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Abstract - Consider an urn with an initial state of R ≥ 1 red balls and W ≥ 1 white
balls. Draw a ball from the urn, uniformly at random, and note its color. If the ball is
white, do not replace it; if the ball is red, do replace it. Define this sampling rule to be P,
for the Preferential distribution. We study X, the random variable denoting the number of
white balls drawn under the sampling rule P for a sample size n. It is known that E(X)
is bounded below by 3

4
nW
N and bounded above by nW

N . In this paper we improve the lower
bound, give a heuristic for the best possible lower bound, and we explore some properties
of a generalization of this sampling rule, we call Super-Preferential, where the probability of
retaining a white ball is w and the probability of retaining a red ball is r.
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1 Introduction

Consider an urn with an initial state of R ≥ 1 red balls and W ≥ 1 white balls. Draw
a ball from the urn, uniformly at random, and note its color. If the ball is white, do
not replace it; if the ball is red, do replace it. Define this sampling rule to be P , for the
Preferential distribution, as introduced by Engbers and Hammett [1].

Let X be a random variable denoting the number of white balls drawn under the
sampling rule P for a sample size n. The expectation of X, written E(X) := E(n,R,W ),
can be obtained recursively as a function of the initial state with R red balls, W white
balls, and a predetermined sample size, n ∈ [1,min{R,W}], following the relation

E(n,R,W ) =
W

N
(1 + E(n− 1, R,W − 1)) +

R

N
E(n− 1, R,W ), (1)

where N := R+W and E(0, R,W ) := 0. Of particular interest is how P is related to the
binomial and hypergeometric distributions, both with expectations E(B) = E(H) = nW

N
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for B ∼ Bin
(
n, W

N

)
and H ∼ HyperGeom(N,W, n). Engbers and Hammett [1] proved

that the ratio of the expectations of X and B is bounded; in particular, they proved that

c(n,R,W ) =
E(n,R,W )

nW
N

∈
(
3

4
, 1

]
.

Next, consider an urn with the same initial starting conditions, but where a red ball
is kept with a probability r and replaced with probability 1− r, and a white ball is kept
with probability w and replaced with probability 1−w. We denote this sampling rule as
S for the Super-Preferential distribution with a similarly defined random variable X(r,w)

denoting the number of white balls drawn under S with retention probabilities (r, w).
Related distributions can be found by setting r and w as specific values; specifically, (0, 1)
corresponds to the preferential, (0, 0) to the binomial, and (1, 1) to the hypergeometric.
Note that, in [1], r and w are the replacement probabilities, whereas here we defined it
as the opposite.

Engbers and Hammett [1] pose a number of questions. Addressed here are the follow-
ing:

1. Can the bounds on c(n,R,W ) be improved?

2. Considering the super-preferential distribution, are there closed form expressions for
the density and expectation, both under specific values of r, w and in general?

Regarding the first question, we are able to improve on their lower bound. Namely, in
Section 3, we prove

Theorem 1.1 c(n,R,W ) > 4
5
.

Furthermore, in Section 4, we give a heuristic that suggests the best lower bound for
c(n,R,W ) is 2− 2e−W (1) ≈ 0.865713, where W (t) is the Lambert W function [2].

The second question is addressed in Section 5, where we give a formula for the distri-
bution of X(r,w) (Theorem 5.2) and we prove some results regarding the expected value.
We also conjecture E0,1(n,R,W ) ≤ Er,w(n,R,W ) ≤ E1,0(n,R,W ), relating the super-
preferential formula to the preferential formula. We can prove the conjecture if a gener-
alization of Lemma 2.1 to the super-preferential holds, but we have been unable to prove
such a generalization.

2 Technical Lemmas on c(n,R,W )

Recalling from the introduction, c(n,R,W ) expresses the ratio between the expectations
of the preferential and the binomial/hypergeometric, i.e.,

c(n,R,W ) =
E(n,R,W )

nW
N

.

We proceed to understand how the function c behaves when n, R, and W vary.
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We first show that c(n,R,W ) is weakly increasing with respect to the parameters R
and W . From this, we will be able to prove a minimization for c(n,R,W ) from which an
improved lower bound can be derived.

