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Abstract - Let Sn be the symmetric group on the set [n] := {1, 2, . . . , n}. Given a
permutation σ = σ1σ2 · · ·σn ∈ Sn, we say it has a descent at index i if σi > σi+1. Let D(σ)
be the set of all descents of σ and define D(S;n) = {σ ∈ Sn | D(σ) = S}. We study the
Hamming metric and ℓ∞-metric on the sets D(S;n) for all possible nonempty S ⊂ [n − 1]
to determine the maximum possible value that these metrics can achieve when restricted to
these subsets.
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1 Introduction

Modeling rankings using permutations is a classic application in statistics, and assessing
the distance between rankings by studying the distance between pairs of permutations
has been considered in this context since at least the 1950s [3, 11, 13]. More recently, per-
mutations have been used to model data encoding structures, specifically error-correcting
codes, including for flash memory storage [1, 8, 12]. In these data representation models,
the distance between pairs of permutations is an indicator of the error correction capa-
bilities of the code. Metrics that have been used in this context include the Hamming
metric, the ℓ∞− (Chebyshev) metric, the Ulam metric, and the Kendall-tau metric (see,
e.g., [6, 9, 16]). Motivated by a paper that studied metrics on sets of permutations with
a given peak set [5], in this article we find the maximum values that certain permutation
metrics can attain when restricted to subsets of permutations that share a given descent
set.

Let [n] denote the set {1, 2, . . . , n} and Sn be the set of n! symmetries of [n]. We write
the elements of Sn in one-line notation, that is, for σ ∈ Sn we write σ = σ1σ2 · · ·σn to
denote the permutation that sends 1 → σ1, 2 → σ2, . . . , n → σn. We say σ has a descent
at position i in [n − 1] if σi > σi+1. We define the descent set of σ, D(σ), as the set
of all the indices at which σ has a descent. For example, if σ = 58327164 ∈ S8 then
D(σ) = {2, 3, 5, 7}.

Given a subset S ⊆ [n− 1], let D(S;n) be the set of permutations in Sn with descent
set S, that is,

D(S;n) = {σ ∈ Sn | D(σ) = S}.
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We can partition Sn as a disjoint union of sets of the form D(S;n) as we range through
all possible subsets S of [n − 1]. The sets D(S;n) were first studied by MacMahon [14].
More recently, Diaz-Lopez et al. [4] provided some combinatorial results about them
and presented some conjectures. This led to a flurry of work related to descent sets
[2, 7, 10, 15].

In this article, we study the Hamming metric, which measures the number of in-
dices at which two permutations differ, and the ℓ∞-metric, which measures the maximum
component-wise difference between two permutations. The main purpose of this article
is to find the maximum Hamming and ℓ∞-metric when restricting to permutations that
share a descent set—subsets of the form D(S;n) ⊂ Sn for S ⊂ [n− 1]. Theorem 3.2 pro-
vides a complete characterization of the maximum Hamming metric on all sets D(S;n)
and Theorems 4.1 and 4.3 provide the maximum ℓ∞-metric on D(S;n) for particular cases
of S. Finding the maximum ℓ∞-metric on most sets D(S;n) is still an open problem.

2 Preliminary Definitions

In this section, we define the main objects of study of this article. Given a set S, a metric
d on S is a map d : S × S → [0,∞) such that for σ, ρ, τ in S we have

1. d(σ, ρ) = 0 if and only if σ = ρ,

2. d(σ, ρ) = d(ρ, σ), and

3. d(σ, τ) ≤ d(σ, ρ) + d(ρ, τ).

In this article, we focus our attention on sets S consisting of permutations. We first define
some metrics on Sn and then restrict them to subsets of Sn.

Definition 2.1 The Hamming metric, denoted dH , is the map dH : Sn × Sn → [0,∞)
such that dH(σ, ρ) is the number of indices where σ and ρ differ. That is, if σ = σ1σ2 . . . σn

and ρ = ρ1ρ2 . . . ρn then
dH(σ, ρ) = |{i |σi ̸= ρi}|.

Let dℓ, denoting the ℓ∞-metric, be the map dℓ : Sn × Sn → [0,∞) such that

dℓ(σ, ρ) = max{|σi − ρi| | 1 ≤ i ≤ n}.

