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1 Introduction

The knight’s tour problem is an ancient and classic graph theoretic puzzle inspired by the
knight in chess. Chess is traditionally played on a square board made up of 64 smaller
squares laid out in an 8× 8 pattern. A knight can move 2 squares in one of the four grid
directions, then 1 square in a perpendicular direction; this is a 2 by 1 “L” shape. The
knight’s tour puzzle challenges the solver to move the knight to each of the 64 squares
without repeating any square. Historically, a full solution is required to be a closed tour,
a tour that ends with the knight one move away from its starting square.

The traditional knight’s tour problem is well-studied, as are many of its generalizations
[1], [2], [3], [4], [5]. Most relevantly, several authors have characterized the dimensions
of various surfaces that admit knight’s tours. In particular, Schwenk characterized the
dimensions of rectangular boards that admit a knight’s tour [8]. Watkins and Hoenigman
extended this result and characterized the dimensions of tori that admit knight’s tours
[10], and Watkins later established the analogous results for cylinders, Möbius strips,
and Klein bottles [9]. Narrowing the collection of allowed tours, Forrest and Teehan
characterized the dimensions of cylinders and tori that admit nullhomotopic tours and
the dimensions that admit tours that are homotopic to a generator of the fundamental
group of the surface [6]. In this work, we extend the results of Forrest and Teehan and
characterize the analogous dimensions of Möbius strips and Klein bottles.

More concretely, we study knight’s tours on m× n Möbius strips M and m× n Klein
bottles K. These are both quotients of the rectangle with width m and height n, which we
will consider to be tiled by mn squares with unit side length. Specifically, M is obtained
by twisting the top edge of the rectangle and identifying it with the bottom edge. This
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is the Möbius strip of width m whose boundary circle has length 2n. Similarly, K is the
quotient of M obtained by identifying the left and right edges of the rectangle without
twisting. For each of these surfaces, we construct a graph with a vertex for each unit
square in the tiling of the surface and an edge between two squares if the knight can
move from one square to the other. For most board dimensions, this is a graph; however,
we include an edge for each distinct move that the knight could make between the two
squares, so for small values of m and n, this construction can produce a pseudograph or
multigraph. These graphs map naturally into M and K.

By choosing a basepoint vertex v in these graphs, directed knight’s tours beginning at
v determine elements of π1(M, v) and π1(K, v). In this work, we characterize the values
of m and n that admit knight’s tours of the following types:

• Knight’s tours that realize the identity in π1(M, v) or π1(K, v). We call these null-
homotopic tours.

• Knight’s tours that realize a generator in π1(M, v). We call these generating tours.

• Knight’s tours that realize an element of π1(K, v) that is the image of a generator
of fundamental group of the cylinder under the homomorphism induced by the
standard quotient map. We call these cylindrical tours.

• Knight’s tours that realize an element of π1(K, v) that is the image of a generator
of fundamental group of the Möbius strip under the homomorphism induced by the
standard quotient map. We call these Möbius tours.

These characterizations are given in Theorems 4.1, 5.1, 6.1, 6.2, and 6.3 respectively.
This paper is organized as follows: In Section 2, we define the surfaces and graphs that

we use throughout this work and review foundational graph theoretic results. Section 3
introduces covering space theory and applies it to establish an important technical result
that enables widening knight’s tours on Möbius strips. Sections 4 and 5 characterize
the dimensions of Möbius strip boards that admit nullhomotopic and generating tours
respectively. Section 6 extends these results to Klein bottle boards by characterizing the
dimensions of Klein bottles that admit nullhomotopic tours, the dimensions that support
cylindrical tours, and the dimensions that support Möbius tours. Section 7 discusses
potential future work.

2 Background on Graphs and Surfaces

In this section, we will define the surfaces, graphs, and maps that are relevant to our
work. This includes reviewing results of Schwenk, Watkins, and Ralston. We follow the
discussion presented in [6, Section 2] closely, though with some details suppressed for
brevity; see that work for a more thorough discussion.
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2.1 Surfaces

We will use four different compact surfaces in this work: rectangles, cylinders, Möbius
strips, and Klein bottles, each with dimensions m × n. These surfaces are all quotients
of the rectangle which we coordinatize by the set of ordered pairs of real numbers (x, y)
where x ∈ [0,m] and y ∈ [0, n]. The cylinder C is the quotient obtained by identifying
(0, y) and (m, y) for each y ∈ [0, n], while the Möbius strip M is given by identifying (x, 0)
and (m − x, n) for each x ∈ [0,m]. We obtain the Klein bottle K by performing both
of these identifications. Additionally, we will use two non-compact surfaces; let P be the
Cartesian plane and S be the subset of the Cartesian plane between the lines x = 0 and
x = m. Note that S is the universal cover of M and P is the universal cover of K. The
covering maps pM : S →M and pK : P → K are given by

pM(x, y) =

{
(x, ymodn) if y div n is even

(m− x, ymodn) if y div n is odd
, and

pK(x, y) =

{
(xmodm, ymodn) if y div n is even

((−x) modm, ymodn) if y div n is odd

where div and mod are used in reference to the quotient and remainder, respectively, in
the division algorithm. That is, if α and β are real numbers and β > 0, there exist unique
real numbers q and r so that α = qβ + r where q is an integer and 0 ≤ r < β. We define
α div β = q and αmod β = r.

Each of these six surfaces can be tiled by unit squares. We take the compact surfaces
to be tiled by mn unit squares and the non-compact surfaces to be tiled by infinitely
many unit squares. The sides of each square are parallel to the x or y axes and the center
of each square has the form (a+ .5, b+ .5) for some integers a and b.

2.2 Graphs

We will use graphs that model the moves a knight could make on each of the six surfaces
described in the previous subsection. Each graph corresponding to a compact surface has
a vertex for each ordered pair of integers (a, b) with 0 ≤ a < m and 0 ≤ b < n and an edge
for each distinct move a knight could make from one vertex to another. To be more precise,
on a rectangle there is a knight move from (a, b) to (a+c, b+d) so long as {|c|, |d|} = {1, 2}.
If c0 and d0 are integers so that {|c0|, |d0|} = {1, 2}, then we regard the knight moves from
(a, b) to (a+ c0, b+ d0) and from (a+ c0, b+ d0) to (a+ c0 − c0, b+ d0 − d0) = (a, b) as a
single edge. The graph modeling the possible moves of a knight on a rectangle, Rm,n, is
the graph whose edges are precisely these equivalence classes of knight moves. To obtain
the other graphs, we add edges to Rm,n that represent each quotient of the rectangle. For
Cm,n, we add edges from (a, b) when a + c 6= (a + c) modm; specifically, these are edges
from (a, b) to ((a+ c) modm, b+ d). Note that Cm,n is Cn,m as discussed in [6]. ForMm,n

when n > 1, we add edges for knight moves from (a, b) when b + d 6= (b + d) modn, and
these edges are from (a, b) to (m− a− c, (b+ d) modn). Lastly, for Km,n when n > 1, we
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include every edge in at least one of Cm,n andMm,n and add edges for knight moves from
(a, b) when a+ c 6= (a+ c) modm and b+ d 6= (b+ d) modn. These edges are from (a, b)
to ((m− a− c) modm, (b+ d) modn).

The edges inMm,1 from a vertex (a, 0) consist of two edges to (a−1, 0) corresponding
to c = −1, d = ±2; two edges to (a + 1, 0) corresponding to c = 1, d = ±2; two edges to
(m−a−3, 0) corresponding to c = 2, d = ±1; and two edges to (m−a+1, 0) corresponding
to c = −2, d = ±1. If, for any of these edges, the x-coordinate is outside of the range from
0 to m − 1, the corresponding edge is excluded. The edges in Km,1 from a vertex (a, 0)
consist of two edges to ((a− 1) modm, 0) corresponding to c = −1, d = ±2; two edges to
((a + 1) modm, 0) corresponding to c = 1, d = ±2; two edges to ((m − a − 3) modm, 0)
corresponding to c = 2, d = ±1; and two edges to ((m − a + 1) modm, 0) corresponding
to c = −2, d = ±1.

