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1 Introduction

A planar graph is a graph that can be embedded in a plane, i.e., that can be drawn on a
plane without having any edges intersect one another. Kazimierz Kuratowski provided a
characterization of planar graphs by proving that a graph is planar if and only if it does
not contain a subgraph that is a subdivision of one of two graphs, K5 or K3,3 [13]. Klaus
Wagner proved, equivalently, that a graph is planar if and only if it does not contain one
of these two graphs as a minor [21].

The problem of intersecting edges disappears when one considers spatial embeddings
of finite graphs – all finite graphs can be embedded in 3-space without edge intersections –
but new questions arise. Horst Sachs and, separately, John Conway and Cameron Gordon
replaced the edge intersection condition with conditions about the existence of nontrivial
knots and links [3],[20]. They proved that every spatial embedding of the complete graph
on 6 vertices, K6, contains a non-splittable link, and using a similar strategy, Conway
and Gordon proved that every spatial embedding of the complete graph on 7 vertices, K7,
contains a nontrivial knot. Neil Robertson, Paul Seymour, and Robin Thomas proved that
a graph contains a non-splittable link in every spatial embedding if and only if it does not
contain any member of the Petersen family of graphs as a minor [19]. A corresponding
characterization of intrinsically knotted graphs, that is, of graphs that have nontrivial
knots in every spatial embedding, remains an open problem. The work of Robertson
and Thomas, and in particular their Forbidden Minor Theorem, guarantees that such a
characterization exists.

To formulate such a characterization of intrinsically knotted graphs, one seeks to
identify minor-minimal intrinsically knotted graphs, that is, intrinsically knotted graphs
all of whose minors are not intrinsically knotted. Conway and Gordon’s work provided
the first identification of such a graph, K7. Joel Foisy and collaborators made important
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contributions in identifying a linking condition that led to the identification of several new
examples [4], [5], [2]. Breakthrough work of Noam Goldberg, Thomas Mattman, Jonathan
Miller, and Ramin Naimi developed and utilized a computer algorithm based on Foisy’s
linking condition that identified over 200 new examples of minor minimal intrinsically
knotted graphs [16], [6].

A different approach to this problem seeks to systematically identify “small” intrinsi-
cally knotted graphs. For example, Thomas Mattman, and independently the first author
together with Mark Kidwell and T.S. Michael proved that any intrinsically knotted graph
must have at least 21 edges. Mattman and Jamison Barsotti, showed that there are
exactly 14 graphs with 21 edges that are intrinsically knotted [1]. Minjung Lee et al. ob-
tained the same result in [14]. Using the techniques of [14], the authors, together with
Mattman, identified all intrinsically knotted triangle-free graphs with at least two degree
five vertices, and classified all intrinsically knotted bipartite graphs with 22 edges [8], [9].
Kim, Mattman, and Oh added the restoring method to this collection of techniques in
[10] and used it to establish that there are exactly five triangle-free intrinsically knotted
graphs that have 22 edges and one vertex of degree 5. The restoring method is also used
in [11] to identify the bipartite intrinsically knotted graphs that have 23 edges and no
vertex with degree less than 3.

In this paper, we take a second look, through the lens of the techniques used by
Mattman, Kim, Lee, Lee, and Oh, at the case of graphs with 21 edges. We use their
methods to prove that there is exactly one bipartite graph, known as the Heawood graph,
that has 21 edges and is intrinsically knotted. Of course, one can also obtain this result
by showing directly that among the 14 intrinsically knotted graphs with 21 edges the only
graph that is bipartite is the Heawood graph. By applying the techniques of Mattman
et al. to a simpler case, our goals are also to provide a guide to the methods of [14], [9],
[11], [8], and [10], and to highlight their effectiveness.

1.1 Organization

In section 1, we review results about graphs with 21 edges that are needed in the rest of
the paper. Section 2 reviews the techniques of Mattman et al. that we use to prove our
main result, as well as the results and notation needed for these techniques. In section 3,
we show that the vertices in an intrinsically knotted bipartite graph with 21 edges must
have degree greater than 2 and less than 6, and use this to identify possible combinations
of degrees for the vertices in such a graph. We eliminate all but one of these possibilities
in section 5, and complete the proof that the Heawood graph is the only possibility in
section 6.

1.2 Conventions and Notation

For a graph G, we write G = (V (G), E(G)) where V (G) is the set of vertices in the graph,
and E(G) is the set of edges. When the context is clear, we use V and E in place of V (G)
and E(G). For vertices v and w in a graph G, we use (v, w) to denote an edge between
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them. The degree of a vertex is the number of edges that are adjacent to that vertex. For
a vertex v, we use deg(v) to denote its degree.

For an integer n ≥ 1, the complete graph on n vertices is the graph Kn that has n
vertices and all possible edges between those vertices.

A bipartite graph is a graph G whose vertex set is the disjoint union of sets A and B
where (u, v) ∈ E(G) implies that exactly one of u and v is in A and exactly one is in B.
For such a bipartite graph, we write V (G) = A ⊔ B to indicate that the vertex set of G
is the disjoint union of sets A and B.