Lemma 2.1 For all n, R, and W positive integers with 2 ≤ n ≤ min{R,W}, we have

c(n,R,W ) < c(n,R,W + 1). (2)

Proof. Appealing to the definition of c(n,R,W ), we can rewrite inequality (2) as

E(n,R,W ) <
W (N + 1)

(W + 1)N
E(n,R,W + 1), (3)

which we proceed to prove by induction over n.
For the base case, we want to show that

E(2, R,W ) <
W (N + 1)

(W + 1)N
E(2, R,W + 1). (4)

From [1], we know that

E(2, R,W ) =
W

N

(
1 +

R

N
+

W − 1

N − 1

)
. (5)

For W + 1 instead of W , this yields E(n,R,W + 1) = W+1
N+1

(
1 + R

N+1
+ W

N

)
. Substituting

back into (4), we want to show

W

N

(
1 +

R

N
+

W − 1

N − 1

)
<

W

N

(
1 +

R

N + 1
+

W

N

)
.

Cancelling W/N , subtracting 1, and using that N = R +W , this is equivalent to

R

N
+

W − 1

N − 1
<

R

N + 1
+

W

N
R

N
− R

N + 1
<

W

N
− W − 1

N − 1
R

N(N + 1)
<

R

N(N − 1)
1

N + 1
<

1

N − 1
.

This inequality clearly holds for all positive integers R,W ≥ 2, completing the base
case.

Now, for the inductive hypothesis, assume that, for some n ≥ 2 and for every R,W ≥
n, inequality (3) holds. We seek to prove

E(n+ 1, R,W ) <
W (N + 1)

(W + 1)N
E(n+ 1, R,W + 1) (6)
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for any R,W ≥ n+ 1.
From the recursion, we have

E(n+ 1, R,W ) =
W

N
(1 + E(n,R,W − 1)) +

R

N
E(n,R,W )

and

E(n+ 1, R,W + 1) =
W + 1

N + 1
(1 + E(n,R,W )) +

R

N + 1
E(n,R,W + 1).

Substituting these equations back into inequality (6) and simplifying, we obtain

WE(n,R,W − 1) + (R−W )E(n,R,W ) <
WR

W + 1
E(n,R,W + 1), (7)

which is therefore equivalent to our initial inequality. From the inductive hypothesis, we
have

E(n,R,W − 1) <
(W − 1)N

W (N − 1)
E(n,R,W )

and

E(n,R,W ) <
W (N + 1)

(W + 1)N
E(n,R,W + 1).

These can be expressed as

WE(n,R,W − 1) <
(W − 1)N

N − 1
E(n,R,W ) (8)

and
RN

N + 1
E(n,R,W ) <

WR

W + 1
E(n,R,W + 1). (9)

We claim that

(W − 1)N

N − 1
E(n,R,W ) ≤ RN

N + 1
E(n,R,W )− (R−W )E(n,R,W ). (10)

If this last inequality holds, then from (8), (9), and (10) it follows that

WE(n,R,W − 1) + (R−W )E(n,R,W ) ≤ RN

N + 1
E(n,R,W ) <

WR

W + 1
E(n,R,W + 1),

that is exactly inequality (7).
To prove (10), notice that it can be written as

0 ≤
(

2R

(N + 1)(N − 1)

)
E(n,R,W ),

which is true for all R,W ≥ 2, thus proving the claim, which completes the induction and
finishes the proof. □
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Lemma 2.2 For all n, R, and W positive integers with 2 ≤ n ≤ min{R,W} and R+1 ≥
W , we have

c(n,R,W ) ≤ c(n,R + 1,W ),

where the equality holds if and only if n = 2 and R + 1 = W > 2.