These definitions cause technical issues for boards with small values of m and n, as
these graphs can sometimes be multigraphs or pseudographs. For example, K1,1 is a
pseudograph with one vertex and four edges. Similarly, C1,2 is a multigraph, as it has two
vertices between which there are two edges.

We will also make use of graphs modeling knight moves on the infinite strip and
plane. Specifically, Sm is the graph that has a vertex for each ordered pair of integers
(a, b) with 0 ≤ a < m, and P has a vertex for each ordered pair of integers. The edges in
these graphs are defined analogously to the edges in Rm,n. There are combinatorial maps
φM : Sm →Mm,n and φK : P → Km,n given by mapping the vertex (a, b) as follows:

(a, b) 7→

{
(amodm, bmodn) if b div n is even

((−a− 1) modm, bmodn) if b div n is odd.

Since Mm,n and Km,n may not be simple graphs, some care is needed in mapping edges
in Sm and P to Mm,n and Km,n. Let (a′, b′) be the image of (a, b) under φM or φK and
consider the edge from (a, b) to (a + c, b + d). The covering maps take this to the edge
from (a′, b′) to the image of (a+ c, b+ d) corresponding to (c, d) when b div n is even and
(−c, d) when b div n is odd. In addition to preserving the graph structure, φM and φK are
covering maps.

2.3 Mapping Graphs to Surfaces

There are maps from the graphs Mm,n, Km,n, Sm, and P to M , K, S, and P respec-
tively. These maps send each vertex (a, b) to the point (a + .5, b + .5) and each edge
continuously to the geodesic line segment connecting the vertices. We denote these maps
iM : Mm,n →M , iK : Km,n → K, iS : Sm → S, and iP : P → P . For iM and iK , some care
is needed in mapping the edges, asMm,n and Km,n may be multigraphs or pseudographs,
or equivalently, the geodesic line segment between two vertices in M and K may not be
unique; this technical issue does not exist for iS and iP , as Sm and P are simple graphs.
Let e be an edge in Mm,n. We define iM(e) = pM ◦ iS(e′), where e′ is any lift of e in Sm.
Likewise, if e is an edge in Km,n, we define iK(e) = pK ◦ iP (e′), where e′ is any lift of e in
P . That is, we define iM and iK so that the diagram below commutes.
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Since Rm,n, Cm,n,Mm,n, and Km,n have all been defined to model the moves a knight
can make on a surface, we refer to Hamiltonian cycles on these graphs as knight’s tours
and Hamiltonian paths that are not cycles as open knight’s tours.

2.4 Graph Theoretic Results

In this subsection, we review some classical results on knight’s tours that are pertinent to
our work. One such result is Schwenk’s characterization of the dimensions of rectangular
boards that admit closed knight’s tours:

Theorem 2.1 (Schwenk [8]) The graph Rm,n with m ≤ n and n > 1 admits a knight’s
tour if and only if none of the following are true:

• m and n are simultaneously odd;

• m = 1, 2, or 4; or

• m = 3 while n = 4, 6, or 8.

Since Mm,n and Km,n canonically contain Rm,n, any closed knight’s tour on Rm,n is
a nullhomotopic tour onMm,n and Km,n; therefore, Theorem 2.1 is a sufficient condition
establishing the existence of nullhomotopic tours on Mm,n and Km,n.

Watkins and Hoenigman completed the analogous characterizations for tori in [10],
while Watkins extended this to cylinders, Möbius strips, and Klein bottles in [9]. In our
work, Watkins’ results regarding Möbius strips are of particular utility:

Theorem 2.2 (Watkins [9]; pg. 82) The multigraph Mm,n admits a knight’s tour if
and only if none of the following are true:

• m = 1 and n > 1;

• m = 2 and n is even;

• m = 3 and n = 1 or 4;

• m = 4 and n is odd; or

• m = 5 and n = 1.
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Theorem 2.2 gives a necessary condition for the existence of nullhomotopic and gen-
erating tours on Möbius strips. We will not make use of the analogous result for Klein
bottles because Watkins proved that Km,n admits a knight’s tour for all m and n [9, pg.
81].

Another useful result regarding the existence of generating tours on Mm,n is due to
Ralston:

Theorem 2.3 (Ralston [7]) Let m and n be odd with both m and n greater than or
equal 5 and at least one of them strictly greater than 5. If (a, b) and (c, d) are a distinct
pair of vertices where a+ b and c+d are even, then there is an open knight’s tour in Rm,n

starting at (a, b) and ending at (c, d).

An open knight’s tour on Rm,n starting and ending at a pair of well-chosen vertices
produces a generating tour onMm,n, so in some cases Theorem 2.3 suffices to demonstrate
that generating tours exist on Mm,n.

3 Applying Covering Space Theory to Knight’s Tours

Covering space theory provides a simple way to determine the topology of knight’s tours
in Mm,n and Km,n. In particular, the end points of the lifts of the tours to Sm or P
determine the topology of the tour. In this section, we make this relationship precise and
examine some consequences that we will find useful.

3.1 Covering Space Theory

This subsection reviews the necessary results from covering space theory. We have sup-
pressed some of the details, as we closely follow the discussion in [6, Section 3]; please see
that work for a more thorough exposition.

Knight’s tours can be regarded as loops in the graphs and topological spaces defined
in the previous section, and for a loop f : (I, 0) → (X, x), where I is the closed unit
interval and X is a topological space, we let [f ] denote its homotopy class. We will take
(0, 0) = 0 as our basepoint in each graph and v = (.5, .5) as our basepoint in each surface.
Each knight’s tour f : (I, 0) → (Mm,n, 0) or (Km,n, 0) gives an element of π1(M, v) and
π1(K, v) respectively; these are [iM ◦ f ] and [iK ◦ f ]. Note that nullhomotopic tours in
Mm,n are precisely tours corresponding to the identity element of π1(M, v); analogously,
nullhomotopic tours in Km,n correspond to the identity in π1(K, v). The tours in Mm,n

that give the generator of π1(M, v) are the generating tours. Let horiz , diag : I → P
be the straight line paths from (.5, .5) to (m+ .5, .5) and from (.5, .5) to (m− .5, n+ .5)
respectively. Then a knight’s tour in Km,n whose image under iK is homotopic to pK◦horiz
is a cylindrical tour; if instead the image is homotopic to pK ◦ diag , the tour is a Möbius
tour.

The following classical theorem from covering space theory is our main tool to deter-
mine whether a knight’s tour is any of the types that we study in this work:
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Theorem 3.1 Let X̃ be the universal cover of X with covering map p : X̃ → X, and let
x ∈ X with x̃ ∈ p−1(x). Let f, g : (I, 0) → (X, x) be two loops with lifts f̃ , g̃ : (I, 0) →
(X̃, x̃). Then f and g are path homotopic if and only if f̃(1) = g̃(1).

Now let f : (I, 0) → (Mm,n, 0) be a loop and note that f lifts to a path f̃ in Sm. By
Theorem 3.1, the endpoints of the lift determine the homotopy class of iM ◦ f . Likewise,
when g : (I, 0) → (Km,n, 0) is a loop, g lifts to a path g̃ in P whose endpoints determine
the homotopy class of iK ◦ g.

