
Fractal Word Search: How Deep to Delve

K. Chura and T. Khovanova

Abstract - We look at the puzzle In the Details, which appeared in the 2013 MIT Mystery
Hunt and which gained fame as the fractal word search. This seemingly impossible puzzle,
whose solution could not fit the memory of a modern computer if the puzzle were solved
using a brute-force approach, requires an understanding of its fundamental structure to be
cracked. In this paper, we study fractal word searches in a general setting, where we consider
one- and two-dimensional word searches with alphabets of any length and replacement rules
of any size. We prove that the puzzle is solvable within a finite number of steps under this
generalization and give an explicit upper bound on the latest level on which a word of a
given length can appear for the first time in a given direction.

Keywords : fractal word search; algorithmic analysis

Mathematics Subject Classification (2020) : 00A08

1 Introduction

1.1 Background

In the 2013 MIT Mystery Hunt, a puzzle titled In the Details appeared, authored by
Derek Kisman. The puzzle, which can also be found at [1], is written out in Figure 1.

This puzzle has since gained the name fractal word search. Let us have a look at it
together to discover why!

First, we notice that the puzzle looks like a word search. In a word search, one can
find words from a given list in a given grid looking horizontally, vertically, or diagonally in
eight directions overall. After all the words have been found and their letters crossed out,
the leftover letters in the grid spell out the answer or at least a hint on it. Traditionally,
the number of blanks in the final row of the puzzle represents the length of the sought
answer, which in the case of our puzzle is a length of 8.

However, this puzzle is not a regular word search since only 6 words from the list can be
found in the grid. These are BOUNDARY (diagonal in lower-right quadrant), HENON
(vertical in lower-left quadrant), NEURON (diagonal in upper-right quadrant), RIV ER
(horizontal in lower-right quadrant), Y ODAWG (diagonal in middle of left half), and
LEV ELTWO (top row). The absence of the other words means that the puzzle has a
hidden secret, but what is this secret? We can observe that the words in the list are
related to fractals; this is the first big hint. The second hint is that the grid shows many
repeating 2× 2 blocks, of which there are exactly 26 kinds; this suggests that each block

the pump journal of undergraduate research 8 (2025), 1–19 1

TWELEVELTWONSHELMUMUOERAIYRANL
QAP IUNP IQAYDPEP IRPRPKVOYESOYOR
ELRATFDTELDTTFDTBWNLMUTFONYDWJ
P IOYJMHAP IHAJMHAAOORRPJMYDANFC
MUOZCGTFBWIRYDHIRAIRTFNCUENCUE
RPVQUHJMAOHKANJUOYHKJMZKBNZKBN
IRONSHOZGOTFUEELTFOEELUEYDOETF
HKYDPEVQDNJMBNP I JMKVP IBNANKVJM
BWIYNLTFSHHIELTWGOYDONDTYDHIOE
AOESORJMPEJUP IQADNANYDHAANJUKV
SHDTYDRPBWUEBWIYTWTWTFYDMUELMU
PEHAANAJAOBNAOESQAQAJMANRPP IRP
ONTWELBWLMSHELTFUEBWBWLMOZEVHI
YDQAP IAOGIPEP I JMBNAOAOGIVQUNJU
DTCGUEYDRPEVNCIREVIRTWUEUETWON
HAUHBNANAJUNZKHKUNHKQABNBNQAYD
IRUERAMUTFELTWONTFOEOEEYDTNLYD
HKBNOYRPJMP IQAYDJMKVKVHWHAORAN
ELGORPNCTFDTYDSHYDELPKTFOZRACG
P IDNAJZKJMHAANPEANP IDFJMVQOYUH
DTMUWJOETFYDELMUMUGORAONIRDTCG
HARPFCKVJMANP IRPRPDNOYYDHKHAUH

BOUNDARY
BROWNIAN
CAUCHY
CURLICUE
DE RHAM
DIMENSION
ESCAPE
HAUSDORFF

HENON
HILBERT
HURRICANE
ITERATE
JULIA
LEIBNIZ
LEVEL ONE
LEVEL TWO

LEVY DRAGON
LYAPUNOV
MANDELBROT
NEURON
NURNIE
POWER LAW
RAUZY
RIVER

SCALING
SPACE
STRANGE
TAKAGI
TECTONICS
T-SQUARE
WIENER
YO DAWG

Figure 1: In the Details

the pump journal of undergraduate research 8 (2025), 1–19 2

A B C D E F G H I J K L M
TF GO IR HI EL CG RP UE BW PK OZ TW NL
JM DN HK JU PI UH AJ BN AO DF VQ QA OR

N O P Q R S T U V W X Y Z
SH ON RA WJ YD MU DT OE EV NC EY IY LM
PE YD OY FC AN RP HA KV UN ZK HW ES GI

Figure 2: Matching between letters and two-by-two blocks

LEVELONESSUPYPM
EPATETATIMSAORQ
SKFAICRDPCAWHWH
CONKBAHEAUEHRUA
IYMANDELBROTRDU
NTRGIHIYLLARSES
OLE I ZNEAHI I ZKVD
TFHRGVWCVCLHHLO
CHPSAELOAUUXTMR
EBGWATRNREJAKPF
TSQUARESSBPOCTF

Figure 3: Level one

represents a letter in the alphabet and that each can be replaced with this letter, yielding
a grid smaller by a factor of two in each dimension. Finally, to make things a little easier,
there are the words LEV ELTWO in the upper left corner of the original grid. Could
there be the words LEV ELONE on the first line of the smaller grid we are looking for?
This happens to be the case, and the matching between letters and two-by-two blocks is
as in Figure 2.

