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Abstract - In this work, we consider the areas of the regions enclosed by generalized Koch
curves. We derived formulas for several classes of generalized Koch snowflakes. We also
obtained a formula that can be used to compute areas of more complex snowflakes.
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1 Introduction

The Koch snowflake, which is also known as the Koch curve, was originally constructed
by Helge von Koch [8] as an example of a curve that is continuous but not differentiable
at any point, though it is more well-known to public audience as a fractal. The curve
is obtained by the following iterative process: begin with an equilateral triangle, replace
the middle third of each side with two sides of an equilateral triangle, repeat this step for
each of the resulting line segments, with equilateral triangles pointing outward. The limit
of the sequence of the curves produced in this process is the classical Koch curve.

Many different generalizations of the Koch curve have been proposed and studied, even
by von Koch himself [4, 8, 2, 1, 5, 6, 9]. Although it is not as interesting as the fractal
dimension of the Koch curve [10], the area of the region enclosed by the classical Koch
curve is a typical example of an infinite series commonly mentioned in Calculus books.
The areas of the regions enclosed by generalized Koch curves, which we will simply refer to
as the areas of Koch snowflakes, have also been explored [3]. In this work, we play further
down along this line by finding formulas for the areas of several classes of snowflakes.

The construction of the classical Koch curve involves replacing the middle third of
each side by (two sides of) an equilateral triangle. We can relax these construction
elements and generalize the process to produce a large family of fractals. More specifically,
generalization of the Koch curve can be achieved by allowing the replaced middle portion
of a side varying in size or position at every stage, and also by allowing the middle portion
to be replaced by any n-gon. Among the existing work in generalized Koch curves, Keleti
and Paquetta [4] considered a class of generalization called (n, c)-Koch curves. In this
generalization, instead of replacing the middle third portion of a side with an equilateral
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Figure 1: (6, 1
8
)-Koch curve at 4th iteration

triangle, the (n, c)-Koch curves are obtained by replacing the middle c portion 1 of each
side with a regular n-gon. Fig. 1 is an example of such a curve with n = 6 and c = 1

8
.

By this definition, the classical Koch curve is a (3, 1
3
)-Koch curve. The authors of [4]

showed that such a generalization could lead to self-intersecting curves. However, it was
also proved in [4] that there will always be an interval of the values of c for which the
(n, c)-Koch curve is not self-interacting, or say self-avoiding. To be more precise, we state
the self-avoiding conditions from [4] in Theorem 1.1.

Theorem 1.1 ([4] Theorem 3.1) The (n, c)-von Koch curve is self-avoiding if c satis-
fies

c <
sin2(π/n)

cos2(π/n) + 1
(1)

when n is even or if c satisfies
c < 1− cos(π/n) (2)

when n is odd.

In this paper, we focus on self-avoiding generalized Koch curves. We found the areas
for the following classes of snowflakes:

1. Self-avoiding (n, c)-Koch snowflakes: obtained by starting from a regular n-gon,
iteratively replacing the middle c portion of each side with a regular n-gon. (See,
Section 3)

1By ‘middle c portion’ we mean that each side is divided into three segments: two equally sized

segments measuring L(1−c)
2 on each side of a middle segment measuring cL, where L is the length of the

side.
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2. Self-avoiding snowflakes obtained by alternating two replacing schemes every other
step: replacing the middle ci portion by a regular ni-gon for i = 1, 2. (See, Section 4.)

In Section 5, we derive a formula for the area of new n-gons at any step. Our result can
easily be used to calculate the areas of more general self-avoiding Koch snowflakes.

