
Enumeration of Minimum Path Covers of Trees

C.R. Johnson and M. Sher

Abstract - In the study of possible multiplicity lists for eigenvalues of real symmetric
matrices with a given tree T as graph, the value of maximum multiplicity, M(T), has been
of great interest. M(T) turns out to be the same as P (T), the path cover number of T .
This is the minimum number of induced paths of T that are vertex disjoint and cover all
its vertices. For a given tree T , P (T) can be achieved in several ways. Here, we give
a method to enumerate all possible minimum path covers for any given tree through a
reductive procedure.

Keywords : maximum multiplicity; minimum path cover; real symmetric matrices; trees

Mathematics Subject Classification (2020) : 05C30; 05C70; 15A18

1 Introduction

In the past 2+ decades a theory of possible multiplicity lists for the eigenvalue of real
symmetric matrices with a given graph has been heavily studied [1]. The theory is most
well developed for trees. A key fact is that, for a tree T , the maximum multiplicity M(T)
is the path cover number P (T) [2]. This is the fewest induced paths of the tree that are
vertex disjoint and include all its vertices; a set of such paths is called a minimum path
cover (MPC) of T . A single vertex is allowed to count as a path. An equivalent number
is max(p− q) in which p is the number of (simple) paths remaining after the removal of
q vertices from T [2]. Both P (T) and max(p− q) may be attained in multiple ways, but
there is little relationship in how they are attained.

The path cover number is a concept that seems to have arisen from the (new) multi-
plicity theory. There are simple algorithms to evaluate P (T), or max(p − q) [3]. But, a
natural question to ask is how many distinct MPC’s, N(T), occur for a given tree. This
question has been raised [4], but has not yet been fully answered.

Our purpose here is to give a procedure for the enumeration of N(T) that works for
any tree by reduction to simple trees for which N(T) is obvious. There are two parts to
our approach to the enumeration. One is to subdivide the tree through identifying special
vertices or special overlapping positions of the tree for which the count is multiplicative.
The other is to partition the inclusion of certain special edges and divide the set of all
MPC’s of the tree into two subsets for which the count is additive. The former is why
the growth of N(T) can be rapid.

In the next section, some definitions and useful technical background are given. Then
the reduction procedure, by type of situation is given in the next 3 sections, with a

the pump journal of undergraduate research 8 (2025), 123–140 123

final section for an overview of the complete procedure and additional examples and
observations.

2 Background

Let A = (aij) be an n-by-n real symmetric matrix. The graph of A, denoted G(A), is the
simple undirected graph on n vertices with an edge {i, j} if and only if i ̸= j and aij ̸= 0.
We use S(G) to denote the set of all real symmetric matrices whose graph is G.

Given a tree T , let degT (v) denote the degree of a vertex v in T , which is the number of
neighbors of v. M(T) denotes the largest possible multiplicity that occurs for eigenvalues
of matrices in S(T).

In a tree T , a high degree vertex (HDV) is one of degree at least 3. Otherwise, the
vertex is of low degree. A leaf is one of degree 1. The Hi-graph, H(T), of T is the
subgraph induced by its HDV’s. H(T) is a forest with one or more components (each of
which is a tree). The incremental degree of a vertex v, δ(v), is the difference between
its degrees in T and in H(T). A high-incremental degree (HID) vertex in H(T) is one
of incremental degree at least 2; otherwise it is of low-incremental degree (LID).

Example 2.1 Given a tree T , its Hi-graph is shown on the right with all vertices in H(T)
labeled with their respective incremental degree.

T

02

2

2

H(T)

It is also helpful to characterize how edges are used in different MPC’s of T when
calculating N(T). For a tree T with N(T) = 1, each of its edges is either included in the
MPC or not. In Appendix A, a brief discussion of trees with a unique MPC is included.
For a general tree T with possibly multiple MPC’s, the MPC’s differ from one another by
including different sets of edges. We distinguish 3 statuses for edges in T .

Definition 2.2 An edge is absent if it is used in no MPC of T . An edge is required if
it is used in all MPC’s. An edge is discretionary if it occurs in some but not all MPC’s.

We consider how to identify the status of an edge and how an edge contributes to our
knowledge of N(T), both here and in later sections.