That is, level one is represented by the 11× 15 grid in Figure 3.
This level contains 18 more words from the list, but multiple words are still missing.

Hence, we are motivated to continue to level three and perhaps beyond in a search for the
rest. Going back to level two and replacing its letters with blocks, we find an additional
three words from the list on level three and one word on level four. However, even level
four is already a bit too big for inspection, and since the subsequent levels grow in size
exponentially, there is no way we could solve the puzzle in reasonable time using the
brute-force approach of repeatedly replacing all letters and looking for words on every
vertical, horizontal, and diagonal.

Thus, we need to step back and look at how the puzzle works so that we can come up
with a smarter approach. How do fractal puzzles work? How deep can a word be hidden
that does not appear on any previous level, and is this affected by the characteristics of the

the pump journal of undergraduate research 8 (2025), 1–19 3

original grid, such as the size of the alphabet, the lengths of the sides of the replacement
rules, or the length of the word we are looking for? Can the search for a word hidden very
deep be done in a more optimal way than by writing out all the levels? These questions
will be the very focus of our paper.

1.2 Overview

This subsection covers our main results. For precise definitions of any of the notation
below, see the preliminaries in Section 2.

First, in Section 3, we gain an intuition behind Kisman’s puzzle by considering its
equivalent in one dimension, with an n-letter alphabet and b-letter replacement rules. We
then define a function W1 on n, b, and the length |w| of a given word w, and we prove
in Theorem 3.13 that W1 is an upper bound on F1(b, n, w). Here, F1(b, n, w) is the latest
depth of w, a function giving the actual latest level on which w can first appear across
all possible setups of level one L1 and all possible sets of replacement rules R with the
parameters n and b.

Having focused on the puzzle in one dimension, we use Section 4 to extend our un-
derstanding of the fractal word search to two dimensions. We prove in Theorem 4.8 that
the function W1 defined in Section 3 can also be used as an upper bound for F hv

2 (b, n, w),
the latest depth of a horizontal or vertical word w. Again, n is the size of the alphabet,
b is the length of the side of the square replacement rules, and w is the word in question.

The result we obtain in Theorem 4.8, however, does not extend to diagonal words.
Hence, we define another function W2, which takes as its input the length of the alphabet
n, the side-length of the square replacement rules b, and the length |w| of the sought
word w. We prove in Theorem 4.19 that this W2 is an upper bound on F d

2 (b, n, w), where
F d
2 (b, n, w) is the latest depth of a specific diagonal word w, given an n-letter alphabet

and any set R of (b× b)-letter replacement rules.
The rest of the paper is organized in the following way. In Section 2, we codify our

notation and provide any preliminary definitions. In Section 3, we prove Theorem 3.13.
In Section 4, we prove Theorems 4.8 and 4.19. Finally, in Section 5, we use our results to
solve the puzzle, and in Section 6, we evaluate our findings and discuss potential future
topics of exploration.

2 Preliminaries

We consider an alphabet on n letters and use upper-case Latin letters for the letters in
the alphabet, e.g. A, B, or C. We then call any string of letters from the alphabet a
word. For instance, CAT and ARRRRGGG are both words constructed from the letters
of an alphabet that contains at least the letters A, C, G, R, and T . We use an asterisk
∗ to identify an unknown letter in a word of a known length, e.g., AT∗ could stand for
ATA or ATT or any other 3-letter word beginning with AT . Given a word w, we denote
its length by |w|. We also refer to a generalized rectangle of letters as a block.

the pump journal of undergraduate research 8 (2025), 1–19 4

In Kisman’s word search, as seen in [2], words in most of the eight possible directions
are permissible. However, to make the discussion easier, we will focus only on horizontal
words from left to right, vertical words from top to bottom, and diagonal words from the
upper left to the lower right, and we will thus use the simplified terms horizontal, vertical,
and diagonal to refer to these specific directions. Note that the remaining five directions
will be analogous to those just chosen.

In our alphabet, each letter has a replacement rule of a given size; in this paper,
we restrict ourselves to the study of one-dimensional grids, where the letters have one-
dimensional b-letter replacement rules and two-dimensional grids, where individual letters
have square replacement rules of (b× b) letters. Starting with a grid of letters, we can
replace each letter in this grid according to its replacement rules and thus obtain a new,
enlarged grid. We can formalize this notion by defining a projection R(p), which maps a
block of letters p to its replacement based on the replacement rules of the individual letters
of p. We refer to the starting grid as the 1-st level or L1 and denote any consecutive k-th
level as Lk, and R(p) can be seen as a mapping between the individual levels, R(Lk) =
Lk+1 for k ≥ 1. We denote multiple applications of R as Rl(Lk) = Lk+l for k, l ≥ 1.

Example 2.1 Take the 3-letter alphabet consisting of the letters A, B, and C, where
the replacement rules of these letters are AB, AC, and BB respectively. If L1 has the
single letter A, we get the consecutive levels L2 = R(L1) = R(A) = AB, L3 = R(L2) =
R(AB) = ABAC, and L4 = R(L3) = R(ABAC) = ABACABBB. Thus, we can catch
a CAB on L4. The reader may also notice that with this setup, the word CC can never
appear on any level other than 1.

We refer to a word v on Lk−1 as the parent of the word w if R(v) contains w and
R(v′) does not contain w for any sub-word v′ of v. In this case, we call w a child of v.

Example 2.2 The parent of CAB on L4 in Example 2.1 is BA on L3.

Note that R(p), defined above, does not necessarily have a well-defined inverse. Al-
though a block of letters located in a particular place of the grid on a particular level has
a unique parent, the same word in a different place might have a different parent.

Example 2.3 Using the alphabet and replacement rules of Example 2.1, BA could be a
child of AA, AB, CA, or CB.