Example 2.2 Consider the permutations σ = 14756832 and ρ = 13624875 in S8. They
differ in indices 2, 3, 4, 5, 7, 8, hence dH(σ, ρ) = 6. To compute dℓ(σ, ρ) we analyze their
component-wise differences to get

dℓ(σ, ρ) = max{|1− 1|, |3− 4|, |6− 7|, |2− 5|, |4− 6|, |8− 8|, |7− 3|, |5− 2|} = 4.

We now define descent sets.
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Definition 2.3 Given a permutation σ = σ1σ2 . . . σn in Sn, its descent set is defined as

D(σ) = {i ∈ [n− 1] |σi > σi+1}.

Given a set S ⊆ [n− 1], we let D(S;n) be the set of permutations in Sn with descent set
S, that is,

D(S;n) = {σ ∈ Sn | D(σ) = S}.

In this article, we focus on analyzing the Hamming metric and ℓ∞-metric on subsets
of the form D(S;n) for S ⊂ [n− 1]. In particular, we study the maximum of the set

d(D(S;n)) := {d(σ, ρ) |σ, ρ ∈ D(S;n) with σ ̸= ρ},

where d is the Hamming metric or the ℓ∞-metric. We take S to be proper and nonempty as
D(∅;n) = {1 2 · · · n} and D([n−1];n) = {n (n−1) · · · 1}, hence the sets have cardinality
one and we cannot compute distances between distinct permutations.

Remark 2.4 A related question is to study the minimum of the set d(D(S;n)), when
d is the Hamming metric or the ℓ∞-metric. Let S ⊂ [n − 1] be nonempty and proper.
The minimum of the set d(D(S;n)) is always 2 for the Hamming metric and 1 for the
ℓ∞ metric, since once you have a permutation σ that is not 1 2 · · · n nor n (n− 1) · · · 1,
there will always be two consecutive numbers i and i+1 that do not appear consecutively
in σ. Swapping i and i+ 1 leads to a different permutation σ′ with the same descent set
as σ and with dH(σ, σ

′) = 2 and dℓ(σ, σ
′) = 1.

3 Hamming Metric on Permutations With a Given Descent Set

Consider the Hamming metric dH , as presented in Definition 2.1. Given a set S ⊂ [n−1],
we consider the set of permutations D(S;n). In this section, we find the maximum
Hamming distance between pairs of distinct permutations in D(S;n) for all sets S. In
Theorem 3.2 we show that for sets S consisting of consecutive descents starting at 1 or
consecutive descents ending at n− 1 we achieve maximum Hamming distance n− 1, and
for every other set S we achieve maximum Hamming distance n.

For example, consider S4 and let S ⊂ [3]. Table 1 presents the maximum distance of
the permutations in D(S; 4). In this case, most of the subsets S consist of consecutive
descents at the start or end of the permutation. As n increases, the proportion of sets
that meet this criterion goes to 0 as the number of such sets grows linearly in n and the
total number of subsets of [n−1] grows exponentially in n. We now present a lemma that
is useful in the proof of Theorem 3.2.

Lemma 3.1 If S = {1, 2, . . . , k} for some k ∈ [n − 1], then any permutation σ =
σ1σ2 · · ·σn ∈ D(S;n) must have σk+1 = 1. Similarly, if S = {k, k + 1, . . . , n − 1} for
some k ∈ [n− 1], then σk = n.
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Descent Set S D(S; 4) ⊂ S4 dH(D(S; 4))
∅ {1234} —
{1} {2134, 3124, 4123} 3
{2} {1324, 1423, 2314, 2413, 3412} 4
{3} {1243, 1342, 2341} 3
{1,2} {3214, 4213, 4312} 3
{1,3} {2143, 3241, 3142, 4132, 4231} 4
{2,3} {1432, 2431, 3421} 3
{1,2,3} {4321} —

Table 1: Table of descent sets and Hamming distances for S4. The entries of the permu-
tations where a descent occurs are shown in bold.