Lemma 2.3 Any edge between two low degree vertices is required.

the pump journal of undergraduate research 8 (2025), 123–140 124

Proof. Shown below is the general structure of two adjacent low degree vertices v1 and
v2 in a tree T . T1 and T2 represent the subtrees connected respectively to v1 and v2 in T .
One or both of them can be empty.

T1 v1 v2 T2

We will complete the proof by contradiction. Let C1 be an MPC of T . Assume that the
edge (v1, v2) is not used in C1. Then, there are two paths in C1 that terminate at v1 and
v2. Through merging these two paths into one by including (v1, v2) and thus connecting
v1 and v2, we construct a new path cover for T , C2. All the other paths in C2 are the
same as in C1. The new path cover, C2, covers all the vertices in T and contains one fewer
path than C1. Since we assumed C1 to be an MPC, a contradiction is reached. Therefore,
(v1, v2) must be included in all MPC’s of T . □

Edge subdivision is the introduction of a new degree-2 vertex, positioned along an
existing edge.

T1 T2e subdivide e−−−−−−→
T1 v T2e1 e2

Lemma 2.4 If T ′ is obtained by subdividing a required edge in T , then N(T ′) = N(T).

Proof. Given that the edge e in the illustration above is required in T , we will first show
that after subdividing e, the resulting edges e1 and e2 are both required in the new tree
T ′.

Since we can always construct a path cover for T ′ from an MPC of T by including
e1, v, and e2 in the path that originally includes e and keeping other paths unchanged,
we have P (T ′) ≤ P (T). Without loss of generality, assume that e1 is not required in T ′.
Then, for a minimum path cover of T ′, CT ′ , that does not use e1, either e2 is used and
v is included in a path that goes into T2 or e2 is not used and v2 is included in CT ′ as a
singleton.

If e2 is used in CT ′ , we can construct a corresponding path cover CT for T that preserves
the paths in CT ′ except that the path that originally terminates at v now terminates at
the vertex in T2 that is connected to e. If e2 is not used in CT ′ , we can also construct
a corresponding path cover CT for T that preserves all the paths in CT ′ excluding v as a
singleton. For both cases, |CT | ≤ |CT ′ | ≤ P (T), meaning CT , in which the edge e is not
used, is a minimum path cover of T . However, we assumed e to be a required edge, and
thus a contradiction is reached.

Therefore, e1 and e2 are both required in T , which means that e1, v, and e2 must be
included in the same path in every MPC of T ′, making them equivalent to e, a single
edge, in T . Therefore, we have N(T ′) = N(T). □

Corollary 2.5 For a tree T , the value of N(T) is independent of the lengths of the paths
induced by the low degree vertices in T .

the pump journal of undergraduate research 8 (2025), 123–140 125

Remark 2.6 For a tree T , an LID vertex cannot be a leaf ofH(T). Furthermore, a vertex
of incremental degree 0 in H(T) must have at least 3 pendent branches. Otherwise, they
would not have been included in the Hi-graph.

3 Trees with Multiple-Component Hi-graphs

The Hi-graph of a tree T has two or more components when there are one or more low-
degree vertices on a single path between two of the HDV’s. We will call such a path,
induced by the low-degree vertex or vertices between two HDV’s in the original tree, a
hyphen.

Remark 3.1 By Lemma 2.3 and Corollary 2.5, the edges in a hyphen are required and
the value of N(T) is independent of the lengths of the hyphens.

Given a tree with a Hi-graph of k components, where k ≥ 2, it has k − 1 hyphens.
We select a hyphen lh and consider it a shared boundary between the two neighboring
components. The two HDV’s connected by the hyphen are denoted v1 and v2, respectively.
The process of hyphen decomposition is defined as follows. We first separate the two
components by removing the edge between lh and v2, with the resulting tree that contains
v1 denoted T1. Similarly, T2 is obtained by removing the edge between lh and v1 and
selecting the part that includes v2. Note that after the separation, both T1 and T2 include
lh.