2 Area of the Classical Koch Snowflake

Even though the area of the classical Koch snowflake is well-known and can be easily
computed, we include the calculation here for completeness and as well as for comparison
with the approach we will take in later sections. Since the Koch snowflake is generated
from an equilateral triangle with sides of unit length, the area of the snowflake is equal to
the area of the initial triangle plus the areas of the additional triangles that grow from the
three sides. Due to the symmetry of an equilateral triangle, the area can be represented
as,

A = S + 3
∞∑
j=1

Aj

where S =
√
3
4

is the area of the initial triangle, and Aj is the total area of new triangles
that grow from each side of the initial triangle at the jth iteration. Hence, we only need
to compute Aj for j ≥ 1.

The values of Aj, where j = 0, 1, ...5, are given in Table 1.

Step # of lines Length of Line # of Triangles Area of Each Triangle Total Area(Aj)
0 1 1 0 0 0
1 4 1

3
1 1

9
S A1 =

1
9
S

2 42 1
32

4 1
92
S A2 =

4
92
S

3 43 1
33

42 1
93
S A3 =

42

93
S

4 44 1
34

43 1
94
S A4 =

43

94
S

5 45 1
35

44 1
95
S A5 =

44

95
S

Table 1: The values of Aj of the classical Koch Curve

Using induction, one may quickly conclude that,

Ak =
4k−1

9k
S
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Hence, the area of the snowflake is

A = S + 3
∞∑
k=1

Ak

= S + 3
∞∑
k=1

4k−1

9k
S

= S + S
3

∞∑
k=0

4k

9k

= S + S
3
· 1
1−4/9

= 8
5
S

Therefore, A = 8
5
S = 2

√
3

5
.

3 Areas of Self-Avoiding (n,c)-Koch Snowflakes

In this section we study the areas of self-avoiding (n, c)-Koch snowflakes. Dence [3] derived
the formula for the area of the (3, c)-Koch snowflake based on the observation that the
areas of new triangles at different stages follow the pattern of Pascal’s triangle.2 Here, we
give a general proof from the combinatorics point of view.

The key step to computing the area of any given self-avoiding (n, c)-Koch snowflakes is
to find the number of new n-gons and the lengths of their sides at each step. To facilitate
the calculation, we first introduce two terminologies and then prove a lemma.

At any step (iteration), the middle c portion of each side is replaced by n−1 sides of a
regular n-gon with a side length cL, where L is the length of the side. Fig. 2 illustrates the
process when n = 3. We call the two new line segments at the two ends of the resulting
curve α-sides and the remaining n− 1 sides c-sides, where α = 1−c

2
and c also correspond

to the scaling factors. i.e, the length of an α-side is αL and the length of a c-side is cL.

−→ α c c α

Figure 2: Replace the middle c portion of the line segment with two sides of an equilateral
triangle. The two line segments at the ends of the resulting curve are called α-sides and
the remaining two sides are denoted as c-sides, with α = 1−c

2
. An α-side refers to a side

with the length αL, where L is the side length of the line segment on the left. The same
goes for the c-side.

For the remaining of the paper, if it is not explicitly stated, n-gon refers to a regular
n-gon.

2triangular array of binomial coefficients.
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Lemma 3.1 Let the initial shape be an n-gon with side length L0. Then

1. the side length of a new n-gon at step k + 1 (k ≥ 1) has the form of a1a2 · · · akcL0

where ai ∈ {α, c}

2. there are
(
k
r

)
2r(n− 1)k−r number of new n-gons with side length αrck−rcL0.

3. given there is no self-intersection, the total area of all new n-gons at step k + 1,
generated from the middle third portion of a side on the initial n-gon, is

Ak+1 = (2α2 + (n− 1)c2)kc2S (3)

where S is the area of the initial n-gon.

Proof. First note that each line segment of the curve at the current step produces a new
n-gon at the next step with the side length cL, where L is the length of the line segment.
So the key to finding the total area of the new n-gons is to identify the number of line
segments at the previous step and also the lengths of the respective line segments.