Case S ⊂ [n− 1] dH(D(S;n))
1 {1, 2, ..., k} with k ≤ (n− 2) n− 1
2 {k, (k + 1), ..., n− 2, n− 1} with k ≥ 2 n− 1
3 {1, 2, ..., k, n− 1} with k ≤ (n− 3) n
4 {k, (k + 1), ..., (n− 2)} with k ≥ 2 n
5 A subset of [n− 2] except Cases 1 and 4 n
6 S ′ ∪ {n− 1} where S ′ is as in Case 5 n

Table 2: Cases to consider in the induction step in the proof of Theorem 3.2.

Proof. In the case where S = {1, 2, . . . , k} for some k ∈ [n− 1], if σi = 1 for i ≤ k then
i is not a descent as σi+1 > σi = 1, hence this is not possible. If σi = 1 for i > k + 1 then
i − 1 would be a descent as σi−1 > σi = 1. This contradicts that σ ∈ D(S;n). Thus, we
must have σk+1 = 1.

In the case where S = {k, k + 1, . . . , n− 1}, if σi = n for i < k then i is a descent as
n = σi > σi+1, which contradicts that σ ∈ D(S;n). If σi = n for i > k, then i− 1 is not
a descent as σi−1 < σi = n, which again contradicts σ ∈ D(S;n). Hence, σk = n. □

We are ready to prove our main theorem of this section, which consists of a proof by
induction that breaks the set of subsets of [n− 1] into six cases.

Theorem 3.2 Let n ≥ 3 and S ⊂ [n− 1] be a non-empty proper set, then

max(dH(D(S;n))) =

{
n− 1 if S = {i, i+ 1, . . . , j} for i = 1 or j = n− 1

n otherwise.

Proof. We proceed by induction on n. For n = 3, when S = {1} we get D(S; 3) =
{312, 213}, thus d(D({1}; 3)) = 2. When S = {2}, we have D({2}; 3) = {132, 231}, so
d(D({2}; 3)) = 2. The result is shown to be true for n = 4 in Table 1.

Suppose that the result is true for all descent sets S ′ ⊂ [n−2] of permutations in Sn−1

for n ≥ 4. Let S ⊂ [n− 1] and consider D(S;n). We proceed by cases depending on the
set S. Table 2 summarizes the cases.
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Case 1: If S = {1, 2, . . . , k} for 1 ≤ k ≤ n− 2, let

σ = n n− 1 n− 2 · · · n− (k − 2) n− (k − 1) 1 2 · · · n− k
ρ = k + 1 k k − 1 · · · 3 2 1 k + 2 · · · n.

Then, dH(σ, ρ) = n−1. By Lemma 3.1, this is the largest value that the Hamming metric
can obtain in this set, as any permutation with descent set S will have the value of 1 at
index k + 1. Thus, dH(D(S;n)) = n− 1.

Case 2: If S = {k, k + 1, . . . , n− 2, n− 1} for 2 ≤ k ≤ n− 1, let

σ = 1 2 · · · k − 2 k − 1 n n− 1 n− 2 · · · k
ρ = n− (k − 1) n− (k − 2) · · · n− 2 n− 1 n n− k n− (k + 1) · · · 1.

Then, dH(σ, ρ) = n−1. By Lemma 3.1, this is the largest value that the Hamming metric
can obtain in this set, as any permutation with descent set S will have the value of n at
index k. Thus, dH(D(S;n)) = n− 1.

Case 3: If S = {1, 2, . . . , k, n− 1} for 1 ≤ k ≤ n− 3, let

σ = n n− 1 · · · n− (k − 2) n− (k − 1) 1 2 · · · n− (k + 2) n− k n− (k + 1)
ρ = n− 1 n− 2 · · · n− (k − 1) n− k 2 3 · · · n− (k + 1) n 1

Then, since σ and ρ have descent set S and dH(σ, ρ) = n, we get dH(D(S;n)) = n.
Case 4: If S = {k, k + 1, . . . , n− 2} for 2 ≤ k ≤ n− 2, let

σ = 1 2 · · · k − 1 n− 1 n− 2 n− 3 · · · k n
ρ = n− k n− (k − 1) · · · n− 2 n n− (k + 1) n− (k + 2) · · · 1 n− 1.

Then, since σ and ρ have descent set S and dH(σ, ρ) = n, we get dH(D(S;n)) = n.
Case 5: Let S be any nonempty, proper subset of [n − 2] except those in Cases 1

and 4. By the inductive assumption, dH(D(S;n − 1)) = n − 1. Hence, there is a pair of
permutations σ, ρ ∈ Sn−1 with descent set S such that dH(σ, ρ) = n− 1. Since they differ
at every index, assume without loss of generality that ρn−1 ̸= n− 1.