Below is a tree with a two-component Hi-graph with each component being a singleton
of incremental degree 3. The hyphen is labeled, and the process of hyphen-decomposing
T into T1 and T2 is displayed.

v1 v2

Hyphen

Twwww�

v1

T1

v2

T2

Hyphen Hyphen

It is easier to enumerate N(T1) and N(T2) than to directly calculate N(T). In fact,
we will show that N(T) is the product of the two.

the pump journal of undergraduate research 8 (2025), 123–140 126

Lemma 3.2 Suppose that the Hi-graph of a tree T has two or more components. T is
then hyphen-decomposed into T1 and T2 at one of the hyphens. Then, the selected hyphen
is always included in a single path in every MPC of T1 and T2.

Proof. Since T1 and T2 are named arbitrarily, we only need to present the proof for T1.
When the hyphen is a degenerate path, the statement is trivially true. When the hyphen
is composed of two or more vertices, every vertex in it is of low degree. Therefore, by
Lemma 2.3, every edge in the hyphen is required, meaning the hyphen must be included
in a single path in every MPC of T1. The same argument applies to T2. □

Lemma 3.3 Suppose that the Hi-graph of a tree T has two or more components. T is
then hyphen-decomposed into T1 and T2 at one of the hyphens. Let C1 and C2 be two
MPC’s of T1 and T2, respectively. Then C1 and C2 can be merged into a path cover of T
by taking the two paths in C1 and C2 that both contain the hyphen and merging them into
one path. Note that two such paths must exist by Lemma 3.2. The other paths in C1 and
C2 are unchanged by the merge. The resulting path cover is an MPC of T .

Proof. An example of merging MPC’s of T1 and T2 is shown below. We will complete
the proof by contradiction. Suppose that the resulting path cover of T is not an MPC.
Thus, the number of paths in it, k, is greater than P (T). We have

k = |C1|+ |C2| − 1 > P (T).

Because the edges in the hyphen are required in T , the reverse of the merging process
can be applied on an MPC of T to obtain two path covers for T1 and T2. We apply the
reverse-merging on an MPC of T , during which the count of paths will increase by 1,
and thus the total number of paths in these two path covers is P (T) + 1. But we have
|C1| + |C2| > P (T) + 1, suggesting that at least one of C1 and C2 is not minimum. A
contradiction is reached. Therefore, the resulting path cover of T from merging C1 and
C2 is an MPC of T . □

v1

T1

v2

T2

Hyphen Hyphen

v1 v2

Hyphen

T

We now consider the relationship between P(T1), P(T2), and P(T), the sets of MPC’s
of T1, T2, and T .

the pump journal of undergraduate research 8 (2025), 123–140 127

Lemma 3.4 Suppose that the Hi-graph of a tree T has two or more components. T is
then hyphen-decomposed into T1 and T2 at one of the hyphens. There exists a bijection
between P(T1)×P(T2) and P(T).

Proof. Let C1 and C2 be two MPC’s of T1 and T2, respectively. We will first construct
a function f that maps from P(T1)×P(T2) to P(T).

Define f : P(T1) × P(T2) → P(T). The function f merges C1 and C2 in the same
way as described in Lemma 3.3. Let C ∈ P(T) be the resulting MPC. We then have
f(C1, C2) = C for C1 ∈ P(T1), C2 ∈ P(T2), C ∈ P(T).

For C1, C ′
1 ∈ P(T1) and C2, C ′

2 ∈ P(T2), if (C1, C2) = (C ′
1, C ′

2), we show that C =
f(C1, C2) = f(C ′

1, C ′
2) = C ′. Given the merging procedure described above, it is impossible

for two sets of identical MPC’s of T1 and T2 to become distinct MPC’s of T after the
merge. Therefore, f is well-defined.

Now show that f is a bijection. We first prove that f is injective by showing that
if C1 ̸= C ′

1 or C2 ̸= C ′
2, then C ̸= C ′. This is true by the merging process described

above. Let f−1 be defined as the reverse merging process. An MPC of T gets split up
into MPC’s of T1 and T2. T1 is the component that contains v1 after the removal of the
edge between the hyphen and v2; Similarly, T2 is the component that contains v2 after
the removal of the edge between the hyphen and v1. Then, for each C(i) ∈ P(T), we get

f−1(C(i)) = (C(i)
1 , C(i)

2), with (C(i)
1 , C(i)

2) ∈ P(T1)×P(T2). Therefore, f is surjective.
Because f is both injective and surjective, it is a bijection. □

Theorem 3.5 Let T be a tree with a multiple-component Hi-graph, and let T1 and T2 be
the results of hyphen-decomposing T at any selected hyphen. Then, N(T) = N(T1)N(T2).