For integers m,n ≥ 1, the complete bipartite graph Km,n has V (Km,n) = A ⊔ B and
E(Km,n) = {(u, v) | u ∈ A, v ∈ B} where A has m elements and B has n elements. In
other words, Km,n has m + n vertices divided into subsets A and B of size m and n,
respectively, and all possible edges between vertices in A and vertices in B.

2 Graphs With 21 Edges

We use this section to review some results about graphs with 21 edges. The first theorem
establishes a lower bound on the number of edges in an intrinsically knotted graph. Con-
way and Gordon’s proof that K7 is intrinsically knotted implies that this lower bound is
sharp.

Theorem 2.1 [7, 15] An intrinsically knotted graph has at least 21 edges.

A ▽Y-move on a graph is the operation that replaces three edges that form a triangle
in the graph with a new vertex with edges adjacent to the three vertices from the original
triangle. See Figure 1. A graph G′ is said to be a descendant of G if G′ is obtained

Figure 1: ▽Y moves

by one or more ▽Y-moves on G. Motwani et. al [17] showed that ▽Y-moves preserve
intrinsic knotting. Applying ▽Y-moves repeatedly to K7, Kohara and Suzuki established
the following.

Theorem 2.2 [12] The thirteen graphs obtained from K7 by one or a series of ▽Y-moves
are intrinsically knotted.

The Heawood graph, as shown in Figure 2, is a bipartite graph with 14 vertices and
21 edges. Kohara and Suzuki identified the Heawood graph (C14 in their notation) as a
descendant of K7, giving us the following corollary.
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Figure 2: The Heawood graph

Corollary 2.3 [12] The Heawood graph is intrinsically knotted.

3 Tools, Notation, and Strategy

The restoring method of Kim, Mattman, and Oh [11] is part of a strategy for using initial
partial information about the edges and vertices for a graph, what we call a starting
configuration, to determine if it’s possible to build an intrinsically knotted graph from that
starting configuration. In the cases where it may be possible to do so, the restoring method
provides information about what must be added to a starting configuration to build such
a graph. We use this section to review the results that underlie this strategy, outline
the strategy, and include an example of how the strategy can be used to determine that
a particular starting configuration cannot be used to construct an intrinsically knotted
graph.

3.1 Planarity and Intrinsically Knotted Graphs

The strategy for identifying potential intrinsically knotted graphs stems from the next
result. Before stating it, we remind the reader of the following construction for creating
a new graph from graphs G1 and G2.

Definition 3.1 For graphs G1 = (V1, E1) and G2 = (V2, E2), the join of G1 and G2,
denoted G1 ∗G2, is the graph with vertex set V1 ∪ V2 and edge set

E = E1 ∪ E2 ∪ {(v, w) | v ∈ V1, w ∈ V2}.

Theorem 3.2 [2, 2.1], [18, 1.9] Let G be a graph and H = G∗K2. Then H is intrinsically
knotted if and only if G has K5 or K3,3 as a minor, that is, if and only if G is non-planar.

the pump journal of undergraduate research 7 (2024), 333–354 336



A graph is n-apex if it can be turned into a planar graph by deleting n vertices and
the edges attached to those vertices. As an immediate consequence of the Theorem, we
have the next corollary.

Corollary 3.3 If the graph G is 2-apex, then it is not intrinsically knotted.

Theorem 3.2 has consequences for the following types of minors of a graph G.

Definition 3.4 Let G be a graph in which all vertices have degree at least 3 and let a and
b be two distinct vertices in G. The graph G \ {a, b} is obtained from G by removing the
vertices a and b and all edges that are adjacent to a, b, or both a and b. The graph G(a, b)
is obtained from G \ {a, b} by deleting vertices (and their adjacent edges) that have degree

1. The simplification of G(a, b), denoted Ĝ(a, b), is obtained from G(a, b) by eliminating
all degree 2 vertices by contracting one of their adjacent edges. See Figure 3.

Figure 3: An example of Ĝ(a, b)

Corollary 3.5 Let G be a graph and a and b be distinct vertices in G.

1. If G is intrinsically knotted, then G(a, b) and Ĝ(a, b) must contain K5 or K3,3 as a
minor.

2. If G(a, b) or Ĝ(a, b) have 8 or fewer edges, then G is not intrinsically knotted.

Proof.

1. Since G is a subgraph of G \ {a, b} ∗K2, it follows that if G is intrinsically knotted,
then G\{a, b}∗K2 must be as well. Then Theorem 3.2 implies that G\{a, b} must
contain K5 or K3,3 as a minor. Deleting a degree 1 vertex or contracting an edge
adjacent to a degree 2 vertex does not change this.

2. If G(a, b) or Ĝ(a, b) have 8 or fewer edges, then they cannot contain K5 or K3,3 as
minors. By (1), G cannot be intrinsically knotted.
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□
The preceding results inform the basic strategy of Kim, Mattman, and Oh for de-

termining if a starting configuration for a graph, that is, partial information about the
degree of the vertices and the edges in a graph, can be used to build an intrinsically
knotted graph.