Corollary 3.2 Let f : (I, 0)→ (Mm,n, 0) and g : (I, 0)→ (Km,n, 0) be knight’s tours with
lifts f̃ : I → Sm and g̃ : I → P with given initial points f̃(0) = 0 and g̃(0) = 0. Then:

1. The loop f is a nullhomotopic tour if and only if f̃(1) = 0.

2. The loop f is a generating tour if and only if f̃(1) = (m− 1,±n).

3. The loop g is a nullhomotopic tour if and only if g̃(1) = 0.

4. The loop g is a cylindrical tour if and only if g̃(1) = (±m, 0).

5. The loop g is a Möbius tour if and only if g̃(1) = (m− 1,±n).

The proof of Corollary 3.2 is directly analogous to the proof of Corollary 3.3 in [6].
Additionally, the definitions of nullhomotopic and generating tours used forMm,n in this
work are analogous to those used for cylinders in [6]. Two results regarding knight’s tours
on cylinders from [6] will be used in this work and are listed below. We have adapted
these results to our context; recall that Cm,n in this work is Cn,m in [6].

Theorem 3.3 ([6], Theorem 4.1) The multigraph Cm,n has a nullhomotopic tour if and
only if none of the following are true:

• m and n are simultaneously odd and at least one of m and n is greater than 1;

• n = 1 and m > 1;

• n = 2; or

• n = 4 and m is even.

Theorem 3.4 ([6], Theorem 5.1) The multigraph Cm,n has a generating tour if and
only if none of the following hold:

• n = 1, 2, 4; or

• m is odd and n is even.

The multigraph Cm,n is canonically a subgraph of Km,n, so Theorems 3.3 and 3.4
provide sufficient conditions for the existence of nullhomotopic and cylindrical tours in
Km,n respectively.
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3.2 Colorings and Parity

Each of Rm,n, Sm, and P have 2-colorings given by coloring the vertex (a, b) red if a + b
is even and blue if a+ b is odd; for R8,8, this is the coloring of a chess board by light and
dark squares. These 2-colorings on Sm and P are used in the proof of statement (1) of
Proposition 3.5 below.

Recall thatMm,n and Km,n have the same vertex set as Rm,n, so using the coloring on
Rm,n, we can partition the vertices ofMm,n and Km,n into red vertices and blue vertices.
This partition does not, in general, give a 2-coloring on Mm,n nor on Km,n, as some of
the edges that have been added to Rm,n in order to create Mm,n and Km,n may connect
vertices of the same color. However, we use the assignment of the colors red and blue
on the vertices of Mm,n and Km,n to define a second partition on the vertices of Sm and
P . That is, a vertex in Sm or P is green if its image under φM or φK respectively is red.
Otherwise, we say that a vertex in Sm or P is yellow. Note again that the partition into
green and yellow vertices is not a 2-coloring on Sm nor on P , as preimages under φM

and φK of edges that are not in Rm,n may connect two vertices of the same color. More
formally, the vertex (a, b) in Sm and P is green if b div n and (amodm) + (bmodn) are
both even or if b div n is odd while ((−a − 1) modm) + (bmodn) is even and is yellow
otherwise. These colorings on Sm and P are used in the proof of statements (2) and (3)
of Proposition 3.5 below.

Proposition 3.5

1. Let n be odd. If m is odd and at least one of m and n is larger than 1, then there
is no nullhomotopic tour onMm,n nor on Km,n.

2. Let n be even. If m is even, there is no generating tour on Mm,n and no Möbius
tour on Km,n.

3. Let n be even. If m is odd, there is no cylindrical tour on Km,n.

Proof. Consider statement (1) and let n and m be odd. Suppose that f : (I, 0) →
(Mm,n, 0) is a nullhomotopic tour with lift f̃ so that f̃(0) = 0. By Corollary 3.2, f̃ is a
cycle in a bipartite graph that traverses an odd number of edges, which is a contradiction.
The same proof applies to Km,n and an analogous version of this proof for orientable
surfaces appears in Proposition 3.4 of [6].

For statement (2), let n be even. Suppose m is even and, for the sake of contradiction,
that f : (I, 0) → (Mm,n, 0) is a generating tour with lift f̃ and f̃(0) = 0. Note that,
by Corollary 3.2, the starting and ending vertices of f̃ have the same color by the green-
yellow coloring discussed above. In the case when m and n are both even, the green-yellow
coloring is not a 2-coloring. The edges from (a1, b1) to (a2, b2) for which b1 div n and b2 div n
have opposite parity are adjacent to two vertices of the same color, while all other edges
are adjacent to two vertices of different colors. Therefore, f̃ must traverse an odd number
of edges that are adjacent to vertices of the same color. Note that f̃ traverses an even
number of edges total and so an odd number of the edges traversed by f̃ are adjacent
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to two vertices of different colors. Since the starting and ending vertices of f̃ must be of
opposite colors, we have a contradiction. The same proof applies to show that there are
no Möbius tours on Km,n.

Lastly, consider statement (3) and let n be even. Suppose that m is odd, for the sake
of contradiction, suppose that g : (I, 0) → (Km,n, 0) is a cylindrical tour with lift g̃ and
g̃(0) = 0. Note that, by Corollary 3.2, the starting and ending vertices of g̃ have the
same color by the green-yellow coloring discussed above. In the case when m is odd and
n is even, the green-yellow coloring is not a 2-coloring. The edges from (a1, b1) to (a2, b2)
for which a1 divm and a2 divm have opposite parity are adjacent to two vertices of the
same color, while all other edges are adjacent to two vertices of different colors. The lift
g̃ must traverse an odd number of the edges adjacent to vertices of the same color but an
even number of edges total, which leaves an odd number of the traversed edges that are
adjacent to vertices of different colors. Therefore, the starting and ending vertices of g̃
have opposite colors, which is a contradiction. �

3.3 Inclusion and Replacement Paths

Theorem 3.1 shows that any operations that we can perform on paths that do not alter
their endpoints will not change their topology. In this and the following subsection, we
show that this idea allows us to, given a tour on a Möbius strip, widen the underlying
Möbius strip in many instances.

For the remainder of Section 3, let m ≥ 7. For Sm and Mm,n, we define two disjoint
subgraphs:

• the inner graph consisting of all vertices (a, b) with 1 < a < m − 2 and all edges
between those vertices; and

• the outer graph consisting of all vertices that are not in the inner graph and all
edges between those vertices.

In particular, the outer graph is the subgraph determined by the two outermost rows
on each side ofMm,n or Sm, and we denote these On and Õ respectively; implicit in this
notation is the observation that the structure of the outer graphs of Mm,n and Sm are
independent of m. The graph Õ has 8 connected components, each of which is an infinite
graph of vertices of valence 2. Of these connected components, the 4 left components are
in columns 0 and 1, and the 4 right components are in columns m−2 and m−1. For each
connected component, the y-coordinates of every vertex in the connected component have
the same parity and so we name the components by this parity: there are two even left
components and two odd left components. The same is true for right components. Frame
(A) of Figure 1 shows the inner and outer graphs of S7 illustrated as the thick black and
thick red subgraphs respectively.

The structure of On depends on the parity of n. When n is odd, On consists of two
cycles of length 2n and the preimage of each cycle under φM consists of four components
of Õ; the left even and right odd components are the preimage of one cycle while the right
even and left odd components are the preimage of the other cycle. When n is even, On is
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v′i

v′t

vi

vt

v′i,2
vt,2

e′

e

Figure 1: Frame (A): A portion of S7, where the inner graph consists of the thick black
edges and the outer graph Õ consists of the thick red edges. Frame (B): A directed
edge (the thin blue edge) in S7, which we take as a preimage of an edge of M7,4, with
corresponding replacement path (the thick blue edge path). The vertices and edges are
labeled in agreement with the definition of replacement path. Frame (C): An extending
collection of edges in S7 for even n. The thick solid edges form an extending collection,
and the images of the corresponding dashed edges under φM give a bijection between the
edges in the extending collection and the connected components of On.

four disjoint cycles of length n, and the preimage of each cycle under φM consists of two
components of Õ; the preimages of two the components of On are made up of one left
even and one right even component, while the preimages of the other two components are
one left odd and one right odd component. Let N denote the length of the cycles on On.