Proof. As is shown in Theorem 3.4, there exists a bijection between P(T1)×P(T2) and
P(T). The two sets have the same cardinality. Hence, N(T1) ·N(T2) = |P(T1)||P(T2)| =
|P(T1)×P(T2)| = |P(T)| = N(T). □

Given a tree T of k components and k − 1 hyphens, hyphen-decomposition can be
applied at each of the k − 1 hyphens in a sequential order to decompose T into k parts.
Each of the resulting parts has a single-component Hi-graph.

Algorithm 3.6 Given a tree T with a k-component Hi-graph and k − 1 hyphens,

1. Identify all the hyphens and assign indices 1, 2, · · · , k− 1 to them. The order of the
assignment does not matter as long as each hyphen is assigned exactly once.

2. Starting from i = 1, while i ≤ k − 1,

(a) decompose the component that includes the i-th hyphen into two subparts

through applying hyphen-decomposition at the i-th hyphen, and

(b) increment i by 1.

3. When Step 2 is completed, we have decomposed T into k subparts.

the pump journal of undergraduate research 8 (2025), 123–140 128

Corollary 3.7 Suppose that the Hi-graph of a tree T consists of k disjoint components.
If Algorithm 3.6 is applied and T is hyphen-decomposed into k parts, T1, T2, · · · , Tk, then

N(T) =
k∏

i=1

N(Ti).

Proof. This is a direct result of Theorem 3.5 and the construction of Algorithm 3.6. □

Example 3.8 For the tree T shown below that has a three-component Hi-graph, v1 and
v2 are identified as the two hyphens. We then apply hyphen decomposition to T and get
T1, T2, and T3 as the resulting components. By Corollary 3.7,

N(T) = N(T1)N(T2)N(T3) =

(
3

2

)
×
(
4

2

)
×

(
5

2

)
= 180.

v1 v2

T1 T2

T

T3

In this example, the resulting components are all stars. We will describe the calculation
of N(T) for trees with a connected Hi-graph in the next section.

4 Trees with Single-Component Hi-graphs

We are now able to calculate N(T) for a tree T with a Hi-graph of multiple components
when given N(Ti)’s for all its components resulting from hyphen decomposition. In this
section, we will look only at trees with a connected Hi-graph and show how to enumerate
N(T).

First, there are certain simple trees of which we can calculate N(T) without having
to decompose further. An example is generalized stars.

Definition 4.1 A generalized star is a tree with at most one HDV.

Proposition 4.2 Let T be a generalized star with d branches. Then,

P (T) = d− 1 and N(T) =

(
d

2

)
.

the pump journal of undergraduate research 8 (2025), 123–140 129

Proof. In order to minimize the number of paths used in a path cover for T , one of
the paths includes two of the branches as well as the central vertex. The other (d − 2)
branches are included as disjoint paths in the MPC. Therefore, P (T) = d − 1. Because
there are

(
d
2

)
ways to select two branches to lie on the same path in an MPC, N(T) =

(
d
2

)
.

□
For a tree T with a single-component Hi-graph that is not a generalized star, there are

ways to decompose it into smaller pieces, T1, T2, · · · , Tk, enumerate N(Ti) for each piece,
and then calculate N(T) given rules for recombination. Absent-edge decomposition,
a process defined in Lemma 4.3, plays an important role when decomposing such trees.

Lemma 4.3 Absent-edge decomposition is the process where a tree T is decomposed into
smaller components T1, T2, · · · , Tk through the removal of all of its absent edges. Then,

P (T) =
k∑

i=1

P (Ti) and N(T) =
k∏

i=1

N(Ti).

Proof. The absent edges of T are, by definition, not used in any MPC of T . Through
removing all of them, an MPC of T can be viewed as a union of the MPC’s of T1, T2, · · · , Tk.
Therefore, P (T) =

∑k
i=1 P (Ti). The choice of which MPC of P(Ti) to use for constructing

an MPC for T is independent across different Ti’s. Thus, we can writeP(T) as the product
of P(T1),P(T2), · · · ,P(Tk),

N(T) = |P(T)| = |P(T1)||P(T2)| · · · |P(Tk)| =
k∏

i=1

N(Ti).