Proof. Like in the proof of Lemma 2.1, we express this inequality in terms of the
expectation, obtaining

E(n,R,W ) ≤ N + 1

N
E(n,R + 1,W ), (11)

which we proceed to prove by induction over n.
For the base case, using (5) we want to show

W

N

(
1 +

R

N
+

W − 1

N − 1

)
≤ W

N

(
1 +

R + 1

N + 1
+

W − 1

N

)
,

which reduces to

R

N
+

W − 1

N − 1
≤ R + 1

N + 1
+

W − 1

N
W − 1

N − 1
− W − 1

N
≤ R + 1

N + 1
− R

N
W − 1

N(N − 1)
≤ W

N(N + 1)

(W − 1)(N + 1) ≤ W (N − 1)

W ≤ R + 1.

Since R + 1 ≥ W , the n = 2 case is settled.
For the inductive hypothesis, assume that, for some n ≥ 2 and for every R,W ≥ n

such that R + 1 ≥ W , inequality (11) holds. We want to show

E(n+ 1, R,W ) <
N + 1

N
E(n+ 1, R + 1,W ) (12)

for R,W ≥ n+ 1 and R + 1 ≥ W .
Note that for R + 1 ≥ W ,

N − 1− (R−W + 1)

N
≤ N − 1. (13)

Therefore, (13) implies

N(N − 1)− (R−W + 1) ≤ N(N − 1)

N2R +N(W − 1)− (R−W + 1) ≤ N2R +N(N − 1)−RN

(N − 1)(N + 1)R + (W − 1)(N + 1) ≤ (R + 1)N(N − 1)

R

N
+

W − 1

N(N − 1)
≤ R + 1

N + 1
. (14)
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Now, from the recursive formula for expected value, applying (3) when W → W − 1,
and (14), we get

E(n+ 1, R,W ) =
W

N
(1 + E(n,R,W − 1)) +

R

N
E(n,R,W )

=
W

N

(
1 +

N − 1

N
E(n,R,W − 1)

)
+

W

N2
E(n,R,W − 1) +

R

N
E(n,R,W )

<
W

N

(
1 +

N − 1

N
E(n,R,W − 1)

)
+

(
W − 1

N(N − 1)
+

R

N

)
E(n,R,W )

≤ W

N

(
1 +

N − 1

N
E(n,R,W − 1)

)
+

R + 1

N + 1
E(n,R,W ). (15)

Finally, applying the inductive hypothesis, we determine that

W

N

(
1 +

N − 1

N
E(n,R,W − 1)

)
+

R + 1

N + 1
E(n,R,W )

≤ W

N
(1 + E(n,R + 1,W − 1)) +

R + 1

N
E(n,R + 1,W )

=
N + 1

N

(
W

N + 1
(1 + E(n,R + 1,W − 1)) +

R + 1

N + 1
E(n,R + 1,W )

)
=

N + 1

N
E(n+ 1, R + 1,W ). (16)

Therefore, combining (15) and (16) yields (12), as desired. The equality case of (11)
follows from the analysis done in the case n = 2 and the inequality proved in the inductive
step. □

Now, we show that c is decreasing with respect to n.

Lemma 2.3 For all n,R,W with 1 ≤ n ≤ min{R,W} − 1, we have

c(n,R,W ) ≥ c(n+ 1, R,W ).

Proof. By the definition of c, the result is equivalent to

E(n+ 1, R,W ) ≤ n+ 1

n
E(n,R,W ), (17)

which we proceed to prove by induction over n. For the base case n = 1, from [1, eq.
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(10)], we have that

E(2, R,W ) =
W

N

(
1 +

R

N
+

W − 1

N − 1

)
<

W

N

(
1 +

R

N − 1
+

W − 1

N − 1

)
=

W

N

(
1 +

N − 1

N − 1

)
=

2W

N
= 2E(1, R,W ). (18)

Now, assume the result for 1, 2, . . . , n − 1, and we will show it for n. From (1) and the
induction hypothesis, we have

E(n+ 1, R,W ) =
W

N
(1 + E(n,R,W − 1)) +

R

N
E(n,R,W )

≤ W

N

(
1 +

n

n− 1
E(n− 1, R,W − 1)

)
+

R

N

(
n

n− 1
E(n− 1, R,W )

)
.