Note that each line segment in the curve at Step k (k = 0, 1, 2, · · · ) can be viewed as
a result of evolving the initial line segment through k rounds of choice-makings, which
we explain next. At each round, we pick one out of (n + 1) choices: two α-sides and
n − 1 many of c-sides. If we choose α-sides for r rounds and choose c-sides for k − r
rounds, then there are a total of

(
k
r

)
2r(n − 1)k−r distinct such choices. For each such

choice, the length of each line at Step k has the form of a1 · · · akL0, where ai ∈ {α, c} for
i = 1, · · · , k, and among them, there are r many of α’s and k − r many are c’s. Hence
there are

(
k
r

)
2r(n− 1)k−r many of line segments with length αrck−rL0 at Step k. Each of

these line segments at Step k produce a new n-gon at Step k + 1 of length of αrck−rcL0.
It follows that each of these n-gon at Step k has an area of (αrck−rc)2S.

Hence, the total area of new n-gons at Step k + 1 is,

Ak+1 =
k∑

r=0

(
k

r

)
2r(n− 1)k−r(αrck−rc)2S

=
k∑

r=0

(
k

r

)
(2α2)r((n− 1)c2)k−r

= c2S
k∑

r=0

(
k

r

)
(2α2)r((n− 1)c2)k−r

= (2α2 + (n− 1)c2)kc2S,

where the last step is because of the binomial theorem.
□

Theorem 3.2 Let n ≥ 3 and S be the area of the initial regular n-gon. Then the area of
a self-avoiding (n, c)-Koch snowflake is,

A = S

(
1 +

2nc2

1 + 2c− (2n− 1)c2

)
,
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when 0 < c < 1+
√
2n

2n−1
.

Proof. Since the (n, c)-Koch snowflake is generated from a regular n-gon with side
length L0, the area of the snowflake is equal to the area of the initial n-gon plus the areas
of new regions growing from the n sides. Due to the symmetry of a regular n-gon, the
area of the limiting Koch snowflake can be represented as.

A = S + n
∞∑
j=1

Aj,

where Aj is the area of new n-gons growing from one side of the initial n-gon at the jth

iteration. By Lemma 3.1,

A = S + n
∞∑
k=0

Ak+1

= S + n
∞∑
k=0

(2α2 + (n− 1)c2)kc2S

= S + nc2S
1−(2α2+(n−1)c2)

.

(4)

The last step is valid only when 2α2+(n−1)c2 < 1. Since α = 1−c
2

and 0 < c < 1, solving
the inequality 2α2 + (n− 1)c2 < 1, we have

0 < c <
1 +

√
2n

2n− 1
.

Replacing α with 1−c
2
, we arrive at A = S

(
1 + 2nc2

1+2c−(2n−1)c2

)
. □

The result obtained by Dence [3] is a special case of Theorem 3.2 when n = 3.

Corollary 3.3 (Dence [3]) Let S be the area of the initial equilateral triangle. Then the
area of a self-avoiding (3, c)-Koch snowflake is

A = S

(
1 +

6c2

1 + 2c− 5c2

)
.

When c = 1/3 and L0 = 1, then A = 2
√
3

5
as we obtained in Section 1.

4 Alternating Different (n, c)-Replacing Scheme Every Other
Steps

For convenience, in the remaining of the paper, we will use (n, c)-replacing scheme to refer
to the scheme that the middle c portion of each line segment is replaced with a regular
n-gon. We will also use the term (n, c)-layer referring to the step that the (n, c)-replacing
scheme is applied.

In this section, we consider the areas of generalized Koch snowflakes resulting from
alternating two different replacing schemes. For example, Fig. 3 shows a curve generated
by alternating between a (3, 0.3)-layer and a (4, 0.2)-layer. Next we prove Lemma 4.1
which is an extension of Lemma 3.1.
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Figure 3: An example of alternating Koch snowflake obtained by by alternating between
(3, 0.3) layer and (4, 0.2)-layer

Lemma 4.1 Suppose the first k steps involve m many of iterations following the (n1, c1)-
replacing scheme and k −m many of iterations follow the(n2, c2)-replacing scheme, and
suppose the (k + 1)th step follows the (n, c)-replacing scheme. Also, suppose there is no
self-interaction, then the total area of all additional n-gons generated from one side of the
initial n-gon at Step k + 1 is,

Ak+1 =
(
2α2

1 + (n1 − 1)c21
)m (

2α2
2 + (n2 − 1)c22

)k−m
c2S, (5)

where S is the area of the initial n-gon, α1 =
1−c1
2

and α2 =
1−c2
2

.