□

Example 4.4 For the tree below, e1 and e2 are absent. Therefore, we apply absent-edge
decomposition and decompose T into T1, T2, and T3. By Theorem 2.3,

P (T) =
3∑

i=1

P (Ti) = 1 + 2 + 1 = 4 and N(T) =
3∏

i=1

N(Ti) = 1 ·
(
3

2

)
· 1 = 3.

e1 e2

T1 T2 T3

Our goal now is to identify all absent edges in a given tree.

the pump journal of undergraduate research 8 (2025), 123–140 130

4.1 Identifying Absent Edges

We first use H(T) and incremental degrees to directly identify some absent edges for a
tree T .

Proposition 4.5 In a tree T , an edge between two HID vertices is an absent edge.

Proof. Suppose that in a tree T with a connected Hi-graph, there is one or more pairs
of adjacent HID vertices. We complete the proof by contradiction.

Assume that in T , the edge between two adjacent HID vertices, v1 and v2, is used in
an MPC C. We use (v1, v2) to denote the edge and l to denote the path in C that contains
v1, v2, and (v1, v2). Suppose that δ(v1) = d1 and δ(v2) = d2, with d1, d2 ≥ 2, and that
P (T) = k. Because H(T) is connected, v1 and v2 have d1 and d2 pendent paths in T .

T1 v1

T2

v2 T3

The tree shown above demonstrates a sample structure of T . The nodes denoted as
Ti’s represent the HDV’s (besides v1 and v2) adjacent to either v1 or v2 and the subtrees
connected to them. In order to minimize the number of paths used, l must include one
neighboring edge at v1 and one at v2 besides (v1, v2). These two edges at v1 and v2 can
either connect them with a pendent path or an adjacent HDV depending on the overall
structure of T . Either way, there is at least one pendent path left at each vertex that is
included in C separately. A new MPC, C ′, can be constructed from C. The process is as
follows.

The path, l, first gets split into two by removing (v1, v2) from C. Then, we connect
the path that contains v1 to one of its “available” pendent paths and apply the same to
v2. During this process, the total number of paths increases by 1 when (v1, v2) is removed
and decreases by 2 when v1 and v2 are respectively connected to the two pendent paths
that were originally separate paths in C. Therefore, |C ′| = k+ 1− 2 = k− 1 < P (T). We
have now reached a contradiction. Therefore, (v1, v2) is absent in T . □

Not all absent edges are between two HID vertices. In order to identify the rest of
them, we reduce a tree to a smaller one without changing the statuses of the edges with
the help of pendent generalized stars. A pendent generalized star in a tree T is a
generalized star induced by a peripheral HDV and its pendent paths. An HDV v is
peripheral if and only if there is exactly one branch of T at v that contains all the other
HDVs in T.

Lemma 4.6 In a tree T , an edge connecting a pendent generalized star to the rest of T
is never required.

the pump journal of undergraduate research 8 (2025), 123–140 131

Proof. Let e be an edge connecting a pendent generalized star of incremental degree d
to the rest of T , T2. Assume that e is a required edge. Then, in every MPC of T , there
is always a path that includes e, the central HDV of the pendent generalized star, as well
as one of its pendent paths in order to minimize the number of paths used. Suppose that
in an MPC of T , other than the path that uses e, there are k paths that cover the rest of
T2. Then, P (T) = k + 1 + (d− 1) = k + d.

We now construct a new path cover for T , where we use the same set of paths to cover
T2, except that the path that originally included e now terminates at the vertex in T2

neighboring e. This means that there are still (k + 1) paths covering T2. We then need
(d− 1) paths to cover the pendent generalized star by including two of its pendent paths
and the central vertex in the same path and the rest of the pendent paths as separate
ones. This new path cover of T uses (k+1+d−1) = k+d paths, which is equal to P (T).
We have reached a contradiction, meaning that e must not be a required edge. □

T2

T ′

..
. e

Proposition 4.7 Removing a pendent generalized star from a tree T does not change the
statuses of the rest of the edges in T .