The main interest of this article lies in determining the latest level on which a given
word w can appear for the first time across all the possible setups of L1. Notice that any
word can appear on level one, for example, we can set L1 = w. However, the interest of
our paper is how long we need to search for a given word to be sure that we find it or to
know that it never appears.

3 The One-Dimensional Case

In this section, we prove an upper bound on the latest level on which a word can appear
for the first time in one dimension, with an n-letter alphabet and b-letter replacement

the pump journal of undergraduate research 8 (2025), 1–19 5

rules. Many of the results given here are directly relevant to the exploration of vertical,
horizontal, and diagonal words in the two-dimensional scenario. We start with definitions.

Definition 3.1 Given an initial level L1 and replacement rules R, we define the depth
of a word w denoted dw(L1, R) to be the first level w appears on. If it does not appear, we
set dw(L1, R) = −1.

Example 3.2 Given the alphabet in Example 2.1, we examine the depth of the word A
across different setups of L1. If L1 contains A, then dA = 1. If L1 does not contain A but
contains B, then dA = 2. If L1 has only instances of the letter C, then dA = 3. In the
same setup, we see that the depth of the CC is 1, if it appears on the first level, otherwise
we have dCC = −1.

We first make an observation that will help us better understand the transition be-
tween individual levels. This observation is the first step towards concluding that any
fractal word search is finite.

Lemma 3.3 If the depth of a word w is k, then the depth of any parent of w is no less
than k − 1. Moreover, at least one of the parents appears on Lk−1.

Proof. For the first part of the statement, we want to show that if a word w appears
for the first time on Lk, then any parent of w appears for the first time no earlier than on
Lk−1. By contradiction, assume a parent p of w appears on Lj, where j < k − 1. Then,
since w is a child of p, w appears on Lj+1. However, since j + 1 < k, this contradicts our
initial assumption that w appears for the first time on Lk. Thus, the first time a parent
of w can appear is no earlier than Lk−1. For the second part of the statement, if none of
the possible parents of w appears on Lk−1, then the word w itself does not appear on Lk.
□

The above observation applies to a fixed initial level. We now introduce the notion of
the latest depth that does not depend on the initial level.

Definition 3.4 Given an n-letter alphabet and b-letter replacement rules R in one di-
mension, we define the latest depth of a word w to be the largest dw across all L1,

F1(b, n, w) = max{dw(L1, R) |L1 with only letters represented by R}.

Example 3.5 From Example 2.1, we get F1(2, 3,A) = 3, and F1(2, 3,CC) = 1.

With the observation in the previous lemma, we can establish the latest depth of a
1-letter word, whatever the size of the alphabet and even regardless of the dimensionality
of the grid and the size of the replacement rules. The following result serves as the base
case for the latest first-time appearance of a word of any length.

Lemma 3.6 Given an n-letter alphabet and a 1-letter word w, the latest depth of w is no
greater than n:

F1(b, n, w) ≤ n.

the pump journal of undergraduate research 8 (2025), 1–19 6

Proof. The parent of a single letter is always itself a single letter. When tracing back
the single-letter parents of parents of w, we see, using Lemma 3.3, that all of them must
be unique. Hence, we can only go back n − 1 levels before we run out of letters that
appear for the first time on any given level. Thus, w appears for the first time on Ln at
the latest, else it does not appear at all. □

Example 3.7 In Example 2.1, the size of the alphabet is 3. We have dA = 1, dB = 2,
and dC = 3. No new letter appears from L4 onward since there are no other letters left
in the alphabet. Thus, all new 1-letter words have a depth within the bound 3 given by
Lemma 3.6.

The case of 1-letter words above is, in fact, special, for 1-letter words are the only
words that can never, on any level, appear on the join of two or more replacement rules
of letters from the previous level. Thus, 2-letter words represent another important base
case, namely that of words that can span multiple blocks given by the replacement rules.
Thus, understanding 2-letter words in the one-dimensional scenario does most of the job
of understanding words of any length.

Lemma 3.8 Given an n-letter alphabet and a 2-letter word w, the latest depth of w is no
greater than n2 + 1:

F1(b, n, w) ≤ n2 + 1.

Proof. Suppose w appears for the first time on Lk. Then either w is part of a replacement
rule of some 1-letter word p that appears for the first time on Lk−1, and we are solving
on Lk−1 the problem of Lemma 3.6, or w has a parent p with two letters, |p| = 2. Then,
we are recursively solving finding a two-letter word for the first time on Lk−1. Tracing
back the parents of parents, assuming none of them is a single letter, we can see that all
of them must be unique 2-letter words by Lemma 3.3. Hence, we can only go back n2 − 1
levels before we run out of all the possible ordered pairs of n letters, so one additional step
back must bring us to L1. This allows the 2-letter word w to appear on Ln2+1 at the latest
as claimed. Note that if we snap back to the problem of 1-letter words before exhausting
all n2 possible pairs, assuming that we have so far seen m letters, we have descended by
at most m2 levels and have no more than n − m levels to go before we run out unseen
letters and reach L1. Now since n > m > 0, we have 1 < n+m and 0 < n−m, so from
n−m < (n+m)(n−m), we get n−m < n2 −m2. Thus, m2 + n−m < n2 implies that
a 2-letter word can really appear on Ln2+1 at the latest as claimed. □

Example 3.9 In Example 2.1, we point out that the word CC never appears, if level 1
is a 1-letter word. Although one can reach this conclusion intuitively by inspecting the
replacement rules, Lemma 3.8 tells us that even with the brute-force approach of writing
out all the levels, it is enough to check 32 + 1 = 10 levels since 10 is an upper bound on
the latest depth of any 2-letter word. Given that L10 in this setup has a mere 512 letters
or approximately 7 lines, it would not be that difficult to verify!