Proof. Similar to Lemma 3.1, the side length of any new n-gon at step k + 1 has the
form of a1 · · · akcL0, where L0 is the side length of the initial n-gon. Since the first k steps
involve m many of iterations following the (n1, c1)-replacing scheme and k −m many of
iterations following the (n2, c2)-replacing scheme, there are m many of ai ∈ {α1, c1} and
k−m many of ai ∈ {α2, c2}. Since each iteration is independent, we can view the product
a1 · · · ak as the product of two collections of factors: those ai ∈ {α1, c1} form a collection
and the remaining k−m many of factors form another distinct collection. Suppose there
are r1 many of α1, m− r1 many of c1, r2 many of α2 and k −m− r2 many of c2, by the
same argument for Lemma 3.1 for each collection of the factors, there are exactly,(

m

r1

)
2r1(n1 − 1)m−r1

(
k −m

r2

)
2r2(n2 − 1)m−r2

many of new n-gons with a side length αr1
1 cm−r1

1 αr2
2 cm−r2

2 cL0. Hence, the total area of all
new n-gons at step k + 1 is
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Ak+1 =
m∑

r1=0

k−m∑
r2=0

(
m
r1

)
2r1(n1 − 1)m−r1

(
k−m
r2

)
2r2(n2 − 1)m−r2(αr1

1 cm−r1
1 αr2

2 cm−r2
2 c)2S

= (2α2
1 + (n1 − 1)c21)

m(2α2
2 + (n2 − 1)c22)

k−mc2S

(6)

□

Theorem 4.2 Assume the sides of the initial regular n1-gon have length L0. Let Si be
the area of the ni-gon with side length L0 for i = 1, 2. The area of a self-avoiding (n,
c)-Koch snowflake that is generated by alternating (n1, c1) layer and (n2, c2) layer is

A = S1 +
n1c

2
2S2 + n1(2α

2
2 + (n2 − 1)c22) · c21S1

1− (2α2
1 + (n1 − 1)c21)(2α

2
2 + (n2 − 1)c22)

where α1 =
1−c1
2

and α2 =
1−c2
2

and 0 < ci <
1+

√
2ni

2ni−1
for i = 1, 2.

Proof. Since each line segment is replaced by an n2-gon at an odd step and n1-gon
at an even step, we need to calculate the areas of new polygons at even and odd steps
separately.

First we consider the total area of new n2-gons at an odd step, say 2m+ 1 for m ≥ 0.
Since the first 2m steps involves m many of steps following the (n1, c1)-replacing scheme
and m many of steps using the (n2, c2)-replacing scheme, by Lemma 4.1, the total area of
the new n2-gons is

A2m+1 = (2α2
1 + (n1 − 1)c21)

m
(2α2

2 + (n2 − 1)c22)
m · c22S2

=
(
(2α2

1 + (n1 − 1)c21)(2α
2
2 + (n2 − 1)c22)

)m · c22S2

Next, we consider the total area of new n1-gons at an even step, say 2m for m ≥ 1.
Since the first 2m − 1 steps involves m − 1 many of steps using the (n1, c1)-replacing
scheme and m many of steps using the (n2, c2)-replacing scheme, by Lemma 4.1, the total
area of new n1-gons is