Observe that Sm−4 and Mm−4,n include as the inner graphs of Sm and Mm,n respec-
tively and that these inclusions commute with the covering maps φM . These inclusions
have analogs for the surfaces M and S. Most importantly, the (m− 4)× n Möbius strip
includes in the m × n strip by the map i(x, y) = (x + 2, y). This inclusion together
with the inclusion of Mm−4,n as the inner graph of Mm,n commute with the inclusion
maps of Mm−4,n and Mm,n into their corresponding Möbius strips. Lastly, i induces an
isomorphism on the corresponding fundamental groups of the Möbius strips.

By inclusion, a path in Sm−4 creates a path in the inner graph of Sm. Below, we
describe a splicing procedure that, given a path on the inner graph of Sm, creates a new
extended path on Sm. In particular, consider an edge e in Sm that is adjacent to vertices
(2, a) and (3, a′). Note that a and a′ have the same parity, and we will label the edge with
that parity. For instance, if a and a′ are even, we will call e an even edge. We will also
call e a left edge; this same discussion applies to edges adjacent to vertices in columns
m− 3 and m− 4, and we will call these right edges.

The edge e is part of exactly two 4-cycles containing an edge in Õ. Let e′ be one of
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those edges. Hence, e′ is adjacent to either (0, a − 1) and (1, a′ − 1) or (0, a + 1) and
(1, a′+ 1), so e′ is in a left component of Õ, and this component and edge e have opposite
parities. We now give e a direction and let vi and vt be the initial and terminal vertices of
e respectively. We say that e is traversed upward if the second coordinate of vt is greater
than the second coordinate of vi and downward otherwise. This direction determines a
direction on e′ as part of the 4-cycle; the direction on e′ is opposite the direction on e.
Let v′i and v′t be the initial and terminal vertices of e′.

Now suppose that the original path in Sm−4 maps to a path on Mm,n under φM .
Removing all preimages of φM(e′) from the connected component of Õ containing e′

creates a collection of length N−1 simple edge paths. One of these paths contains v′t as an
end point and a preimage of φM(v′i), which we denote as v′i,2, as the other endpoint. Note
that v′i,2 shares an edge with the preimage of φM(vt) given by the coordinates (a, b+ 2N)
when e is traversed downward and (a, b − 2N) when e is traversed upward. We denote
this vertex vt,2. The replacement path is the length N + 1 edge path that traverses the
edge from vi to v′t, then the unique edge path in Õ from v′t to v′i,2, and lastly the edge
from v′i,2 to vt,2. Replacement paths have the following properties:

• The image of the replacement path under φM is a simple path in On that contains
every vertex in the connected component of On that contains φM(e′).

• The edge φM(e) is incident to φM(vi) and φM(vt,2).

Example 3.6 Frame (B) of Figure 1 shows a directed edge e (the thin blue edge) in the
inner graph of S7 which we consider as a preimage of an edge in M7,4. A replacement
path for e is shown by the thick blue edge path, and the edge e′ is the thin black edge. The
vertices vi, vt, v

′
i, v

′
t, v

′
i,2, and vt,2 are labeled. The horizontal red lines are the preimage

of the line y = 0 in the 7 × 4 Möbius strip under pM . While we will generally construct
replacement paths for edges whose images under φM are part of a knight’s tour, this is
not necessary. Indeed, there is no knight’s tour on M3,4 by Theorem 2.2; however, we
can still define a replacement path for e.

The majority of the figures in this work are paths in Sm or P that map to a knight’s
tour in Mm,n or Km,n; the graphs Sm and P are shown as subsets S and P respectively.
Red horizontal lines are the preimage of line y = 0 in M and K under the covering maps
pM and pK while blue vertical lines are the preimages of x = 0 in K under pK . That is,
the red lines and blue lines partition the universal cover into fundamental domains. The
white dot is the starting point of the path and is typically 0.

3.4 Extendable Tours

In this subsection, we consider edge paths in the inner graph of Sm whose image under φM

is a knight’s tour in Mm−4,n. We examine sets of left and right edges in Sm that enable
the use of replacement paths to extend the original edge path and create a knight’s tour
in Mm,n. Recall that the image under φM of each replacement path contains exactly the
vertices of a connected component of On. A collection of edges for which replacement
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paths can be selected so that each connected component of On is the image of exactly
one replacement path is extending. When n is even, a collection of left and right edges
is extending if and only if it consists of two even edges and two odd edges. When n is
odd, a collection is extending if and only if it consists of exactly one edge that is left even
or right odd and exactly one edge that is left odd or right even. Frame (C) of Figure 1
shows an extending collection of edges in S7 in the case when n is even. Generally, when
the term extending is used, it will be clear from context if the collection of edges we are
considering is extending for even n or for odd n.

Now we can state our primary technical result enabling induction on the width of
Möbius strip boards:

Proposition 3.7 Suppose that the loop f : (I, 0) → (Mm−4,n, 0) is a knight’s tour with
lift f̃ : (I, 0)→ (Sm−4, 0), where Sm−4 is the inner graph of Sm. If f̃ traverses an extending
collection of edges, half of which are traversed upward and the other half downward, then
there exists a knight’s tour f ′ onMm,n so that f̃ and f̃ ′ have the same starting and ending
vertices.

Proof. Consider the case when n is odd and fix an extending collection of edges e1
and e2 traversed by f̃ in order. Let v0, v1, . . . vmn−4n be the vertices traversed by f̃ in
order. We let ki be the index of the initial vertex of ei; that is, f̃ traverses ei from vki to
vki+1. Additionally, for each ei, we choose a replacement path Ri so that each connected
component of On is the image of exactly one replacement path. We will construct f̃ ′

by replacing each edge in the extending collection with a replacement path. Note that
each instance of replacement applies a vertical shift to the remainder of the path. For
example, when e1 is replaced by R1, we apply a vertical shift of ±4n to the portion of f̃
traversed after e1, where the direction of the shift is opposite from the direction in which
f̃ traversed e1.

More formally, let Ui be the number of edges in the extending collection that are
traversed upward before vi is reached and let Di be the analogous value for edges in the
collection that are traversed downward. We define P0 to be the edge path f̃ from v0
to vk1 , P1 to be the edge path f̃ from vk1+1 to vk2 , and P2 to be the edge path from
vk2+1 to vmn−4n. For i = 1 or 2, we set P ′i to be the edge path obtained by shifting
Pi vertically by 2N(Dki+1 − Uki+1) and R′i to be the edge path obtained by shifting Ri

vertically by 2N(Dki − Uki). Then f̃ ′ is the concatenation of P0, R1, P
′
1, R

′
2, and P ′2.

Note that Dk2 = Dk1+1 and Uk2 = Uk1+1, so the end point of P ′1 is the initial point of R′2.
Additionally, the end point of R′2 is the initial point of P ′2 by the definition of replacement
path. Note that f̃ ′ and f̃ start at the same point and that the ending vertices of the paths
f̃ and f̃ ′ are separated by a vertical shift of 4n(Dk2+1 − Uk2+1). However, f̃ traverses
the same number of edges in the extending collection upward as it does downward, so
Dk2+1 = Uk2+1. Hence, f̃ and f̃ ′ end at the same vertex.