Let σ′ be the permutation σ with n appended at the end. Let ρ′′ be the permutation
ρ with n appended at the end, and let ρ′ be the permutation ρ′′ with the values of n and
n− 1 switched. Since n− 1 and n do not appear consecutively in ρ′′ then ρ′ has descent
set S. By construction, σ′ and ρ′ have descent set S and differ at every index; hence
dH(D(S;n)) = n.

Case 6: Let S be any nonempty, proper subset of [n−1] with n−1 ∈ S, except those
in Cases 2 and 3. Then S = S ′ ∪ {n− 1} for some subset S ′ ⊂ [n− 2], where S ′ is not of
the form of the sets in Cases 1 and 4. There are two subcases.

First, suppose n − 2 ∈ S ′. Since S ′ is not one of the sets in Case 4, there must be a
minimum k ∈ {3, . . . , n− 2} such that {k, k + 1, . . . , n− 2} ⊆ S ′, and k − 1 /∈ S ′. By the
inductive assumption, there are permutations σ, ρ ∈ D(S ′;n − 1), with d(σ, ρ) = n − 1.
Since all positions of σ and ρ are distinct, at most one of σ and ρ has their kth index equal to
n−1. Without loss of generality, suppose that ρk < n−1. Since {k, k+1, . . . , n−2} ⊆ S ′,
ρ is decreasing from ρk to ρn−1. Thus, ρj = n − 1 for some 1 ≤ j < k − 1. We form
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σ′, ρ′ ∈ Sn as follows. Let σ′
i = σi for i = 1, . . . , k − 1. We set σ′

k = n, and σ′
k+i = σk+i−1

for i = 1, . . . , n− k. Let ρ′i = ρi for i = [k− 1] \ {j}. Set ρ′j = n, and ρ′k = n− 1. Finally,
let ρ′k+i = ρk+i−1 for i = 1, . . . , n− k. By construction and by the inductive assumption,
we have σ′, ρ′ ∈ D(S;n) and d(σ′, ρ′) = n.

Next, suppose n − 2 /∈ S ′. By the inductive assumption, there are permutations
σ, ρ ∈ D(S ′;n − 1), with d(σ, ρ) = n − 1. Since all positions of σ and ρ are distinct, at
most one of σ and ρ have their (n−1)th position equal to n−1. Without loss of generality,
suppose that ρn−1 ̸= n− 1. Since n− 2 /∈ S ′, it must be the case that ρj = n− 1 for some
j < n − 2. Form σ′, ρ′ ∈ Sn as follows. Set σ′

i = σi for i = 1, . . . , n − 2, σ′
n−1 = n, and

σ′
n = σn−1. Similarly, set ρ′i = ρi for i ∈ [n− 2] \ {j}. Set ρ′j = n, and ρ′n−1 = n− 1, and

ρ′n = ρn−1. By construction and by the inductive assumption, we have σ′, ρ′ ∈ D(S;n)
and d(σ′, ρ′) = n.

Thus, by the two subcases above, dH(D(S;n)) = n in this last case. □

4 ℓ∞-Metric on Permutations With a Given Descent Set

We now shift our attention to the ℓ∞-metric and consider the maximum distance that two
permutations in D(S;n) can achieve under the ℓ∞-metric. In Theorem 4.1 we consider
the case of S = [n− i] for some i ∈ {2, 3, . . . , n− 1}. In Theorem 4.3 we consider the case
S = {i}. A result from Section 5 shows that analogous results hold for the complements
of these sets. It is an open problem to find the maximum distance that two permutations
in D(S;n) can achieve under the ℓ∞-metric for all other descent sets S.

Theorem 4.1 Fix n ∈ N with n ≥ 3. For any i ∈ {2, . . . , n− 1}, let Si = [n− i], then

max(dℓ(D(Si;n))) = max{i− 1, n− i} =

{
i− 1 if i ≥ ⌊n+1

2
⌋

n− i if i ≤ ⌊n+1
2
⌋.