Proof. A pendent generalized star is arbitrarily selected to be removed from T along
with e, the edge that connects it with the rest of T . The resulting tree is denoted T2. v
denotes the vertex in T ′ that is the immediate neighbor of e. By Lemma 4.6, e can only
be absent or discretionary.

If e is an absent edge, none of the original MPC’s uses e. It is obvious that removing
it does not change the statuses of edges in T2.

Now suppose that e is discretionary. We can then partition P(T), the set of all MPC’s
of T, into two subsets, one with all the MPC’s that use e and the other with MPC’s that
do not use e. Suppose that the selected pendent generalized star has incremental degree
k. For the subset that does not include e, removing e does not affect the structures of
the MPC’s, and thus the edges in T2 have the same status as in T . In this case, we write
P (T) = P (T2) + (k − 1).

For the subset of P(T) where e is always used, the path that includes e in each of the
MPC’s also goes through a pendent path of the pendent generalized star to minimize the
number of paths used. Let T ′ denote the subtree of T induced by e, T2, and the pendent
path. Then, each MPC in P (T) is consisted of k − 1 paths as well as an MPC in P (T ′).
Thus, P (T) = (k − 1) + P (T ′) = P (T2) + (k − 1). We then get P (T ′) = P (T2).

If there is an MPC in P (T ′) where e is not used, the aforementioned pendent path
must be included as a separate path. We get P (T ′) = P (T2) + 1 as a result, which is

the pump journal of undergraduate research 8 (2025), 123–140 132

contradictory to the result in the previous paragraph. This suggests that e must be a
required edge in T ′. Therefore, when the pendent generalized star and e are removed from
T , the statuses of the edges left remain unchanged. □

The internal tree, I(T), of a tree T is the subtree induced by the vertices and edges
in T when all of its pendent generalized stars as well as the edges connecting them to the
rest of T are removed.

Corollary 4.8 For a tree T and its internal tree I(T), the edges that are included in both
trees share the same statuses.

For a tree T where no absent edge can be immediately identified, we can now reduce
it to a smaller tree by removing a pendent generalized star and check if Proposition 4.5
is applicable. The following algorithm results in identifying all absent edges for a tree T .

Algorithm 4.9 A tree T is given.

1. Let Eabsent = {} denote the set of absent edges in T and set F = T .

2. Let T1, · · · , Tm denote the disjoint components in F . While there exists a connected
component in F that has more than one HDV:

(a) For Ti ∈ F , if Ti has only one HDV, we remove Ti from F since it does not
include an absent edge. Otherwise, Ti has two or more HDV’s. We update F
and proceed to the next step.

(b) Let E denote the set of all edges in F . Iterate over all edges in E. If an edge
ei is between two HID vertices in the connected tree Ti that it belongs to, set
F = F − ei and add ei to Eabsent.

(c) Apply the following steps to each of the T ′
is. Initially, Ti is at the 0th iteration

and is represented using T
(0)
i .

i. During the t-th iteration, every edge in T
(t)
i is checked for whether it is

absent. In order to determine the status for an edge eij of T
(t)
i , remove

all pendent generalized stars of T
(t)
i as well as the edges that connect the

pendent generalized stars to the rest of T
(t)
i . However, if eij itself is in a

pendent generalized star, that generalized star does not get removed.

ii. T (i)(t+1) is obtained after removing all the pendent generalized stars of T
(t)
i .

F is updated accordingly when newly identified absent edges are removed.
Repeat the entire process in Step 2 on T (i)(t+1) until the initial condition
becomes unsatisfied.

3. At the completion of the previous steps, all absent edges in T are included in Eabsent.

Example 4.10 Determine whether e is an absent edge for the following tree T .

the pump journal of undergraduate research 8 (2025), 123–140 133

e

We first attempt to identify any edge that is between two HID vertices. Since there is
no such edge in T , we proceed to Step 2(c) of Algorithm 4.9.