To see that φM(f̃ ′) = f ′ is a knight’s tour, note first that φM(Pi) = φM(P ′i ) and that
f ′ traverses each vertex inMm,n\On exactly once. Further, each vertex in On is traversed
exactly once by a path in φM(R1 ∪ R′2), which shows that f ′ is a knight’s tour. Lastly,
φM(f̃) is a circuit, as f̃ and f̃ ′ share the same starting and ending vertices.
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The case when n is even is identical except that the extending collection consists of 4
edges and the vertical shifts occur in multiples of 2n. �

Definition 3.8 We say that a path f : (I, 0)→ (Mm−4,n, 0) meeting the criteria of Propo-
sition 3.7 is extendable.

Remark 3.9 Within the figures in this work, some of the preimages of knight’s tours
shown in Sm have extending edge collections. When an extending edge collection in a
knight’s tour is used in our arguments, the figure shows the collection in blue. If no
extending edge collection has been identified, that does not mean that no such collection
exists.

Remark 3.10 Given an extendable path f , when the path f̃ ′ constructed in Proposition
3.7 is taken as a path in the inner graph of Sm+4, it also traverses an extending collection
of edges. The second edges traversed in each R′i form an extending collection, and f̃ ′

traverses half of these edges upward and half downward. This observation shows that f̃ ′

is extendable and provides an induction argument for Corollary 3.12.

Example 3.11 Figure 2 gives an example of Proposition 3.7. Specifically, frame (A) of
Figure 2 is a lift f̃ of a nullhomotopic knight’s tour in M4,4 to S4. The blue edges are
an extending collection in S8. Note that f̃ traverses the first two blue edges upward and
the last two blue edges downward, so the original knight’s tour is extendable. Frame (B)
of Figure 2 shows f̃ ′, the result of applying Proposition 3.7 to frame (A). That is, frame
(B) is the preimage in S8 of a nullhomotopic tour in M8,4. The blue edges in frame (B)
are the extending collection described in Remark 3.10. Specifically, these edges are an
extending collection in the inner graph of S12. They enable the knight’s tour in frame
(A) to act as the base case for an induction argument creating a nullhomotopic tour in
M4+4k,4, where k is any non-negative integer. Note that the tour created by Proposition
3.7 depends on the base point, and we denote this point by the white dot; in frame (A),
this is (0, 0), while in frame (B), this is (2, 0). As we discuss in Corollary 3.12 and Remark
3.13, we can alter the starting point of f ′ without changing the topology of the tour.

Corollary 3.12 Let f : (I, 0)→ (Mm−4,n, 0) be an extendable knight’s tour.

• If f is nullhomotopic, then there exists a nullhomotopic tour on Mm+4k,n for each
non-negative integer k.

• If f is generating, then there exists a generating tour on Mm+4k,n for each non-
negative integer k.

Proof. We identify Sm+4k with the inner graph of Sm+4k+4. Note that by Proposition
3.7 and Remark 3.10, for each k there exists a knight’s tour fk onMm+4k,n so that f̃k has
the same starting and ending points as f̃ . By Theorem 3.1, pM ◦ iS(f̃) and pM ◦ iS(f̃k)
are path homotopic in M , so iM(f) and iM(fk) are path homotopic in M where iM is
the inclusion of Mm+4k,n into the (m + 4k) × n Möbius strip M . The inclusion of the
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(A) (B)

Figure 2: Lifts of nullhomotopic tours in M4,4 and M8,4 discussed in Example 3.11.
Frame (A): The preimage in S4 of a nullhomotopic tour in M4,4 where the white dot is
(0, 0) and the blue egdes are an extending collection in S8. Frame (B): The preimage in
S8 of a nullhomotopic tour in M8,4 with base point given by white dot at (2, 0). This is
the result of applying the methods of Proposition 3.7 to the path in Frame (A). The blue
edges are the extending collection in S12 described in Remark 3.10.

(m − 4) × n Möbius strip into M induces an isomorphism on the fundamental groups,
as it is a composition of k + 1 isomorphisms. We see that [iM(fk)] is equal to [iM(f)]
in π1(M, iM(2(k + 1), 0)). Since M is path-connected, there is an isomorphism from
π1(M, iM(2(k + 1), 0)) to π1(M, v) given by concatenating loops based at iM(2(k + 1), 0)
with paths and inverse paths from iM(2(k+1), 0) to v = iM(0, 0). The image of the initial
subpath of fk from (2(k + 1), 0) to (0, 0) under iM is such a path, and the result of this
concatenation is homotopic to iM(fk) with initial point v. Hence, taking the initial point
of fk to be (0, 0) in Mm+4k,n produces a tour that is nullhomotopic if f is nullhomotopic
and generating if f is generating. �

Remark 3.13 In Corollary 3.12, consider the case when f is generating. In this case,
note that f̃k begins at (2(k + 1), 0) and ends at (m + 2k − 2, n). Let P1 be the subpath
starting at (2(k+1), 0) and ending at a preimage (a, b) of (0, 0) under pM , and let P2 be the
remainder of fk. We can construct a generating tour based at (0, 0) by concatenating P ′2
followed by P ′1. Here, P ′2 is given by transforming P2 to start at (0, 0); this transformation
is a translation by (0,−b) when a = 0 and a flip about the vertical line y = (m+4k−1)/2
followed by the translation by (0,−b) when a = m + 4k − 1. Similarly, P ′1 is given by
transforming P1 to start at the end point of P ′2. When a = m + 4k − 1, we translate
P1 by (0,−b + n), while when a = 0, we apply a reflection about the vertical line y =
(m+ 4k − 1)/2 followed by translation by (0,−b+ n). This new edge path has the same
image under φM as f̃k, starts at (0, 0), and ends at (m + 4k − 1, n). Hence, this is a
generating tour.
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4 Nullhomotopic Tours on Möbius Strips

In this section, we characterize the dimensions of Möbius strips that admit nullhomotopic
knight’s tours.

Theorem 4.1 The multigraph Mm,n supports a nullhomotopic tour if and only if none
of the following are true:

• m and n are both odd and at least one of m and n is greater than 1;

• m = 1 and n > 1;

• m = 2;

• m = 3 and n = 4; or

• m = 4 and n is odd.

When both m and n are greater than 4, Theorem 2.1 implies that if at least one of
m or n is even, then a nullhomotopic tour exists on Mm,n, since there is a knight’s tour
on Rm,n. Further, Proposition 3.5 implies that if both m and n are odd, then there is
no nullhomotopic tour on Mm,n. This establishes Theorem 4.1 in the case that m and n
are both greater than 4. Indeed, in this case,Mm,n supports a nullhomotopic tour if and
only if there is a knight’s tour on Rm,n. This is not true for smaller boards; the edges
that are added to Rm,n to create Mm,n enable nullhomotopic tours that are impossible
otherwise. To prove Theorem 4.1, we consider 8 cases by fixing m to be 1, 2, 3, or 4 and
likewise fixing n.

1× n

There is a nullhomotopic tour on M1,1, as it has only one vertex. Otherwise, there is no
knight’s tour on M1,n by Theorem 2.2.

m× 1

The multigraph M2,1 has two vertices connected by two edges, and neither of the two
possible knight’s tours are nullhomotopic. For odd values of m with m ≥ 3, by Proposition
3.5, there is no nullhomotopic tour onMm,1. By Theorem 2.2, there are no knight’s tours
on M4,1.

This leavesMm,1 where m is even and m ≥ 6. Observe that Figure 3 gives preimages
under φM of nullhomotopic tours on M6,1, M8,1, and M10,1. We will show how to
inductively use the tour on Mm,1 to build a nullhomotopic tour on Mm+2,1. Formally,
we map the preimage of the tour under φM to Sm+2 by the inclusion map from Sm to
Sm+2 sending vertex (a, b) to (a, b) and the edge from (a, b) to (a+ c, b+d) to itself where
{|c|, |d|} = {1, 2}. In practice, we can visually consider, for example, the path shown in
frame (A) of Figure 3 in S8 and likewise consider the path shown in frame (B) as a path in
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(A) (B) (C)

Figure 3: Lifts of nullhomotopic tours in M6,1, M8,1, and M10,1.