Proof. We first construct two permutations in D(Si;n) that achieve the desired max-
imum distance and then show that no other pair of permutations can have a larger ℓ∞-
distance. Let σ and ρ be defined as

index 1 2 · · · n− i n− (i− 1) n− (i− 2) · · · n
σ = n− (i− 1) n− i · · · 2 1 n− (i− 2) · · · n
ρ = n n− 1 · · · i+ 1 1 2 · · · i.

It is straightforward to verify that both σ, ρ ∈ D(Si;n). To compute their ℓ∞-distance,
note that

|σj − ρj| =


i− 1 if j ∈ {1, 2, . . . , n− i}
0 if j = n− (i− 1)

n− i if j ∈ {n− (i− 2), n− (i− 3), . . . , n}.

Thus, dℓ(σ, ρ) = max{i− 1, n− i}.
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For any other pair of permutations π, τ ∈ D(Si;n), we will show dℓ(π, τ) ≤ max{i −
1, n− i}. Since π and τ must decrease in the first n− i indices, the largest numbers that
can appear in the first n− i indices are n, n− 1, . . . , i+ 1, respectively. That is,

πj, τj ≤ n− (j − 1) = ρj for j = 1, 2, . . . , n− i.

Similarly, the smallest entries that can appear in the first n− i indices are n− (i− 1), n−
i, . . . , 2, respectively. Thus,

πj, τj ≥ n− (i− 1)− (j − 1) = σj for j = 1, 2, . . . , n− i.

Since

n− (i− 1)− (j − 1) ≤ πj, τj ≤ n− (j − 1) for j = 1, 2, . . . , n− i,

then
|πj − τj| ≤ n− (j − 1)− (n− (i− 1)− (j − 1)) = i− 1,

for j = 1, 2, . . . , n− i.
We now consider the last i indices. By Lemma 3.1, πn−(i−1) = τn−(i−1) = 1. Since π

and τ must increase in the last i indices, the largest numbers that can appear in the last
i− 1 indices are n− (i− 2), n− (i− 3), . . . , n, respectively. That is,

πj, τj ≤ j for j = n− (i− 2), n− (i− 3), . . . , n.

Similarly, the smallest entries that can appear in the last i − 1 indices are 2, 3, . . . , i,
respectively. Thus,

πj, τj ≥ j − (n− i) for j = n− (i− 2), n− (i− 3), . . . , n.

Since
j ≤ πj, τj ≤ j − (n− i) for j = n− (i− 2), n− (i− 3), . . . , n,

then
|πj − τj| ≤ j − (j − (n− i)) = n− i,

for j = n− (i−2), n− (i−3), . . . , n. Therefore, for any π, τ ∈ D(Si;n), we have dℓ(π, τ) ≤
max{i− 1, n− i} = dℓ(σ, τ). □

We now consider permutations with only one descent. We start with an example.

Example 4.2 For i ∈ [n− 1], to achieve the maximum ℓ∞-metric between two permuta-
tions with the same descent set S = {i}, we construct a permutation σ with the smallest
possible entries in the first i indices and a permutation ρ with the largest possible entries
in these indices. This pair of permutations always achieves the maximum possible dis-
tance ℓ∞ between pairs of permutations in D(S;n), as shown in Theorem 4.3. In Tables
3 and 4 we present these permutations for all descent sets {i} in Sn for n = 3, 4, 5.
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S σ ρ dℓ(σ, ρ)
{1} 213 312 1
{2} 132 231 1

S σ ρ dℓ(σ, ρ)
{1} 2134 4123 2
{2} 1324 3412 2
{3} 1243 2341 2

Table 3: For n = 3 and n = 4, permutations σ and ρ that achieve the maximum ℓ∞
metric.

S σ ρ dℓ(σ, ρ)
{1} 21345 51234 3
{2} 13245 45123 3
{3} 12435 34512 3
{4} 12354 23451 3

Table 4: For n = 5, permutations σ and ρ that achieve the maximum ℓ∞ metric.

Theorem 4.3 Let n ≥ 3 and consider D({i};n), then

max(dℓ(D({i};n))) =


n− 2 for i = 1, n− 1

n− i for i = 2, 3, . . . ,
⌊
n
2

⌋
i for i = ⌈n

2
⌉, ⌈n

2
⌉+ 1, . . . , n− 2.