(19)

On the other hand, again by (1), we have

n+ 1

n
E(n,R,W ) =

(
n+ 1

n

)(
W

N
(1 + E(n− 1, R,W − 1)) +

R

N
E(n− 1, R,W )

)
.

(20)

So, to show (17), it is enough to show that the right hand side of (19) is less than or equal
to the right hand side of (20).

Multiplying by nN and rearranging terms, it reduces to proving

W

n− 1
E(n− 1, R,W − 1) +

R

n− 1
E(n− 1, R,W ) ≤ W. (21)

From [1, Thm. 2], we know that E(n− 1, R,W − 1) ≤ (n− 1)W−1
N−1

and E(n− 1, R,W ) ≤
(n− 1)W

N
. From here it follows that

W

n− 1
E(n− 1, R,W − 1) +

R

n− 1
E(n− 1, R,W ) ≤ W (W − 1)

N − 1
+

RW

N

= W

(
W − 1

N − 1
+

R

N

)
< W,

where the last inequality follows from the computation done in (18). Thus (21) is true,
and the result follows. □
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3 Improved Lower Bound for c(n,R,W )

Combining Lemmas 2.1 and 2.2, we see that c(n,R,W ) is increasing with respect to both
R and W . This combination leads directly to the following lemma.

Lemma 3.1 For all R,W ≥ n ≥ 1, we have

c(n, n, n) ≤ c(n,R,W ),

where the equality holds if and only if n = 1 or R = W = n.

Proof. Suppose R = n + a and W = n + b for non-negative integers a, b. Apply
Lemma 2.2 a times to get c(n, n, n) ≤ c(n,R, n), then apply Lemma 2.1 b times to get
c(n,R, n) ≤ c(n,R,W ). □

Using Lemma 3.1, we can prove a better lower bound for c(n,R,W ) than 3
4
, i.e.,

Theorem 1.1.
Proof. [Proof of Theorem 1.1] From Lemma 3.1, we have c(n, n, n) ≤ c(n,R,W ), so
the problem reduces to showing c(n, n, n) > 4/5. In terms of expectations, the desired
inequality can be represented as

E(n, n, n) >
2n

5
.

From here we proceed by induction.
For the base case we simply evaluate (5) at n = R = W = 2, thus obtaining E(2, 2, 2) =

11
12

> 4
5
.

Now, for the induction hypothesis, we assume for some n ≥ 2 that E(n, n, n) > 2n
5
.

Applying the recursion formula for E(n+ 1, n+ 1, n+ 1), we find

E(n+ 1, n+ 1, n+ 1) =
1

2
(1 + E(n, n+ 1, n) + E(n, n+ 1, n+ 1)). (22)

Substituting R = W = n in (11), we get

2n

2n+ 1
E(n, n, n) ≤ E(n, n+ 1, n).

Combining this last inequality with (22) we obtain that

E(n+ 1, n+ 1, n+ 1) ≥ 1

2

(
1 +

2n

2n+ 1
E(n, n, n) + E(n, n+ 1, n+ 1)

)
.

Then, it suffices to prove that

1

2

(
1 +

2n

2n+ 1
E(n, n, n) + E(n, n+ 1, n+ 1)

)
>

2(n+ 1)

5
. (23)
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From (3) and (11) we know that E(n, n+ 1, n+ 1) ≥ E(n, n, n). Using these inequalities
and the induction hypothesis, we arrive to

1

2

(
1 +

2n

2n+ 1
E(n, n, n) + E(n, n+ 1, n+ 1)

)
≥ 1

2

(
1 +

2n

2n+ 1
E(n, n, n) + E(n, n, n)

)
>

1

2

(
1 +

2n

2n+ 1

(
2n

5

)
+

2n

5

)
=

8n2 + 12n+ 5

20n+ 10
>

8n2 + 12n+ 4

20n+ 10
=

2(n+ 1)

5
.

□

4 Heuristic for the Best Lower Bound on c(n,R,W )

Numerical evidence suggests that c(n, n, n) is decreasing (see Table 1).

n c(n, n, n)
2 0.9166666666666666
10 0.8740608411049864
100 0.8665182832864797
1,000 0.8657936212024325
10,000 0.8657214365522173
100,000 0.865714220889307

Table 1: Some values of c(n, n, n).