(A) (B) (C) (D) (E)

Figure 4: Lifts of nullhomotopic tours in M3,2, M4,2, M5,2, M6,2, and M8,2.

S10. We will delete one edge from each of these paths and replace it with three edges; those
four edges - the one deleted edge and the three new edges - form a 4-cycle. In particular,
when m is equivalent to 2 modulo 4, we delete the edge from

(
m
2
− 2,−2

)
to
(
m
2
− 1, 0

)
and replace it with the three-edge path

(
m
2
− 2,−2

)
−
(
m
2
,−3

)
−
(
m
2

+ 1,−1
)
−
(
m
2
− 1, 0

)
.

Applying this replacement to frame (A) of Figure 3 produces frame (B). Updating our
index by adding 2 to m, note now that frame (B) does not include an edge

(
m
2
− 2,−2

)
to
(
m
2
− 1, 0

)
, so we cannot apply the procedure described above. Instead, when m is

equivalent to 0 modulo 4, we delete the edge from
(
m
2
− 3,−3

)
to
(
m
2
− 2,−1

)
and replace

it with the three-edge path
(
m
2
− 3,−3

)
−
(
m
2
− 1,−2

)
−
(
m
2
, 0
)
−
(
m
2
− 2,−1

)
. Applying

this replacement to frame (B) of Figure 3 produces frame (C). This induction procedure
produces a nullhomotopic tour on Mm,1 when m is even and m ≥ 6.

For the remainder of this section, we assume m and n are greater than 1.

2× n

When n is even, there is no knight’s tour onM2,n by Theorem 2.2. When n is odd,M2,n

is a 2n-cycle and neither of the two knight’s tours are nullhomotopic.

m× 2

Figure 4 shows the preimages under φM of nullhomotopic tours onMm,2 for each m with
3 ≤ m ≤ 6 and m = 8. Note that for m = 3, 5, 6, and 8, these tours are extendable. By
Corollary 3.12, for each m ≥ 3, there is a nullhomotopic tour on Mm,2.

For the remainder of this section, we assume m and n are greater than 2.
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(A) (B) (C) (D)

Figure 5: Lifts of nullhomotopic tours in M3,6, M3,8, M6,3, and M8,3.

3× n

When n is odd, there is no nullhomotopic tour onM3,n by Proposition 3.5. By Theorem
2.2, there is no knight’s tour on M3,4. By Theorem 2.1, the graph R3,n has a tour when
n is even and greater than 9, soM3,n has a nullhomotopic tour in those cases. It remains
to consider M3,6 and M3,8. Frames (A) and (B) of Figure 5 show the preimages under
φM of nullhomotopic tours on M3,6 and M3,8 respectively.

m× 3

By Theorem 2.2, there are no knight’s tours on M4,3. By Proposition 3.5, there are no
nullhomotopic tours on Mm,3 when m is odd. Frames (C) and (D) of Figure 5 show the
preimages under φM of extendable nullhomotopic tours on M6,3 and M8,3, respectively.
By Corollary 3.12, there is a nullhomotopic tour on Mm,3 when m ≥ 6 and m is even.
Additionally, when m is even and m ≥ 10, there is a tour on Rm,3 by Theorem 2.1, which
is a nullhomotopic tour in Mm,3.

For the remainder of this section, we assume m and n are greater than 3.

4× n

By Theorem 2.2, there is no knight’s tour onM4,n when n is odd. Frame (A) of Figure 2
is the preimage under φM of a nullhomotopic tour onM4,4. This tour can be inductively
extended downward to create tours on M4,n for each even n with n ≥ 6. In particular,
suppose the lowest edge in the preimage of the tour on M4,n in S4 is from (1,−2n) to
(3,−2n+1). We create a path on S4 by replacing this edge with the path of 9 edges given
by traversing the following list of vertices:

(1,−2n), (3,−2n− 1), (2,−2n− 3), (0,−2n− 2), (1,−2n− 4), (3,−2n− 3),
(1,−2n− 2), (0,−2n), (2,−2n− 1), (3,−2n+ 1)
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(A) (B) (C) (D) (E)

Figure 6: Lifts of nullhomotopic tours on M4,6, M4,8, M5,4, M6,4, and M7,4. The tours
in frames (A) and (B) were created by applying the induction argument described in the
4× n case above to lift of the tour on M4,4 in frame (A) Figure 2.

The image of this new path in M4,n+2 is a nullhomotopic tour. The result of applying
this method to the preimage under φM of the nullhomotopic tour onM4,4 in frame (A) of
Figure 2 is shown in frame (A) of Figure 6. Applying this argument inductively to frame
(A) of Figure 6 gives the path in frame (B) of Figure 6.

m× 4

Frame (A) of Figure 2 along with frames (C), (D), and (E) of Figure 6 show preimages un-
der φM of extendable nullhomotopic tours onM4,4,M5,4,M6,4, andM7,4. By Corollary
3.12, there is a nullhomotopic tour on Mm,4 for each m ≥ 4.

This completes the proof of Theorem 4.1.

5 Generating Tours on Möbius Strips

We now characterize the dimensions of Möbius strips that admit generating knight’s tours.

Theorem 5.1 The multigraph Mm,n supports a generating tour if and only if none of
the following are true:

• m and n are both even;

• m = 1, 2, or 4;

• m = 3 and n = 1, 2, or 4; or

• m = 5 and n = 1.
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(A) (B) (C)

(D) (E) (F)

Figure 7: Lifts of generating tours on M6,1, M7,1, M8,1, M9,1, M5,2, and M7,2.

We will prove Theorem 5.1 by considering cases following the structure of the previous
section, incrementing m and n as we proceed.

1× n

Since the connected components of S1 are single vertices, there is no generating tour in
M1,1. When n > 1, there is no generating tour on M1,n by Theorem 2.2.

m× 1

The multigraph M2,1 has two vertices connected by two edges, and neither of the two
possible knight’s tours are generating. By Theorem 2.2, there are no generating tours on
M3,1, M4,1, or M5,1. Frames (A) to (D) of Figure 7 show extendable generating tours
onM6,1,M7,1,M8,1, andM9,1. By Corollary 3.12, for each m ≥ 6, there is a generating
tour on Mm,1.

For the remainder of this section, we assume m and n are greater than 1.

2× n

When n is even, there is no knight’s tour onM2,n by Theorem 2.2. When n is odd,M2,n

is a 2n-cycle and neither of the two knight’s tours are generating.

m× 2

We consider lifts to S3 of knight’s tours inM3,2. We claim that any such tour that begins
at (0, 0) must end at a point whose first coordinate is 0. To see this, note that the vertices
that are adjacent to (1, a) are (0, a±2) and (2, a±2). Further, φM(0, a−2) = φM(0, a+2)
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(A) (B) (C) (D) (E) (F) (G)

Figure 8: Frames (A) to (E): Lifts of generating tours on M3,3, M3,5, M3,6, M3,7 and
M3,8. Frames (F) and (G): Paths in S3 used in the induction argument for the 3×n case
below.

and φM(2, a − 2) = φM(2, a + 2), so the two-edge subpath of a lift of a knight’s tour in
M3,2 containing (1, a) in its interior must adjoin vertices with first coordinates 0 and 2.
Therefore, the lift can be partitioned into four edge paths of length 1 or 2, each of which
adjoins vertices with first coordinates 0 and 2. Since we begin our edge path at a vertex
with first coordinate 0, we must also end at a vertex with first coordinate 0. Hence, our
lift does not map to a generating tour, so there are no generating tours on M3,2.

