges stemming from the
same vertex. For our example p−1 = (3, 1, 4, 2), we see in the bond dictionary that edges
1 and 2 have the same left component. So we sort the sublist (3, 1) in p−1, giving us
(1, 3). Thus the canonical form of this left permutation is (1, 3, 4, 2). After taking each
right permutation, finding the inverse, and putting it into canonical form, we are left with
these sets.

L R R′

(1, 2, 3, 4) (3, 4, 1, 2) (3, 4, 1, 2)
(1, 2, 4, 3) (4, 3, 1, 2) (3, 4, 2, 1)
(1, 3, 2, 4) (2, 4, 1, 3) (1, 3, 4, 2)
(1, 3, 4, 2) (4, 2, 1, 3) (2, 3, 4, 1)
(1, 4, 2, 3) (2, 3, 1, 4) (1, 3, 2, 4)
(1, 4, 3, 2) (3, 2, 1, 4) (2, 3, 1, 4)
(2, 3, 1, 4) (1, 4, 2, 3) (1, 3, 4, 2)
(2, 3, 4, 1) (4, 1, 2, 3) (2, 3, 4, 1)
(2, 4, 1, 3) (1, 3, 2, 4) (1, 3, 2, 4)
(2, 4, 3, 1) (3, 1, 2, 4) (2, 3, 1, 4)
(3, 4, 1, 2) (1, 2, 3, 4) (1, 2, 3, 4)
(3, 4, 2, 1) (2, 1, 3, 4) (1, 2, 3, 4)

From this we have

L ∩R′ = {(1, 2, 3, 4), (1, 3, 2, 4), (1, 3, 4, 2), (2, 3, 1, 4), (2, 3, 4, 1), (3, 4, 1, 2), (3, 4, 2, 1)},
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so for this pot and tile type multiplicity, those are the only edge permutations on the
graph we need to check.

Proof. We proceed by contradiction. Given a bond dictionary, suppose there is some
left permutation p ̸∈ L ∩R′ which when applied to the edges of type α produces a graph
not isomorphic to any graph produced by permutations in L ∩ R′. Then either p ̸∈ L or
p ̸∈ R′. If p ̸∈ L, then this contradicts that the permutations of L cover all necessary
cases as shown in Method 2. If p ̸∈ R′, then this contradicts that the permutations of R
cover all necessary cases, since R and R′ make the same swaps. □

As of the time of writing, the problem of counting the number of permutations in
L ∩R′ remains open.

3.4 Graph Visualization

During the graph construction process, using an alternative representation of tiles and
their connections, similar to the approach in [14], allows for visualization of the graph at
each intermediate step. Given our tile list, for each tile we create a star graph with the
central vertex labeled with the tile type and the outer vertices labeled with bond-edge
types.

Figure 22: Disjoint union of tiles t4 = {b̂2, f̂ 2} and t3 = {b, ĝ2, h}. In the next step, a
vertex labeled b on t4 will be merged with the one on t3.

When connections between a new tile and the current graph are identified, we take
the disjoint union of the current graph and the new tile, bringing them into the same
graph if they are not already. We then merge the vertices where the tiles bond. This
approach was used in earlier implementations of the algorithm. In the current version, we
instead encode each tile as in the vector pot and represent bonds as they are identified by
putting them into a bond dictionary. Computationally, the old process runs very similar
to the bond dictionary process, but is slightly slower due to the disjoint union and vertex
merging functions, which are circumvented in the bond dictionary process.

Once a graph is represented as a Sage graph type, we can optimize the placements
of the vertices by running Sage’s spring algorithm with a very high number of iterations,
and adjust manually by editing their positions if we wish. The Sage display of graphs is
fairly limited, so we also created a function that takes in the graph and outputs a string
of TikZ code for use in LaTeX diagrams. Using TikZ this string can be manually edited,
but there are also a number of input options in the function.

the pump journal of undergraduate research 8 (2025), 141–172 168



3.5 Algorithm Example

In order to test the algorithm 3.1, we use various pots of known graphs to confirm that
all non-isomorphic graphs were generated. As an example, given the pot

P = {{a, b̂}, {â2, b}, {a, b}, {â2, b̂}},

the algorithm finds that the smallest possible graph using this pot has order 6. Using each
of the tile type multiplicities for a graph of order 6, the algorithm chooses an appropriate
strategy for tile type ordering and connecting tiles, manages multi-edges and loops, and
generates a graph as a bond dictionary. Using this initial graph, it then generates all
possible graphs using canonical edge permutations and applies canonical labeling in order
to identify the non-isomorphic graphs. Finally, it outputs a total of 5 non-isomorphic
unique graphs that can be realized by the pot P , as shown in Figure 23. The code for the
algorithm 3.1 can be found on GitHub [19].

Figure 23: Five non-isomorphic graphs realized by pot P = {{a, b̂}, {â2, b}, {a, b}, {â2, b̂}}.

4 Conclusion and Discussion

The algorithm 3.1 successfully generates all non-isomorphic graphs that can be realized
by a given pot of tiles. Given a pot of tiles, the algorithm 3.1 first analyzes the pot in
order to find the smallest order (or user specified order) of a graph that can be realized,
and its corresponding tile type multiplicities. Using a strategy for tile type ordering
and connecting tiles, which may be specified by the user, the algorithm constructs a
graph. Various edge permutations are then generated in order to identify all possible
non-isomorphic graphs. Using visualization techniques, the algorithm successfully visually
outputs all non-isomorphic graphs that can be realized by the inputted pot.

Significantly expanding on previous work which could only generate graphs using
pots with one bond-edge type [14], the algorithm 3.1 can not only generate graphs using
pots with two or more bond-edge types, but also all non-isomorphic graphs. Although,
due to computer memory issues, the algorithm 3.1 is unable to handle certain complex
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pots. For example, the pot {{a3, b}, {â2, b, b̂}, {b, b̂3}} runs perfectly well, constructing
840 graphs and reducing them down to 53 unique graphs up to isomorphism in less than
a minute. But the pot {{a2, b}, {â, c2}, {b̂2, d̂}, {c, ĉ2}, {a, c, d}} requires the construction
of over 1020 edge swap permutations, so the algorithm crashes and is unable to reach the
stage where it identifies any unique graphs up to isomorphism. This disparity is typical,
with very few cases in the middle where the algorithm might terminate after an hour or
so. Therefore, determining upper bounds on variables such as the number of bond-edge
types and tile types that can be feasibly handled by the algorithm 3.1, optimizing the
edge swap permutations to generate all possible valid graphs, and more efficiently solving
the isomorphism problem remain problems worth exploring.
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