The key to figuring out an upper bound on the latest depth for a word of length
greater than 2 is determining in how many levels this word can be reduced to a 2-letter

the pump journal of undergraduate research 8 (2025), 1–19 7

word. Intuitively, while transitioning between levels, the length of the parent on Lk−1 of
the child on Lk will be smaller by a quotient of b, so if the parent of w is p, we have
|p| ≈ |w|

b
. However, as the following example shows, this is really only an approximation.

Example 3.10 In Example 2.1, the word AB on L3 has the children ABA, BAC, and
ABAC on L4. The parent of ABBB on L4 is the word AC on L3, while the parent of
the overlapping word CABB on L4 is the word BAC on L3.

Therefore, it is useful to establish an upper bound on the length of the parent of any
word w. The intuition behind focusing on the upper bound is that the longer the parents
are along the way of going down levels, the more levels it takes before our initial word
reduces to a 2-letter word, which in turn means that w might be hidden deeper.

Lemma 3.11 Given an n-letter alphabet with b-letter replacement rules and a word w on
Lk, an upper bound on the length |p| of a parent p of this word on Lk−1 is given by

|p| ≤
⌈
|w|+ b− 1

b

⌉
.

Proof. Fix a length ℓ and consider all the possible lengths |w| of a word w for which
the maximum length of the parent is ℓ. The parent p of length ℓ on Lk−1 is replaced by
an ℓb-letter string. For w on Lk to at least partially cover each b-letter section of this
ℓb-letter string, so that its parent can have length ℓ, we have

(ℓ− 2)b+ 1 < |w|,

from which we get
(ℓ− 1)b < |w|+ b− 1,

and by dividing on both sides, we have

ℓ− 1 <
|w|+ b− 1

b
,

from which the lemma follows. □
Using this and previous results, we can finally establish an upper bound on the func-

tion F1(b, n, w) defined in Section 2, which gives the actual latest depth of a specific word
w given an n-letter alphabet and b-letter replacement rules across all possible configura-
tions of L1. First, we define the function W1, which is a candidate for the upper bound on
F1. Note below the subtle difference between the parameters of the functions F1(b, n, w)
and W1(b, n, |w|). While F1 provides the latest depth for a specific word w, i.e., the output
may be different for two words of the same length, W1 provides the same estimate for all
the words of equal length regardless of the letters the words are composed of.

Definition 3.12 Let W1 : N3 7→ N be a map such that

W1(b, n, |w|) =

{
n |w| = 1,

⌈logb(b|w| − b)⌉+ n2 |w| > 1.

the pump journal of undergraduate research 8 (2025), 1–19 8

Next, we prove that W1 actually is an upper bound of F1. We iteratively reduce the
word to its largest possible parent, and once we arrive at a 2-letter word, we already know
what to do by Lemma 3.8.

Theorem 3.13 Given a one-dimensional grid, an n-letter alphabet with b-letter replace-
ment rules, and a word w, an upper bound on F1(b, n, w) is given by W1(b, n, |w|):

F1(b, n, w) ≤ W1(b, n, |w|).

Proof. By Lemma 3.6, we have F1(b, n, w) ≤ n = W1(b, n, 1) for |w| = 1. By Lemma 3.8,
we have F1(b, n, w) ≤ n2 + 1 = W1(b, n, 2) for |w| = 2.

Now we use strong mathematical induction on the length of the word w. Assume that
there exists a c ∈ N0 such that for all words v such that |v| ≤ bc+1, the statement holds,
and suppose that we have a word w such that

bc + 1 < |w| ≤ bc+1 + 1.

Consider the maximum size of the parent p of w. By Lemma 3.11, this size does not
exceed ⌈

|w|+ b− 1

b

⌉
≤

⌈
bc+1 + 1 + b− 1

b

⌉
= bc + 1.

Thus, by the induction assumption, we know that the parent p of w can appear for
the first time no later than W1(b, n, b

c+1) = ⌈logb(b(bc+1))−b)⌉+n2 = c+1+n2. Thus,
the word w itself appears for the first time no later than c + 2 + n2 = W1(b, n, b

c+1 + 1)
as claimed and F1(b, n, w) ≤ W1(b, n, b

c+1 + 1) = W1(b, n, |w|) for all |w| > 2. □

Example 3.14 Considering the alphabet and the replacement rules from Example 2.1,
we want to find the latest depth of the word CACABA.

Looking at the replacement rules AB, AC, and BB for the letters A, B, and C
respectively, we see that if the word CACABA appears later than L1, its parent must
be either BBAA or BBAB on Lk−1. If the parent is BBAA, then Lk−1 is L1 since we
cannot have two consecutive letters A on any level but the first. If, however, the parent is
BBAB, it could have the parent CA on Lk−2. We continue like this, considering all the
possible parents of parents, and stop whenever one of two conditions is met. First, if we
reach a word that cannot be a child of any other word, then this word can only be found
on L1. Second, if we reach a word on a hypothetical Lk−x that has already been seen on
a level between Lk−x and Lk, we can ignore it. This approach can be visualized using a
graph like in Figure 4, where the leaf nodes represent the stopping words in the search.