Assuming that c(n, n, n) is decreasing, by Theorem 1.1, c(n, n, n) converges to a value
as n → ∞. Furthermore, from Lemma 3.1, it follows that the best lower bound for
c(n,R,W ) is the limit as n → ∞ of c(n, n, n).

Our conjecture is

Conjecture 4.1 The function c(n, n, n) is decreasing and

lim
n→∞

c(n, n, n) = 2− 2e−W (1),

where W is the Lambert’s W function.

Note that 2 − 2e−W (1) ≈ 0.865713, which is consistent with the numerical values in
Table 1.

4.1 Heuristic Suggesting Conjecture 4.1

Consider E(n, n, n), for some fixed large value of n. Let Xi be a random variable denoting
the number of draws between white balls, given that i have already been drawn. It is
clear that we will have n− i white balls and 2n− i balls in total, so we have

E(Xi) =
2n− i

n− i
= 2 +

i

n− i
.
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Then applying linearity of expectation, we get

E(X0 +X1 + . . .+Xk−1) = 2k +
k−1∑
i=1

i

n− i
.

Therefore, E(n, n, n) should be about k when 2k+
∑k−1

i=1
i

n−i
≈ n. For sufficiently large

n, we can approximate this sum as

n ≈ 2k +
k−1∑
i=1

i

n− i
≈ 2k +

∫ k−1

1

t dt

n− t
= 2 + k + n log

(
n− 1

n+ 1− k

)
. (24)

Let k = αn (where α is a constant) and divide (24) by n. As n → ∞, we get

α− log(1− α) = 1.

Thus, for large n, we should have c(n, n, n) ≈ 2k
n
≈ 2α. While α− log(1−α) = 1 does not

have a clean solution, α can be solved using the product log, or Lambert’s W (t), function,
yielding α = 1− e−W (1) and 2α = 2− 2e−W (1).

5 Super-Preferential

A number of advancements have been made with regards to the expectation and density
of the super-preferential.

5.1 General Expectation

The recurrence (1) can be generalized to the super-preferential case. This is, let X(r,w)

be a random variable denoting the number of white balls in a sample of size n drawn, at
random, from an urn initially containing R red balls and W white balls, for a total of
N = N total starting balls where, if the ball is red, we keep it with probability r ∈ [0, 1]
and, if it is white, we keep it with probability w ∈ [0, 1]. We denote the expected value
as E

(
X(r,w)

)
=: Er,w(n,R,W ). Then, from the arguments used to justify (1), we can

conclude that

Er,w(n,R,W ) =
W

N
(w)(1 + Er,w(n− 1, R,W − 1)) +

W

N
(1− w)(1 + Er,w(n− 1, R,W ))

+
R

N
(r)Er,w(n− 1, R− 1,W ) +

R

N
(1− r)Er,w(n− 1, R,W ). (25)

with the initial condition Er,w(0, R,W ) = 0. This generalized recurrence is in agreement
with those of the binomial, hypergeometric, and preferential.
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5.2 The Case of r = w

Consider the case where r = w = y ∈ [0, 1]. Since the probability of keeping a ball of
either color is the same, it is reasonable to think that the expected value should be the
same for every y. Turns out this is true and, in fact, can be shown to have the same
expectation as both the binomial and hypergeometric cases.

Theorem 5.1 If y ∈ [0, 1], then for n ≥ 1 we have

Ey,y(n,R,W ) = n
W

N
. (26)

Proof. We proceed by induction over n. For the base case, from (25) it is easy to obtain
Ey,y(1, R,W ) = W

N
. Now, assume (26) is true. Then, from (25) we have

Ey,y(n+ 1, R,W )

= y
W

N

(
1 + n

(
W − 1

N − 1

))
+ (1− y)

W

N

(
1 + n

W

N

)
+ ny

R

N

(
W

N − 1

)
+ n(1− y)

R

N

W

N

=
W

N

(
1 + ny

(
W − 1

N − 1

)
+ n(1− y)

W

N
+ ny

(
R

N − 1

)
+ n(1− y)

R

N

)
=

W

N
(1 + ny + n(1− y)) = (n+ 1)

W

N
.