When m is even, Mm,2 has no generating tour by Proposition 3.5. Frames (E) and
(F) of Figure 7 show extendable generating tours forM5,2 andM7,2 respectively. Hence,
there is a generating tour on Mm,2 when m is odd and m ≥ 5.

For the remainder of this section, we assume m and n are greater than 2.

3× n

By Theorem 2.2, there is no generating tour onM3,4. Frames (A) to (E) of Figure 8 show
extendable generating tours onM3,n for n = 3, 5, 6, 7, and 8. For n > 8, we use induction
to produce a generating tour onM3,n. Our induction argument splits into two cases based
on the parity of n and uses the graphs in frames (F) and (G) of Figure 8. For n > 8,
we inductively construct a generating tour onM3,n by concatenating the generating tour
on M3,n−4 with the one of the paths shown in frames (F) and (G) of Figure 8. When
n is odd, we concatenate by placing the large white vertex in frame (F) of Figure 8 at
(0, 0), placing the large black vertex at (0, 4), and gluing this vertex to the path in S3 that
maps to a generating tour in M3,n−4 translated upward by 4. Using the paths in frames
(B) and (D) of Figure 8 as base cases, this procedure inductively creates an extendable
generating tour on M3,n when n is odd and n ≥ 5. When n is even, we concatenate by
placing the large white vertex in frame (G) of Figure 8 at (0, 0), placing the large black
vertex at (0, 4), and gluing this vertex to the path in S3 that maps to a generating tour
in M3,n−4 translated upward by 4. Using the paths in frames (C) and (E) of Figure 8
as base cases, this procedure inductively creates an extendable generating tour on M3,n

when n is even and n ≥ 6.
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(A) (B) (C) (D) (E)

Figure 9: Lifts of generating tours on M5,3, M6,3, M8,3, M5,4, and M7,4.

Hence, when n ≥ 3 and n 6= 4, there is an extendable generating tour on M3,n.

m× 3

By Theorem 2.2, there is no generating tour onM4,3. Frames (A), (B), and (C) of Figure
9 show extendable generating tours on Mm,3 for m = 5, 6, and 8, respectively. Recall
from the previous subsection that frame (A) of Figure 8 shows an extendable generating
tour on M3,3. Hence, when m ≥ 3 and m 6= 4, there is a generating tour on Mm,3.

For the remainder of this section, we assume m and n are greater than 3.

4× n

By Theorem 2.2, there is no generating tour onM4,n when n is odd. By Proposition 3.5,
there is no generating tour on M4,n when n is even.

m× 4

By Proposition 3.5, there is no generating tour onMm,4 when m is even. Frames (D) and
(E) of Figure 9 show extendable generating tours onM5,4 andM7,4 respectively. Hence,
Mm,4 has a generating tour when m is odd and m ≥ 5.

For the remainder of this section, we assume m and n are greater than 4.

5× n

Frame (A) of Figure 10 shows a generating tour onM5,5 and frames (B) and (C) of Figure
10 show extendable generating tours on M5,6 and M5,8. When n is even and n > 8, we
construct tours by concatenating the path in S5 whose image is a generating tour in
M5,n−4 translated upward by 4 with the image of the path shown in frame (D) of Figure
10. We take the white vertex in frame (D) as (0, 0) and notice that the terminal point of
the path in frame (D) at (0, 4) aligns with the other path. Taking frames (B) and (C) of
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(A) (B) (C) (D)

Figure 10: Frames (A), (B), and (C) are lifts of generating tours inM5,5,M5,6, andM5,8.
Frame (D) is a path in S5 used in the induction argument for the 5× n case.

Figure 10 as base cases, this procedure inductively creates an extendable generating tour
on M5,n when n is even and n ≥ 6.

For the case when n is odd and n ≥ 7, note that by Theorem 2.3, there is an open
knight’s tour onM5,n that begins at (0, 0) and ends at (2, n− 1). Making one additional
move to (4, n) = (0, 0) creates a generating knight’s tour on M5,n. Hence, there is a
generating tour on M5,n for all n ≥ 5.

At this point, we will no longer increment n and only assume that n ≥ 5. Due to the
similarity in the argument, we consider the 6× n and 8× n simultaneously.

6× n, 8× n

By Proposition 3.5, there is no generating tour on Mm,n when m = 6 or 8 and n is
even. Figure 11 shows extendable generating tours on M6,5, M6,7, M8,5, and M8,7. For
n odd with n > 7, we construct generating tours on Mm,n via induction. We translate
the path on Sm that gives a generating tour on Mm,n−4 upward by 4 and concatenate
this translated path with frame (A) or frame (B) of Figure 12 when m = 6 or m = 8
respectively. In particular, we take the white vertices in frames (A) and (B) of Figure 12
as (0, 0). This produces an extendable generating tour on Mm,n when m = 6 or 8 and n
is odd with n ≥ 5.

m× n when m ≥ 7 and m is odd

When n is even, there is a generating tour given by applying Corollary 3.12 to the tours
constructed inductively forM3,n andM5,n. When n is odd, there exists an open knight’s
tour from (0, 0) to (m− 3, n− 1) onMm,n by Theorem 2.3. Concatenating this with the
edge from (m− 3, n− 1) to (m− 1, n) = (0, 0) gives a generating tour on Mm,n.
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(A) (B) (C) (D)

Figure 11: Lifts of generating tours on M6,5, M6,7 M8,5, and M8,7.

(A) (B)

Figure 12: Paths in S6 and S8 used in the induction argument for the 6 × n, 8 × n case
above.

m× n when m ≥ 10 and m is even

By Proposition 3.5, there is no generating tour onMm,n when n is even. When n is odd,
there is a generating tour on Mm,n given by Corollary 3.12 and the tours constructed
inductively for M6,n and M8,n.

This completes the proof of Theorem 5.1.

6 Nullhomotopic, Cylindrical, and Möbius Tours on Klein Bot-
tles

We now turn to Klein bottles, extending the results of the previous two sections. In this
section, we characterize the dimensions of Klein bottle boards that admit a nullhomotopic
tour, the dimensions that admit a cylindrical tour, and the dimensions that admit a
Möbius tour. These characterizations are given in Theorems 6.1, 6.2, and 6.3, respectively.

Theorem 6.1 The pseudograph Km,n has a nullhomotopic knight’s tour if and only if
neither of the following are true:

• both m and n are odd and at least one of m and n is greater than 1; or

• both m and n are less than or equal to 2 and at least one of m and n is greater than
1.
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(A) (B)

Figure 13: Lifts of nullhomotopic tours on K2,4 and K4,1.

Note that the constant path is a nullhomotopic tour on K1,1 and that otherwise, if
both m and n are odd, that there is no nullhomotopic tour by Proposition 3.5. We now
assume that at least one of m and n is even.

When considering tours on Klein bottles, we can draw on results from both Möbius
strips and cylinders. Recall that Km,n canonically contains Mm,n and so we can apply
Theorem 4.1. When m ≥ 5, by Theorem 4.1, there is a nullhomotopic tour on Km,n

when at least one of m or n is even and so we now assume that m < 5. Additionally,
Km,n canonically contains Cm,n, enabling the application of Theorem 3.3. When n ≥ 5,
Theorem 3.3 shows that there is a nullhomotopic tour on Km,n when at least one of m or
n is even, establishing Theorem 6.1 in this case. Continuing, we assume that m and n are
less than 5 and that at least one of them is even. Of these 12 remaining cases, Theorem
4.1 shows that there is a nullhomotopic tour on K3,2, K4,2, and K4,4, while Theorem 3.3
establishes the existence of a nullhomotopic tour on K1,4, K2,3, K3,4, and K4,3. This leaves
five specific cases. Figure 13 shows nullhomotopic tours on K2,4 and K4,1, leaving only
the case when both m and n are less than or equal to 2 and at least one of m and n is
greater than 1.