Hence, we conclude that Lk−5 is the deepest L1 we can reach. If we start with level L1

being A, the next few levels are AB, ABAC, ABACABBB, ABACABBBABACACAC,
followed by L6,

ABACABBBABACACACABACABBBABBBABBB,

with CACABA on it. Hence, the latest depth for the word CACABA is 6. This satisfies
the constraint given by Theorem 3.13, which suggests the upper bound ⌈log2(10)⌉+ 9 =
4 + 9 = 13.

the pump journal of undergraduate research 8 (2025), 1–19 9

CACABA

BBAA BBAB

CA

BB

C

B

AC

B

CC

BA

AA AB

A

Figure 4: Possible lineage for the word CACABA

In the example above, the latest depth of the word CACABA is much lower than the
upper bound suggested by Theorem 3.13. This is a more general observation.

Example 3.15 Using computer-aided verification, one can show that given 2-letter re-
placement rules for a 2-, 3-, and 4-letter alphabet, the actual latest depths of any word
are 4 < 22 + 1, 7 < 32 + 1, and 13 < 42 + 1 respectively1.

To conclude, in this section, we have proven an upper bound on the latest depth of a
word of any length in one dimension, with an n-letter alphabet and b-letter replacement
rules, and we can now apply all our findings to the two-dimensional scenario.

4 The Two-Dimensional Case

In this section, we build on the results from the previous section and start with expanding
our definitions to two dimensions.

4.1 Definitions

We will see later that diagonals behave differently than horizontal and vertical directions.
Because of that, we want to have a separate definition for the diagonal depth.

Definition 4.1 Given an initial level L1 and replacement rules R in two dimensions, we
define the horizontal/vertical depth of a word w denoted dhvw (L1, R) and diagonal depth

1Google Colab Notebook

the pump journal of undergraduate research 8 (2025), 1–19 10

https://colab.research.google.com/drive/1gmUPLS048wLmHG2SFhGt-l_qMVPvBepr?usp=sharing

of a word w denoted ddw(L1, R) to be the first level w appears horizontally or vertically and
diagonally, respectively. If it does not appear, we set the corresponding parameter to −1.

Definition 4.2 Given an n-letter alphabet and b-letter replacement rules R in two di-
mensions, we define the horizontal/vertical latest depth of a word w to be the largest dhvw
across all L1,

F hv
2 (b, n, w) = max{dhvw (L1, R) |L1 with only letters represented by R}.

We define the diagonal latest depth of a word w to be the largest ddw across all L1 and R,,

F d
2 (b, n, w) = max{ddw(L1, R) |L1 with only letters represented by R}.

The implication of the following subsections is that the search in Kisman’s puzzle is
finite. We start off by defining a useful tool that simplifies the study of diagonal words and
also helps collapse the problem of vertical and horizontal words into the already solved
problem in one dimension.

Now, we define the concept of a bounding box. The motivation behind this comes
from several observations about diagonal words and their parents. We first notice that if
a word w is diagonal, its parent p might not be a diagonal word. In Figure 5, the parent
of the left word can be represented as three letters in a shape of L, ∗

∗ ∗ , while the parent
of the word on the right are three letters in the shape of inverted L, ∗ ∗

∗ . Hence, we may
need to discuss not only words but also sets of letters.

*
*

*

*
*

*

Figure 5: Possible 3-letter diagonal words with 3-letter parents

Second, the parent of a diagonal word might have just as many letters as the word
itself, as demonstrated in the example below. Therefore, we require a tool that captures
how exactly the parent is smaller.

Example 4.3 Consider the 3-letter alphabet A, B, C with (2× 2)-letter replacement
rules, where the letters A, B, and C are replaced by the blocks A B

C B , A C
B B , and B B

C C ,
respectively. Then the diagonal word ABAB could have the diagonal parent AB, and the
diagonal word CBBC could have the following parent of width 2 and height 3,

A*.
CB.
*B.

the pump journal of undergraduate research 8 (2025), 1–19 11

As we will see, the bounding box accomplishes both the goal of tracking sets of letters
and of capturing the size of a parent in a meaningful way.

Definition 4.4 Let the bounding box of a given set of letters in a grid be the smallest
rectangle that contains the set.

Example 4.5 The bounding box of the set of letters

AB*
* *B
B

in the two-dimensional grid

ABAC
CBBB
BBAC
CCBB

is the following (3× 3)-letter box

ABA.
CBB.
BBA.

Following the above definition, we observe that the width and height of the bounding
box of a set of letters w are independent of each other when tracing back the parents of
w. Thus, we conclude that each dimension of the bounding box of a parent p to a set of
letters w behaves according to Lemma 3.11.

Lemma 4.6 Given a two-dimensional grid, an n-letter alphabet with (b×b)-letter replace-
ment rules, and a set of letters w with an (y×x)-letter bounding box on Lk, each side of the
box shrinks on Lk−1 according to the bound established for words in the one-dimensional
scenario.

Proof. Consider the width x of the bounding box. The reasoning for the height y is
analogous. We observe that the maximum width of the parent p of the bounding box is
constrained by x and the width b of the replacement rules the same way the maximum
length of a parent is constrained by the child’s length and the length of the replacement
rules in the one-dimensional scenario by the proof of Lemma 3.11. □

Example 4.7 In Example 4.3, both examples satisfy the bound
⌈
4+2−1

2

⌉
= 3 on the

length of each of the parent’s sides. Notice that for CBBC, the width and height of its
parent are not equal.

the pump journal of undergraduate research 8 (2025), 1–19 12

Therefore, thanks to the bounding box, we do not need to worry about whether the
parent of w is a diagonal word or a zig-zag formation of letters. Instead, we are concerned
about the width and height of the formation. Since each of the sides of the bounding box
shrinks with the same speed as a one-dimensional grid, we are left to investigate what
happens if the box reduces to a (2 × 2)-letter formation. However, before we do so, we
note how the concept of the bounding box collapses the problem of vertical and horizontal
words to the already solved problem in one dimension.