Proof. We will proceed by constructing two permutations in Sn with descent set {i}
with distance given by the statement and then show that this is the maximum distance
any two permutations in D({i};n) can achieve. Let σ, ρ be as follows:

σ = 1 2 · · · i− 1 i+ 1 i i+ 2 i+ 3 · · · n
ρ = n− i+ 1 n− i+ 2 . . . n− 1 n 1 2 3 . . . n− i.

Notice that the difference between the indices of the permutations is given by

|σj − ρj| =


n− i if j = 1, 2, . . . , i− 1 and i ≥ 2

n− (i+ 1) if j = i

i− 1 if j = i+ 1

i if j = i+ 2, i+ 2, . . . , n and i ≤ n− 2.

A quick check verifies that dℓ(σ, ρ) is given by

dℓ(σ, ρ) = max{|σj − ρj| | 1 ≤ j ≤ n} =


n− 2 for i = 1, n− 1

n− i for i = 2, 3, . . . ,
⌊
n
2

⌋
i for i = ⌈n

2
⌉, ⌈n

2
⌉+ 1, . . . , n− 2.

We now proceed to show that the maximum distance we can achieve among any pair of
distinct permutations in D({i};n) is given by dℓ(σ, ρ).
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Consider any permutations π, τ ∈ D({i};n). Since they are strictly increasing until
index i, then the smallest π1 and τ1 can be is 1, and the largest they can be is n− (i− 1),
as you need to have i−1 larger entries for indices 2, 3, . . . , i. Thus, 1 ≤ π1, τ1 ≤ n−(i−1).
By applying a similar argument to entries 2, 3, . . . , i− 1 we get that

j ≤ πj, τj ≤ n− (i− j) for j = 1, 2, . . . , i− 1. (1)

For index i, we have that i + 1 ≤ πi, τi as the permutations have a descent at i, so
they need to have indices 1, 2, . . . , i− 1, i+ 1 all less than the value at index i. Hence,

i+ 1 ≤ πj, τj ≤ n for j = i. (2)

For index i + 1, the smallest value πi+1, τi+1 can attain is 1 and the largest value
they can achieve is i since there are n − i indices that must have larger entries (indices
i, i+ 2, i+ 3, . . . , n). Hence,

1 ≤ πj, τj ≤ i for j = i+ 1. (3)

The final n−i entries of π and τ form an increasing sequence. Thus, the smallest value
that the indices i+2, i+3, . . . , n can attain are 2, 3, . . . , n− i, respectively. Similarly, the
largest values they can attain are i+ 2, i+ 3, · · · , n, respectively. Thus,

j − i ≤ πj, τj ≤ j for j = i+ 2, i+ 3, . . . , n. (4)

Using equations (1)− (4), we get that for each j ∈ {1, 2, . . . , n},

|πj − τj| ≤ |σj − ρj| =


n− i if j = 1, 2, . . . , i− 1 and i ≥ 2

n− (i+ 1) if j = i

i− 1 if j = i+ 1

i if j = i+ 2, i+ 2, . . . , n− 1 and i ≤ n− 2.

.

Hence, max(dℓ(D({i};n))) = dℓ(σ, ρ) as desired. □

5 Complements of Descent Sets

Given that the results in Section 4 cover only certain cases of descent sets S, we now
present a more general result on complements of descent sets that broadens the types
of descent sets for which the maximum ℓ∞ distance is known. In this section, we use a
bijection map of Sn to show that max(dℓ(D(S;n))) is equal to max(dℓ(D(S̄;n))), where
S̄ is the complement of S in [n− 1], which leads to maximum values for the other types
of sets S discussed in Corollaries 5.6 and 5.7.

Definition 5.1 For a set S ⊆ [n − 1], define the complement of S in [n − 1] as
S̄ = [n− 1] \ S.
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Figure 1: In (blue) squares we have the graph of the permutation σ = 1243567 and in
(red) stars we have the graph of Φ(σ) = 7645321.

Consider the map Φ : Sn → Sn where for σ = σ1σ2 · · ·σn ∈ Sn we have

Φ(σ) = (n+ 1− σ1) (n+ 1− σ2) . . . (n+ 1− σn).