Every cycle in P has at least 4 edges. Hence, there are no nullhomotopic tours on
K1,2 or K2,1. Each vertex in P is contained in 24 simple length 4 cycles. None of those
24 simple cycles containing (0, 0) in P map to a knight’s tour in K2,2, so there is no
nullhomotopic tour on K2,2. This completes the proof of Theorem 6.1.

Theorem 6.2 The pseudograph Km,n with at least one of m and n greater than one has
a cylindrical tour if and only if none of the following are true:

• m = 2 and n = 2; or

• m is odd and n is even.

The majority of the cases in Theorem 6.2 have been established by Proposition 3.5
and by Theorem 3.4. That is, when n = 3 or n ≥ 5, Theorem 3.4 establishes the existence
of a cylindrical tour on Km,n when m is even or n is odd. In the case when m is odd and
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(A) (B) (C)

Figure 14: Lifts of cylindrical tours on K2,1, K3,1, and K5,1. The path in frame (A) is used
in the induction argument in the m× 1 subsection below.

n is even, there is no cylindrical tour on Km,n by Proposition 3.5. All that remains to
prove Theorem 6.2 is to consider the cases when n = 1 or when n = 2 or 4 and m is even.

m× 1

Frames (A), (B), and (C) of Figure 14 show paths on P that map via φK to cylindrical
tours on K2,1, K3,1, and K5,1 respectively. When m is even, we build a path in P that
maps to a cylindrical tour on Km,1 by repeating the path shown in Frame (A) m/2 times
with one copy of this path beginning at (k, 0) for each even integer k with 0 ≤ k < m.
When m is odd, we build a path inductively by cutting the path on P that maps to Km−2,1
at (1, 1) and shifting the part of the path occurring after (1, 1) two squares to the right.
To connect these, we concatenate each part with the path shown in frame (A) where the
white point is placed at (1, 1). When this procedure is applied to the path shown in frame
(B) of Figure 14, we obtain the path shown in frame (C) of that figure.

m× 2 when m is even

First consider the case when m = 2. Note that φK(a, b) = φK(a± 1, b± 2) for all vertices
(a, b) ∈ P . Therefore, each edge in a knight’s tour on K2,2 must lift to an edge in P
from (a, b) to (a± 2, b± 1). Suppose now that there is a cylindrical tour onM2,2 and lift
this tour to P so that the initial vertex is (0, 0). By Corollary 3.2, the terminal vertex is
(2, 0). Given that four edges are traversed and each edge adds or subtracts 2 to the first
coordinate, the possible values of the first coordinate of the terminal vertex of this lift are
0,±4, and ±8, which gives a contradiction. Thus, there is no cylindrical tour on K2,2.

Continuing, note that frames (A) and (B) of Figure 15 show paths on P that map via
φK to cylindrical tours on K4,2 and K6,2 respectively. When m > 6 and m is equivalent to
0 mod 4, we build a path in P that maps to a cylindrical tour on Km,2 by repeating the
path shown in frame (A) of Figure 15 m/4 times with one copy of this path beginning
at (k, 0) for each k with 0 ≤ k < m where k is a multiple of 4. When m > 6 and m is
equivalent to 2 mod 4, we build a path inductively by cutting the path on P that maps
to Km−4,2 at (4, 1) and shifting the part of the path occurring after (4, 1) four squares to
the right. To connect these, we concatenate each part with the path shown in frame (C)
of Figure 15 where the white point is placed at (4, 1).
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(A) (B) (C)

Figure 15: Lifts of cylindrical tours on K4,2 and K6,2 are given in frames (A) and (B)
respectively. The path in frame (C) is used in the induction argument in the m × 2
subsection above.

(A)

Figure 16: Lift of a cylindrical tour on K2,4.

m× 4 when m is even

Note that Figure 16 shows a path on P that maps via φK to a cylindrical tour on K2,4.
When m ≥ 4, we repeat this path m/2 times, with one copy of this path beginning at
(k, 0) for each even integer k with 0 ≤ k < m, to build a cylindrical tour on Km,4.

This completes the proof of Theorem 6.2.

Theorem 6.3 The pseudograph Km,n with at least one of m and n greater than one has
a Möbius tour if and only if at least one of m and n is odd.

Note that when m and n are both even, Proposition 3.5 shows that there is no Möbius
tour on Km,n, so we now assume that at least one of m and n is odd. Since Mm,n is a
subgraph of Km,n, we can apply Theorem 5.1 in this context. With the exceptions of K3,1,
K3,2, K3,4, and K5,1, in the case when m = 3 or m ≥ 5, Theorem 5.1 establishes that there
is a Möbius tour on Km,n. Further, note that K1,n is canonically equal to the pseudograph
T1,n from [6], and, by Theorem 6.1 of [6], there is a Möbius tour on K1,n when n > 1.

All that remains in order to prove Theorem 6.3 is to consider the cases when m = 2
or 4 and n is odd along with the sporadic multigraphs K3,1, K3,2, K3,4, and K5,1. Möbius
tours on the four sporadic Klein boards are shown in Figure 17.
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(A) (B) (C) (D)

Figure 17: Lifts of Möbius tours on K3,1, K3,2, K3,4, and K5,1.

(A) (B) (C)

Figure 18: Lifts of cylindrical tours on K2,1 and K2,3 are given in frames (A) and (B)
respectively. The path in frame (C) is used in the induction argument in the 2× n when
n is odd subsection below.

We consider the other cases below.

2× n when n is odd

Frames (A) and (B) of Figure 18 show paths on P that map via φK to Möbius tours on
K2,1 and K2,3 respectively. For n > 3, we build a tour inductively by concatenating the
path on P that maps to a tour on K2,n−2 with the path shown in frame (C) of Figure
18, where the white vertex in frame (C) has coordinates (1, n− 2). Hence, K2,n admits a
Möbius tour for all odd n.

4× n when n is odd

Frames (A), (B), and (C) of Figure 19 show paths on P that map via φK to Möbius tours
on K4,1, K4,3, and K4,5 respectively. For n > 5, we build a path inductively by cutting the
path on P that maps to a tour on K4,n−2 at (3, n − 2) and shifting the part of the path
occurring after (3, n−2) two squares upward. To connect these, we concatenate each part
with the path shown in frame (D) of Figure 19, where the white vertex in frame (D) is
placed at (3, n− 2). Hence, K4,n admits a Möbius tour for all odd n.

This completes the proof of Theorem 6.3.
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Figure 19: Lifts of cylindrical tours on K4,1, K4,3 and K4,5 are given in frames (A), (B),
and (C) respectively. The path in frame (D) is used in the induction argument in the
4× n when n is odd subsection above.

7 Future Work

The cylinder, Möbius strip, torus, and Klein bottle are the compact surfaces that can be
obtained as a quotient of an m× n rectangle that have a homogenous Euclidean metric.
Together with the results in [6], this work answers for each surface which dimensions
of rectangle admit knight’s tours that are nullhomotopic and which dimensions admit
knight’s tours that are homotopic to the standard loop in each direction. This is the ini-
tial step in determining, given a surface, which elements of the fundamental group of the
surface can be realized by knight’s tours. For example, the fundamental group of both the
cylinder and Möbius strip is isomorphic to Z; what is the largest value in these fundamen-
tal groups that can be realized as a knight’s tour? Aside from the questions answered here
and in [6], nothing is known regarding the interaction between the fundamental groups of
surfaces and knight’s tours.
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