4.2 Vertical and Horizontal Words

In this subsection, we directly apply the notion of a bounding box to horizontal and ver-
tical words in the two-dimensional scenario. The following result should not be surprising
since, intuitively, rows and columns of the two-dimensional grid themselves behave like
one-dimensional grids.

Theorem 4.8 Given a two-dimensional grid and an n-letter alphabet with (b× b)-letter
replacement rules, a vertical or horizontal word w shrinks like the same word in the one-
dimensional scenario, that is

F hv
2 (b, n, w) ≤ W1(b, n, |w|).

Proof. Without loss of generality, consider a horizontal word w since the proof for a
vertical word is analogous. The bounding box of w is the word itself, i.e., it has 1 × |w|
letters. We notice that the vertical side of the box is already as small as possible and
cannot get larger. By Lemma 4.6, the horizontal side shrinks according to the bound
given by Lemma 3.11 until it reaches a length of 2. Hence, we have reduced the problem
to that of a horizontal 2-letter word. Since a horizontal 2-letter word can span at most
two horizontally neighboring replacement rules and can therefore only have a 1-letter or
horizontal 2-letter parent, Lemma 3.8 can be extended to this situation, and we reach
L1 after no more than n2 levels. Hence, the reasoning of Theorem 3.13 applies, and
W1(b, n, |w|) is an upper bound on F hv

2 (b, n, w). □

Example 4.9 Consider the same alphabet and replacement rules as in Example 4.7. Like
in Example 2.1, we notice that if L1 does not contain the horizontal or vertical word AA,
this word never appears horizontally or vertically. Again, one could reach this conclusion
intuitively, but Theorem 4.8 tells us that even with the brute-force approach of writing
out all the levels, it would be enough to check 32 + 1 = 10 levels since 10 is an upper
bound on the latest depth of any horizontal or vertical 2-letter word.

Remark 4.10 Since in a two-dimensional grid, the number of rows/columns grows ex-
ponentially with each level, we expect it to be generally faster to find any given word
on a horizontal/vertical than to find the same word in a growing one-dimensional grid,
i.e., we expect to find the word on an earlier level in two dimensions. However, note that
the function W1(b, n, |w|) introduced in Definition 3.12 is just as tight an upper bound
on F hv

2 (b, n, w) as it is on F1(b, n, w) since our replacement rules could each have all its

the pump journal of undergraduate research 8 (2025), 1–19 13

rows identical to each other, in which case all rows on any level are identical, and our
two-dimensional case is isomorphic to the one-dimensional case.

Having established an upper bound on F hv
2 (b, n, w) or the latest level on which a

horizontal or vertical word w can appear for the first time, we can now apply the concept
of a bounding box to the scenario by which it was motivated, i.e., diagonal words.

4.3 Diagonal Words

Thus, we have shown that horizontal and vertical words in two dimensions differ very little
from words in a one-dimensional grid. Once we focus on diagonal words of length greater
than 1, however, the dynamic changes. First of all, the following lemma demonstrates that
a diagonal 2-letter word may be found for the first time at a later level than a horizontal
or vertical 2-letter word. This is due to the fact that a diagonal 2-letter word can have
horizontal, vertical, or diagonal 2-letter parents.

Lemma 4.11 Given a two-dimensional grid, an n-letter alphabet, and a diagonal 2-letter
word w, the latest depth of w is no greater than 2n2 + 1:

F d
2 (b, n, w) ≤ 2n2 + 1.

Proof. Suppose w appears for the first time on a diagonal on Lk. If w is contained in a
replacement rule of some 1-letter word p that appears for the first time on Lk−1, we are
solving on Lk−1 the problem of Lemma 3.6, else w has a parent p with two letters. Then,
two possible scenarios arise. Either p is vertical or horizontal and Lk−1 is at most Ln2+1

by Theorem 4.8, so Lk is at most Ln2+2. Or p is diagonal, and we are recursively solving
finding a diagonal 2-letter word for the first time on Lk−1. Tracing back the parents of
the parents, assuming none of them is a single letter, we can see all of them must be
unique diagonal 2-letter words. Hence, we can only go back n2 − 1 levels before we run
out of all the possible ordered pairs of n letters on the diagonal, so one additional step
back must bring us to L1 or to a vertical or horizontal 2-letter word. At most n2 levels of
diagonal 2-letter words added to at most n2 levels of vertical or horizontal words allows
the diagonal 2-letter word w to appear on L2n2+1 at the latest as claimed. □

Example 4.12 Consider the alphabet and replacement rules from Example 4.7 and the
single letter A on L1. Then the first three levels are

A,

AB,
CB,

ABAC.
CBBB.
BBAC.
CCBB.

the pump journal of undergraduate research 8 (2025), 1–19 14

The depth of the diagonal wordBB is 3. This satisfies the constraint given by Lemma 4.11,
which sets the upper bound on the latest depth of a diagonal 2-letter word as 18+1 = 19.
Notice also that the diagonal word AA can never appear. Although this conclusion can
be reached intuitively, one could go through all the 19 levels to verify the same result
manually.

Example 4.13 Consider the alphabet and replacement rules from Example 4.7. Then,
if the word AC does not appear on L1, it cannot appear later on the vertical or the
horizontal, but it can appear later on the diagonal.

Remark 4.14 The upper bound given by Lemma 4.11 is very lenient, for it completely
disregards the fact that while tracing back all the diagonal 2-letter words, we will have
seen many of all the possible vertical and horizontal 2-letter words.

We already showed that a parent of a diagonal word might not be a word, meaning
that its letters might not form a line. But what shapes are possible? The following lemma
explains.

Lemma 4.15 Any ancestor of a diagonal word is contained in two neighboring diagonals.