Geometrically, graphing the points (i, σi) in R2, the map Φ is flipping the graph of the
permutation across the horizontal line given by y = (n + 1)/2 as shown in the example
in Figure 1. Intuitively, Φ turns a permutation with descent set S into a permutation
with descent set S̄ (Proposition 5.3), and it preserves the ℓ∞ distance (Lemma 5.4) and
Hamming distance between permutations. This latter fact is not used in this section since
all cases for the Hamming metric have been covered in Section 3.

The next two propositions show that the map Φ sends permutations in D(S;n) to
permutations in D(S̄;n) in a bijective manner.

Proposition 5.2 The map Φ : Sn → Sn is a bijection. Furthermore, it is its own inverse,
that is, Φ ◦ Φ is the identity map on Sn.

Proof. The first statement follows from the second. To prove the second, note that for
σ = σ1σ2 · · ·σn ∈ Sn we have that for each i ∈ [n],

(Φ(Φ(σ)))i = n+ 1− (n+ 1− σi) = σi,

hence Φ(Φ(σ)) = σ. □

Proposition 5.3 If σ ∈ D(S;n), then Φ(σ) ∈ D(S̄;n).

Proof. If σ has a descent at index i, then σi > σi+1, which implies −σi < −σi+1. Adding
n+1 to both sides, we get n+1−σi < n+1−σi+1. Therefore, Φ(σi) < Φ(σi+1), so every
index that is a descent in σ will no longer be one in Φ(σ).

Now, let i ̸∈ S, so σ does not have a descent at index i. Then σi < σi+1. This
implies that −σi > −σi+1. Adding n+ 1 to both sides, we get n+ 1− σi > n+ 1− σi+1.
Therefore, Φ(σi) > Φ(σi+1). Every index that is not a descent in σ is now a descent in
Φ(σ). Therefore, if σ ∈ D(S;n), then Φ(σ) ∈ D(S̄;n). □

The next result is needed to prove Theorem 5.5. It states that the ℓ∞-metric is
invariant under the map Φ.
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Lemma 5.4 For all σ, ρ ∈ Sn, dℓ(σ, ρ) = dℓ(Φ(σ),Φ(ρ)).

Proof. Given σ, ρ ∈ Sn and i ∈ [n], note that

|σi − ρi| = |(n+ 1− σi)− (n+ 1− ρi)| = |Φ(σ)i − Φ(ρ)i|.

Since, when calculating dℓ, we are only concerned with the absolute value of the difference
between indices we get that dℓ(σ, ρ) = dℓ(Φ(σ),Φ(ρ)). □

Theorem 5.5 Let S be any proper, nonempty subset of [n]. Then

max(dℓ(D(S;n))) = max(dℓ(D(S̄;n)).

Proof. Let m = max(dℓ(D(S;n))) and σ, ρ ∈ D(S;n) such that dℓ(σ, ρ) = m. By
Proposition 5.3, Φ(σ),Φ(ρ) ∈ D(S̄;n). By Lemma 5.4, dℓ(Φ(σ),Φ(ρ)) = m, hence
max(dℓ(D(S̄;n)) ≤ max(dℓ(D(S;n)). Applying the same argument to D(S̄;n), we get
max(dℓ(D(S;n)) ≤ max(dℓ(D(S̄;n)). □

We can apply Theorem 5.5 to the results in Theorems 4.1 and 4.3 to get the following
two corollaries.

Corollary 5.6 Let n ≥ 3. For any i ∈ {2, . . . , n−1}, let S̄i = {n−i+1, n−i+2, . . . , n−1}
and let

D(S̄i;n) = {σ ∈ Sn | D(σ) = S̄i},

then

max(dℓ(D(S̄i;n))) = max{i− 1, n− i} =

{
i− 1 if i ≥ ⌊n+1

2
⌋

n− i if i ≤ ⌊n+1
2
⌋.

Corollary 5.7 Let n ≥ 6, {̄i} := [n− 1] \ {i}, and consider D({̄i};n), then

max(dℓ(D({̄i};n))) =


n− 2 for i = 1, n− 1

n− i for i = 2, 3, . . . ,
⌊
n
2

⌋
i for i = ⌈n

2
⌉, ⌈n

2
⌉+ 1, . . . , n− 2.