Since our goal is to identify whether e is absent, all pendent generalized stars of T as
well as the edges that connect them to the rest of T are removed. The resulting tree is
shown below. Since it still includes more than one HDV, we repeat Step 2 of Algorithm
4.9 on the updated tree and find that e is now between two HID vertices. We conclude
that e is an absent edge in the original tree T . In fact, e is the only absent edge in T ,
which can be verified by applying the algorithm thoroughly on T .

e

5 Prime Trees

In this section, we will present an algorithm to enumerate N(T) for trees that cannot be
further decomposed using hyphen decomposition or absent-edge decomposition.

Definition 5.1 A tree T is prime if H(T) is connected and there are no absent edges
in T .

Lemma 5.2 For a prime tree T , an edge e connecting a pendent generalized star to the
rest of T is discretionary.

Proof. Since T is a prime tree, e must not be absent. By Lemma 4.6, e must not be
required. Therefore, e is a discretionary edge. □

Lemma 5.3 Let T be a prime tree with one or more pendent generalized stars. If an edge
e connects a pendent generalized star of incremental degree k to the rest of T , and if T ′

is the resulting subtree after removing any k − 1 pendent paths of the pendent generalized
star from T , then e is a required edge in T ′.

the pump journal of undergraduate research 8 (2025), 123–140 134

Proof. Included in the proof for Proposition 4.7. □

Algorithm 5.4 In order to enumerate MPC’s for a prime tree T , we first identify an
edge e connecting a pendent generalized star, T1, with the rest of T . By Lemma 5.2, e
is discretionary. We then consider partitioning P(T) into two subsets where e is either
always used or never used. For the subset PN(T), where e is not used, consider the two
trees T1 and T2 as the result of removing e from T . We have |PN | = N(T1)×N(T2).

Now consider the subset PU(T), where e is always used. In this case, in order to
minimize the number of paths used, for every MPC in PU(T), the path that includes e
must also go through the central vertex of T1 as well as one of its pendent paths. We
construct a subtree T ′ through removing (k − 1) pendent paths of the pendent generalized
star from T . There are

(
k

k−1

)
= k ways of doing so. For each of the k ways, we only count

the number of MPC’s of T ′ that use e to be consistent with our setup. By Lemma 3.3, e
is required in T ′, so N(T ′) is exactly the number of MPC’s of T ′ that use e. The resulting
trees, regardless of which (k − 1) paths are removed, are all automorphic to one another
and thus have the same number of MPC’s, N(T ′). Therefore, |PU | = k ·N(T ′).

Finally, we have

N(T) = |P(T)| = |PN(T)|+ |PU(T)| = N(T1) ·N(T2) + k ·N(T ′).

T2

T ′

T1

..
. e

Since T1, T2, and T ′ are all on fewer vertices than T , the values N(T1), N(T2), and N(T ′)
can also be known inductively with the same algorithm.

Example 5.5 Calculate N(T) for the following prime tree T .

T ′

T2T1

e

|PN(T)| = N(T1) ·N(T2) = 1 · 3 = 3; |PU(T)| = k ·N(T ′) = 2 · 1 = 2;
N(T) = |P(T)| = |PN(T)|+ |PU(T)| = 3 + 2 = 5.

the pump journal of undergraduate research 8 (2025), 123–140 135

6 A General Algorithm

Algorithm 6.1 Given a tree T ,

1. Apply hyphen decomposition using Algorithm 3.6 to decompose T into components
with connected Hi-graphs.

2. For each of the resulting components, identify all absent edges and apply absent-edge
decomposition.

3. For each of the resulting components, repeat Step 1 and 2 since new hyphens and
absent edges may arise after the decomposition processes. Keep a record of every
decomposition applied and the components involved for Step 5. When all the resulting
components become prime, go to Step 4.

4. Use Algorithm 5.4 to calculate the number of MPC’s for prime trees inductively.

5. Use the values obtained from Step 4 and recombine them one step at a time using
Corollary 3.7 and Lemma 4.3 to eventually obtain N(T).

The time complexity of Algorithm 6.1 is, in the worst case, quadratic. However, the
algorithm tends to perform significantly better than quadratic when applied to trees with
relatively simple structures. Further analysis is needed to understand the algorithm’s
average runtime across various tree structures. The code that implements Algorithm 6.1
is available by contacting the authors.

Example 6.2 Solve N(T) for the following tree T using Algorithm 6.1.