Proof. Consider letters A and B that have at least one diagonal in between. After
applying a (2× 2)-letter rule, consider letters X and Y that belong to the child blocks of
A and B. We can see that they have to be separated by at least one diagonal. Continuing
further, we cannot get to a diagonal word, which completes the proof. □

Corollary 4.16 If a word’s ancestor is contained in a (2 × 2)-letter bounding box, it
cannot have more than 3 letters, and if it has exactly 3 letters, it has to be one of the
shapes ∗

∗ ∗ or ∗ ∗
∗ .

Imagine now a situation like in Figure 5 where the parent of a diagonal 3-letter word
is confined in a (2 × 2)-letter box while not being a word itself. As the following lemma
demonstrates, such 3-letter formations have a behavior of their own when we trace their
parents.

Lemma 4.17 Given a two-dimensional grid, an n-letter alphabet, and a 3-letter set of
letters w inside a (2× 2)-letter box, the latest depth of w is no greater than n3 + n2 + 1:

F d
2 (b, n, w) ≤ n3 + n2 + 1.

Proof. For the two possible configurations of w, see Figure 5. Suppose w appears for
the first time on Lk. If w is part of a replacement rule of some 1-letter word p that
appears for the first time on Lk−1, we are solving on Lk−1 the problem of Lemma 3.6. If
the parent of w is a 2-letter word, necessarily horizontal or vertical, the problem reduces
to that of Theorem 4.8. There is, however, one more possible configuration, namely that
of a 3-letter parent p contained within a (2× 2)-letter block and shaped as an L with the
same rotation as w. Parallel to the proof of Lemma 3.8, we can see that this yields a

the pump journal of undergraduate research 8 (2025), 1–19 15

maximum of n3 − 1 levels before we run out of ordered sets of three letters and reduce
to a 1-letter word or 2-letter vertical or horizontal word. Afterwards, we have at most n2

levels before we descend to L1. Hence, the latest level on which a 3-letter set of letters w
inside a (2× 2)-letter box can appear for the first time is n3 + n2 + 1. □

We now have all the building blocks in hand and can finally formulate a theorem for
an upper bound on the latest depth of any diagonal word in a two-dimensional grid. We
define a function that is an upper bound on the sought F d

2 (b, n, w).

Definition 4.18 Let W2 : N3 7→ N be a map such that

W2(b, n, |w|) =

n |w| = 1,

2n2 + 1 |w| = 2

⌈logb(b|w| − b)⌉+ n2 + n3 |w| > 2.

Theorem 4.19 Given a two-dimensional grid, an n-letter alphabet with (b× b)-letter
replacement rules, and a diagonal word w, an upper bound on F d

2 (b, n, w) is given by
W2(b, n, |w|):

F d
2 (b, n, w) ≤ W2(b, n, |w|).

Proof. By Lemmas 3.6 and 4.11, we have F d
2 (b, n, w) ≤ n = W2(b, n, 1) and F d

2 (b, n, w) ≤
n2 + 1 = W2(b, n, 2) as feasible upper bounds on the latest levels on which the diagonal
words of lengths 1 and 2 can appear.

The key to proving the case for |w| > 2 is understanding that unlike in the one-
dimensional scenario and unlike in the two-dimensional scenario for vertical and hori-
zontal words, tracing back the parents of parents of a longer diagonal word may never
reduce to the problem of a 2-letter diagonal word. However, we know by Lemma 4.6 and
Corollary 4.16 that we can at least reduce any diagonal word w to a parent contained in
a (2× 2)-letter block on some previous level and that this parent will have no more than
3 letters.

Now, since both the vertical and horizontal dimensions of the parents of parents of
a diagonal word w reduce the same way as the length of a word in the one-dimensional
scenario does and since the end goal is 2 letters in each dimension, we can directly apply
the reasoning from the proof of Theorem 3.13 and conclude that the maximum number
of levels required to reach the (2× 2)-letter block is given by ⌈logb(b|w| − b)⌉. However,
as observed, the parent contained in this block may have 3 letters to it. Therefore, after
reaching this block, by Lemma 4.17, there will still be up to n3 + n2 + 1 levels left until
definitively reaching L1. □

Remark 4.20 After this work was released, Derek Kisman wrote a program showing
that our bound is fairly tight [3]. Specifically, he created a configuration that puts a
3-letter word at depth lcm(a, b, c) + 1, where a, b, c ≤ n− 3, and lcm is the least common
multiple. If n is even, the lower bound is (n− 3)(n− 4)(n− 5) + 1. If n is odd, the lower
bound is (n− 4)(n− 5)(n− 6) + 1. Asymptotically, these are close to our upper bound.

the pump journal of undergraduate research 8 (2025), 1–19 16

5 Solution to In the Details

We now have the understanding we need to be able to return to the puzzle solution and
connect everything!

Using the language introduced for generalization, the puzzle corresponds to an al-
phabet of size 26 and replacement rules of length b = 2. In Section 1, we last found
some words on L4 and noted that writing out every letter on every level would not be an
optimal strategy. Indeed, if we reveal that the word RAUZY is hidden furthest on L86

and realize that the number of letters in the grid on this level is 11× 15× 485, a number
with 54 digits, we can see that this level alone would require 1042 terabyte thumb drives
just for storage. For reference, at the time of writing, the world’s largest single-memory
computing system consists of a little over 100 terabytes.

A more productive way is to solve the puzzle backwards by looking for the possible
parents of the missing words, similar to what we did in Example 3.14. As our analysis
shows, very fast, we get a potential parent contained in a (2× 2)-letter bounding box and
consisting of not more than 3 letters. We also showed that such a parent cannot have
more than 263 = 17576 potential 3-letter parents. This makes searches for all possible
parents doable by a program. In reality, the searches are much faster than our bound.