We end this article with two open problems for the interested reader.
Open Problem 1. Determine max(dℓ(D(S;n))) for all sets S other than those cov-

ered by Theorems 4.1 and 4.3 and Corollaries 5.6 and 5.7.
Open Problem 2. Find the maximum and minimum distance achievable by permu-

tations in D(S;n) for other metrics on permutations such as the Kendall-tau metric.

Acknowledgments

We thank Villanova’s Co-MaStER program. We also thank the referee for detailed feed-
back that improved the exposition of this article. A. Diaz-Lopez’s research is supported
in part by the National Science Foundation grant DMS-2211379.

the pump journal of undergraduate research 8 (2025), 57–69 67



References

[1] A. Barg, A. Mazumdar, Codes in permutations and error correction for rank modulation, IEEE
Trans. Inform. Theory, 56 (2010), 3158–3165.

[2] F. Bencs, Some coefficient sequences related to the descent polynomial, European J. Combin., 98
(2021), No. 103396.

[3] M. Deza, T. Huang, Metrics on permutations, a survey, J.N. Srivastava: felicitation volume, 23
(1998), 173–185.

[4] A. Diaz-Lopez, P.E. Harris, E. Insko, M. Omar, B. Sagan, Descent polynomials, Discrete Math.,
342 (2019), 1674–1686.

[5] A. Diaz-Lopez, K. Haymaker, K. Keough, J. Park, E. White, Metrics on permutations with the same
peak set, Involve, To appear.

[6] F. Farnoud, V. Skachek, O. Milenkovic, Error-correction in flash memories via codes in the ulam
metric, IEEE Trans. Inform. Theory, 59 (2013), No. 5, 3003–3020.

[7] C. Gaetz, Y. Gao, On q-analogs of descent and peak polynomials, European J. Combin. 97 (2021),
No. 103397.

[8] F.B. Ian, Permutation codes for discrete channel, IEEE Trans. Inform. Theory 20 (1974), 138—140.

[9] A. Jiang, M. Schwartz, J. Bruck, Error-correcting codes for rank modulation, IEEE International
Symposium on Information Theory (2008), 1736–1740.

[10] P. Jiradilok, T. McConville, Roots of descent polynomials and an algebraic inequality on hook
lengths, Electron. J. Combin. 30 (2023), P4.41.

[11] M. Kendall, J.D. Gibbons, Rank correlation methods, fifth ed., A Charles Griffin Title, Edward
Arnold, London, 1990.

[12] T. Kløve, T. Lin, S. Tsai, W. Tzeng, Permutation arrays under the Chebyshev distance, IEEE Trans.
Inform. Theory, 56 (2010), 2611–2617.

[13] W.H. Kruskal, Ordinal measures of association, J. Amer. Statist. Assoc., 53 (1958), 814-–861.

[14] P.A. MacMahon, Combinatory analysis. Vol. I, II (bound in one volume), Dover Phoenix Editions,
Dover Publications, Inc., Mineola, NY, 2004.

[15] A. Raychev, A generalization of descent polynomials, Discrete Math., 346 (2023), Paper No. 113105.

[16] M. Shieh, S. Tsai, Computing the ball size of frequency permutations under Chebyshev distance,
Linear algebra and its applications, 437 (2012), 324-–332.

Alexander Diaz-Lopez
Villanova University
800 Lancaster Ave
Villanova, PA 19085
E-mail: alexander.diaz-lopez@villanova.edu

Kathryn Haymaker
Villanova University
800 Lancaster Ave
Villanova, PA 19085
E-mail: kathryn.haymaker@villanova.edu

the pump journal of undergraduate research 8 (2025), 57–69 68



Colin McGarry
Villanova University
800 Lancaster Ave
Villanova, PA 19085
E-mail: cmcgarr4@villanova.edu

Dylan McMahon
Villanova University
800 Lancaster Ave
Villanova, PA 19085
E-mail: dmcmaho4@villanova.edu

Received: May 9, 2024 Accepted: January 28, 2025
Communicated by Carolyn Yarnall

the pump journal of undergraduate research 8 (2025), 57–69 69


	Introduction
	Preliminary Definitions
	Hamming Metric on Permutations With a Given Descent Set
	L-Infinity Metric on Permutations With a Given Descent Set
	Complements of Descent Sets