A2m = (2α2
1 + (n1 − 1)c21)

m−1
(2α2

2 + (n2 − 1)c22)
m · c21S1

= ((2α2
1 + (n1 − 1)c21)(2α

2
2 + (n2 − 1)c22))

m−1
(2α2

2 + (n2 − 1)c22) · c21S1

Note 0 < ci <
1+

√
2ni

2ni−1
for i = 1, 2 implies that (2α2

1+(n1− 1)c21)(2α
2
2+(n2− 1)c22) < 1.
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Hence, the total area of the resulting snowflakes is

A = S1 + n1

(
∞∑

m=0

A2m+1 +
∞∑

m=1

A2m

)

= S1 +
n1c

2
2S2

1− (2α2
1 + (n1 − 1)c21)(2α

2
2 + (n2 − 1)c22)

+
n1(2α

2
2 + (n2 − 1)c22) · c21S1

1− (2α2
1 + (n1 − 1)c21)(2α

2
2 + (n2 − 1)c22)

= S1 +
n1c

2
2S2 + n1(2α

2
2 + (n2 − 1)c22) · c21S1

1− (2α2
1 + (n1 − 1)c21)(2α

2
2 + (n2 − 1)c22)

□

Remark 4.3 The conditions on ci in Theorem 4.2 is sufficient, but may not be necessary.

5 General Mixed Steps

We can further extend Lemma 4.1 to more general scenarios.

Theorem 5.1 Suppose the first k iterations consist of mi steps applying (ni, ci)-replacing

scheme for i = 1, · · · , N , with
N∑
i=1

mi = k, and the (k + 1)th iteration follows the (n, c)-

replacing scheme. Further suppose there is no self interaction, then the total area of all
new n-gons at Step k + 1 is

Ak+1 =
N∏
i=1

(2α2
i + (ni − 1)c2i )

mic2S (7)

where S is the area of the initial n-gon.

Proof. Similar to the proof of Lemma 4.1, the side length of new n-gons at Step k takes
the form of a1 · · · akL0, where L0 is the side length of the initial n-gon. Since the first k
iterations consists of mi steps applying (ni, ci)-replacing scheme for i = 1, · · · , N , there
are mi many of aj ∈ {αi, ci}. Again similar to the proof of Lemma 4.1, we can view the
product a1 · · · ak as the product of N collections of factors: those aj ∈ {αi, ci} form one
collection for each i ∈ {1, · · · , N}. Suppose there are ri many of αi and mi − ri many of
ci in the sequence a1 · · · ak, for i = 1, · · · , N . Then there are exactly

N∏
i=1

2ri(ni − 1)mi−ri
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many of line segments associated with a given sequence a1 . . . ak. Hence, there are exactly

N∏
i=1

(
mi

ri

)
2ri(ni − 1)mi−ri

many of new n-gons with a side length of
∏N

i=1 α
ri
i c

m−ri
i cL0. Thus the total area of all

new n-gons at Step k + 1 is

Ak+1 =
m1∑
r1=0

· · ·
mN∑
rN=0

N∏
i=1

(
mi

ri

)
2ri(ni − 1)mi−ri(αri

i c
mi−ri
i c)2S

=
N∏
i=1

mi∑
ri=0

(
mi

ri

)
2ri(ni − 1)mi−ri(αri

i c
mi−ri
i c)2S

=
N∏
i=1

(2α2
i + (ni − 1)c2i )

mic2S

(8)

□

6 Discussion

In this paper, we focused on computing the areas of generalized self-avoiding Koch
snowflakes. We derived formulas for the areas of (n, c)-Koch snowflakes and also for
the areas of mixed types of generalized Koch snowflakes. Our result in Theorem 5.1 can
be further generalized to the cases that the replaced portion of a side is positioned other
than the middle and the portion of side is replaced by a non-regular n-gon. In these
extended cases, multinomial theorem will be needed for the calculation. However, the key
combinatorics idea remains valid.

Besides the class of curves we discussed in this paper, there are other types of gener-
alization such as those beautiful fractals constructed by Shakiban and Bergstedt [7]. As
their strategy is different, our approach is likely needed to be modified. We will explore
this in the future.
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