□

5.3 Density for X(r,w)

We will follow the strategy for preferential density in [1], with the proper generalizations.
Let each sequence of n draws be associated with some n-letter word d := d1d2 · · · dn
where di ∈ {red1, red2,white1,white2}, where red1 represents balls that are to be retained
and red2 represents balls that are to be replaced. Define similarly for white1 and white2.
Suppose d contains k white balls, where the locations of the white balls that will be
retained are w1 < w2 < . . . < wt (this means dw1 , dw2 , . . . , dwt are the white balls that are
retained) and the locations of the red balls that will be retained are r1 < r2 < . . . < rs.
Let F (i) be the number of white balls in the first i letters and G(i) be the number of
red balls in the first i letters. Note that when a white ball appears between wi and wi+1,
then the probability of such an occurrence is of the form x/y where x = W − i. This
happens for i = 0, 1, . . . , t (if we define w0 = 0, wt+1 = n). Something similar happens
with red balls between rj and rj+1 for j = 0, 1, . . . , s (if we define r0 = 0, rs+1 = n).
Now, if we pick any ball (red or white) between two balls that are not replaced (whether
the non-replaced ones are red or white), then the probability is of the form x/y where
y = N − ℓ, where ℓ is the number of non-replacements so far. Suppose the non-replaced
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balls have indices ν1 < ν2 < . . . < νr+s (define ν0 = 0 and νr+s+1 = n). Then

P(d) = wt(1− w)k−trs(1− r)n−k−s

t∏
i=0

(W − i)F (wi+1)−F (wi)

·
s∏

j=0

(R− j)G(rj+1)−G(rj)

r+t∏
ℓ=0

(
1

N − ℓ

)νℓ+1−νℓ

. (27)

Let |d| be the number of white balls in the word d.

Theorem 5.2 Under sampling rule S, let X(r,w) denote the number of white balls in our
sample of size n. Then, for each k ∈ {0, 1, 2, . . . , n} the probability mass function of X(r,w)

is given:

P(X(r,w) = k) =
∑
|d|=k

P(d),

where P(d) is as in (27).

r w P (X = 0) P (X = 1) P (X = 2) P (X = 3) Er,w(3, 4, 3)
2/3 1/3 0.13955296 0.45537199 0.342727567 0.0623474787 1.32786956
1/3 2/3 0.16365403 0.474354821 0.316358925 0.0456322211 1.24396933
0.5 0.5 0.151749271 0.464820214 0.329397473 0.0540330418 1.28571429
0.8 0.5 0.129586006 0.470919339 0.345461613 0.054033042 1.32394169
0.5 0.8 0.151749271 0.487531584 0.321869776 0.0388493683 1.24781924
0.1 0.5 0.179830904 0.458157434 0.30797862 0.0540330418 1.2362138
0.5 0.1 0.151749271 0.434538387 0.339869776 0.073842566 1.33580564

Table 2: The super-preferential distribution when n = 3, R = 4,W = 3 for various
retention probabilities, r, w.

5.4 Bounds on the Expectation of the Super-Preferential

We conjecture that the expectation of a super-preferential is bounded below by the ex-
pectation of the preferential (r = 0 and w = 1) and bounded above by the expectation of
the distribution with reversed retention probabilities (r = 1 and w = 0). That is

Conjecture 5.3 Let R, W , and n be positive integers such that 2 ≤ n ≤ min{R,W}.
Then, for any r, w ∈ [0, 1], we have

E0,1(n,R,W ) ≤ Er,w(n,R,W ) ≤ E1,0(n,R,W ).

We can prove the conjecture if we were able to prove

Er,w(n− 1, R,W − 1) < Er,w(n− 1, R,W ), (28)

which would be a generalization of Lemma 2.1 to the super-preferential distribution. Our
proof assuming (28) is long and intricate, so for brevity we will exclude it from the paper.
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