1. hyphen

2. absent edge

3. hyphen 3. hyphen

the pump journal of undergraduate research 8 (2025), 123–140 136

1. Apply hyphen decomposition on T and obtain two subparts. One of them is a gener-
alized star, and we use Proposition 4.2 to get N(Tg) =

(
3
2

)
= 3. Let T ′ denote the other

resulting part. By Corollary 3.7,

N(T) = 3N(T ′).

2. Apply absent-edge decomposition on T ′ and obtain T ′
1 and T ′

2. By Lemma 4.3,
N(T ′) = N(T ′

1)N(T ′
2). We now have

N(T) = 3N(T ′
1)N(T ′

2).

3. Repeat steps 1 and 2 in Algorithm 6.1 for each of the resulting components. Two
newly arisen hyphens are identified, for which hyphen decomposition is applied. No new
absent edge is found. The resulting parts after steps 1 through 3 are shown below.

T ′
11

T ′
12 T ′

21

T ′
22 Tg

Eventually, we have

N(T) = 3N(T ′
11)N(T ′

12)N(T ′
21)N(T ′

22).

Notice that T11, T12, T21, and T22 are all isomorphic to the tree in Example 5.5. All
the components are now prime trees. Thus,

N(T11) = N(T12) = N(T21) = N(T22) = 5.

Finally, we have

N(T) = 3N(T11)N(T12)N(T21)N(T22) = 3× 54 = 1875.

In the following two figures, we plot the average and maximum values of N(T) for all
trees on n vertices over the value of n, based on a small sample of values for n.

the pump journal of undergraduate research 8 (2025), 123–140 137

Figure 1: Growth of average N(T)

Figure 2: Growth of max N(T)

the pump journal of undergraduate research 8 (2025), 123–140 138

Appendix A Trees with a Unique MPC

One problem that has been of interest is characterizing all trees that have a unique
MPC. However, among these trees, there still exist a variety of structures. Using the
techniques we develop, it can be determined whether a given tree T has a unique MPC.
However, we have not been able to directly describe all trees with a unique MPC using
overt combinatorial features of T .

Here, we present some examples of trees with unique MPC. For trees T1, T2, and
T3, P (T1) = 1, P (T2) = 3, and P (T3) = 4. The dashed edges are absent, and all the other
edges are required.

T1 T2

T3

Acknowledgments

This work was supported in part by the National Science Foundation under Grant DMS
#1757603.

References

[1] C.R. Johnson, C.M. Saiago, Eigenvalues, Multiplicities, and Graphs, Cambridge University Press,
2018.

[2] C.R. Johnson, A. Leal-Duarte, The maximum multiplicity of an eigenvalue in a matrix whose graph
is a tree, Linear Multilinear Algebra, 46 (1999), 139–144.

[3] I.J. Kim, B.L. Shader, Smith normal form and acyclic matrices, J. Algebraic Combin., 29 (2009),
63–80.

[4] L. Hogben, C.R. Johnson, Path Covers of Trees, unpublished note.

[5] C.R. Johnson, C.M. Saiago, Estimation of the maximum multiplicity of an eigenvalue in terms of
the vertex degrees of the graph of a matrix, Electron. J. Linear Algebra, 9 (2002), 27–31.

the pump journal of undergraduate research 8 (2025), 123–140 139

[6] C.R. Johnson, C.M. Saiago, The trees for which maximum multiplicity implies the simplicity of
other eigenvalues, Discrete Math., 306 (2006), 3130–3135.

Charles R. Johnson
Department of Mathematics, William & Mary
P.O. Box 8795
Williamsburg, VA 23187
E-mail: crjmatrix@gmail.com

Merielyn Sher
Department of Mathematics, William & Mary
P.O. Box 8795
Williamsburg, VA 23187
E-mail: merielyn.sher@gmail.com

Received: March 23, 2024 Accepted: October 6, 2024
Communicated by Maria Isabel Bueno Cachadina

the pump journal of undergraduate research 8 (2025), 123–140 140

	Introduction
	Background
	Trees with Multiple-Component Hi-graphs
	Trees with Single-Component Hi-graphs
	Identifying Absent Edges

	Prime Trees
	A General Algorithm
	Appendices
	Appendix Trees with a Unique MPC