As recalled in the introduction, in some word searches, when one crosses out all the
words on the list, one can read a secret message from the remaining letters in the grid.
Could this be the case with our puzzle, too? Yes! We can cross out on L1 the words that
it contains, as well as those letters whose descendants become parts of the other words
from the list located on other levels. Even before we can find all the words from the
provided list, the number of remaining letters on level one can be reduced enough for it
to be possible to read the secret message: “SUM EACH WORD’S LEVEL. X MARKS
SPOT.” This implies that the redundancy of the English language is not enough to solve
the puzzle, and we do need to find all the words.

Once we discover the locations of all the words in the search, we can sum the earliest
levels on which these words are found, and this sum will determine the level containing
the solution to the puzzle. As the secret message suggests, the solution will be an eventual
replacement of the letter X, which is not part of any replacement rule and, therefore, only
appears once on L1.

Keep in mind that our newly acquired intuition tells us that diagonal words may
potentially be hidden later in the puzzle than horizontal and vertical words. Indeed, we
can see that horizontal grouping RQ expands to a horizontal word LEV Y DRAGON on
L6. Three more diagonal words ESCAPE, DIMENSION , and RAUZY appear on
L15, L17, and L86 respectively. We see that, as we expected, diagonal words appear on
much later levels in this puzzle than horizontal words.

Finally, by summing the levels of all found words, we determine the level at which to
find the solution. And indeed, the 8-letter answer HUMPHREY appears in the center
of level 167 and is appropriately in the shape of an X,

H* *Y.
UE.

the pump journal of undergraduate research 8 (2025), 1–19 17

RM.
H* *P.

6 Conclusion

Fractals, a field of study dating back to the 1980s when it was invented by Benoit B. Man-
delbrot in [4], has since become widely popular, with applications in biology, technology,
and beyond. However, the appearance of fractals in a word search puzzle could definitely
be considered one of a kind.

An additional parallel to the puzzle studied is the Thue-Morse sequence, which, using
our terminology, corresponds to the one-dimensional grid with a 2-letter alphabet and
2-letter replacement rules. Suppose the alphabet is {0, 1}, and the rules replace 0 with
01 and 1 with 10. Then, if we start with 0 on L1, we get the Thue-Morse sequence as a
limiting sequence. A discussion of the Thue-Morse sequence can be found in [5]. Hence,
the problem we have solved in this paper is not an isolated one but rather one showcasing
several areas of mathematics.

We have proven an upper bound on the latest depth of a word w or the latest level on
which it can appear for the first time, given the sizes of the alphabet and the replacement
rules, and we have noted that this upper bound is not tight. We have extended our
knowledge from the one-dimensional to the two-dimensional scenario and proven two
separate upper bounds, one on the latest depth of a vertical or horizontal word and one
on the latest depth of a diagonal word. One future area of exploration would be to
determine the actual latest depth of any word in the one-dimensional or two-dimensional
scenario. One could also consider higher-dimensional fractal word searches by generalizing
the proposed functions to Wd(n, b, |w|) for any dimension d. Moreover, the behavior of
the collection {Wd}d≥1 could be studied. Finally, we have used our acquired intuition to
provide a solution to Kisman’s puzzle.

Acknowledgments

The second author thanks Tom Rokicki for encouraging her to look into this topic. Both
authors thank Derek Kisman for an exciting puzzle and for programmatically demonstrat-
ing the relative tightness of the bounds proposed.

References

[1] D. Kisman, In the Details, available online at the URL: https://puzzles.mit.edu/2013/

coinheist.com/get_smart/in_the_details/index.html (2013).

[2] D. Kisman, In the Details (Solution), available online at the URL: https://puzzles.mit.edu/
2013/coinheist.com/get_smart/in_the_details/answer/index.html (2013).

[3] D. Kisman, FractalWordSearchDepth, available online on GitHub at the URL: https://github.
com/SnapDragon64/Misc/blob/main/FractalWordSearchDepth.cc (2024).

[4] B.B. Mandelbrot, The fractal geometry of nature, W.H. Freeman and Co., San Francisco, Calif, 1982.

the pump journal of undergraduate research 8 (2025), 1–19 18

https://puzzles.mit.edu/2013/coinheist.com/get_smart/in_the_details/index.html
https://puzzles.mit.edu/2013/coinheist.com/get_smart/in_the_details/index.html
https://puzzles.mit.edu/2013/coinheist.com/get_smart/in_the_details/answer/index.html
https://puzzles.mit.edu/2013/coinheist.com/get_smart/in_the_details/answer/index.html
https://github.com/SnapDragon64/Misc/blob/main/FractalWordSearchDepth.cc
https://github.com/SnapDragon64/Misc/blob/main/FractalWordSearchDepth.cc

[5] J.P. Allouche, J. Shallit, The ubiquitous Prouhet-Thue-Morse sequence, SETA, ’98 (1999), 1–16.

Klara Chura
Tufts University
389 Boston Ave
Medford, MA 02155
E-mail: klara.chura@tufts.edu

Tanya Khovanova
Massachusetts Institute of Technology
Room 2-231C
E-mail: tanya@math.mit.edu

Received: May 13, 2024 Accepted: December 9, 2024
Communicated by Cynthia Sanchez Tapia

the pump journal of undergraduate research 8 (2025), 1–19 19

	Introduction
	Background
	Overview

	Preliminaries
	The One-Dimensional Case
	The Two-Dimensional Case
	Definitions
	Vertical and Horizontal Words
	Diagonal Words

	Solution to In the Details
	Conclusion