Remark 3.6 The strategy of Kim, Mattman, and Oh for identifying possible intrinsically
knotted graphs comprises the following steps [9, 11, §2].

1. Fix a starting configuration C, and assume G is a graph with that starting config-
uration.

2. Choose two vertices a and b in G and form the graph Ĝ(a, b). Determine an upper

bound B(a, b) on the numbers of edges in Ĝ(a, b).

3. (a) If B(a, b) ≤ 8, then starting configuration C cannot be used to build an intrin-
sically knotted graph by Corollary 3.5.

(b) If B(a, b) > 8, identify a collection of edges and vertices in G that can have
K3,3 or K5 as a minor, and use that to define a new starting configuration C ′

from C.

4. Repeat steps until it has been determined that C cannot be used to build an intrin-
sically knotted graph, or until all edges in a potentially intrinsically knotted graph
have been identified.

We note that this strategy does not prove that a graph is intrinsically knotted; instead it is
used to eliminate some starting configurations from consideration, and for other starting
configurations, it can be used to completely determine the edge structure for G that is
necessary (but perhaps not sufficient) for it to be intrinsically knotted. It is this latter
outcome, that may involve one or more iterations of step 3(b), that Kim, Mattman, and
Oh refer to as the restoring method.

3.2 Counting Edges

Before providing an example of the strategy outlined above, we introduce some notation
and use it to determine an upper bound on the number of edges in Ĝ(a, b). The notation
and inequalities that follow are based on the second sections of [9] and [11].

For a graph G = (V,E) and a, b ∈ V , we write a ∼ b if a is adjacent to b, that is, if
(a, b) ∈ E. For a single vertex a and natural number n,

V (a) = {b ∈ V | b ∼ a}, and

Vn(a) = {b ∈ V | b ∼ a and deg(b) = n}.

For a pair of distinct vertices a and b, and natural number n,
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V ∩
n (a, b) = Vn(a) ∩ Vn(b),

V ∪
n (a, b) = Vn(a) ∪ Vn(b), and

V ∪(a, b) = V (a) ∪ V (b).

Finally, for a pair of distinct vertices a and b,

E(a, b) = {(a, x) ∈ E} ∪ {(b, y) ∈ E}.

We note that the number of edges in E(a, b) is either the sum of the degrees of a and b if
a and b are not adjacent, or 1 less than that sum when they are adjacent.

For a finite set X, we use |X| to indicate the number of elements in X. When G\{a, b}
is formed from G, the vertices in V ∪

3 (a, b), and V ∩
4 (a, b) become degree 1 or 2 vertices,

which are deleted or contracted away together with an edge in forming Ĝ(a, b) from

G \ {a, b}. It follows that for a graph G = (V,E), the number of edges in Ĝ(a, b) satisfies
the inequality

|E(Ĝ(a, b))| ≤ |E| − |E(a, b)| − |V ∪
3 (a, b)| − |V ∩

4 (a, b)|. (1)

It’s possible that more edges may be deleted in forming Ĝ(a, b). For example, if
v ∈ V ∩

3 (a, b) and w ∼ v is a degree 3 vertex that is not adjacent or equal to a and b, then
w is a degree 2 vertex in G(a, b) and will be contracted away with an edge in forming

Ĝ(a, b). We use VY (a, b) to denote all the vertices of this form. That is,

VY (a, b) = {w ∈ V (G) | deg(w) = 3, w /∈ V ∪(a, b), and ∃v ∈ V ∩
3 (a, b) with v ∼ w}.

Using this notation, we have

|E(Ĝ(a, b))| ≤ |E| − |E(a, b)| − |V ∪
3 (a, b)| − |V ∩

4 (a, b)| − |VY (a, b)|. (2)

Example 3.7 For our starting configuration, we assume that the graph G = (A ⊔B,E)
is a bipartite graph with 21 edges. As part of this starting configuration, we assume
that A has five vertices, a51, a

4
1, a

4
2, a

4
3, a

4
4 and B has 6 vertices, b51, b

4
1, b

3
1, b

3
2, b

3
3, and b34. The

superscripts in the vertex notation indicate the degree of the vertex, that is, vertices aij
and bij have degree i.

Consider Ĝ(b51, b
4
1).We have |E(b51, b

4
1)| = 9 and |V ∩

4 (b51, b
4
1)| = 3 or 4. If |V ∩

4 (b51, b
4
1)| = 4,

then (1) tells us that |E(Ĝ(b51, b
4
1))| ≤ 21 − 9 − 4 = 8, so Ĝ(b51, b

4
1) is planar. Hence, by

Corollary 3.5, for G to be intrinsically knotted, we must have |V ∩
4 (b51, b

4
1)| = 3.

Assuming |V ∩
4 (b51, b

4
1)| = 3, it must be the case that b41 ∼ a51, since b51 is adjacent to all

of the degree 4 vertices in A. Without loss of generality, we may assume that b41 is also
adjacent to a41, a

4
2, and a43. Since a

5
1 has degree 5, it must be adjacent to 3 of the degree 3

vertices in B, say b31, b
3
2, and b33. This new starting configuration is pictured in Figure 4.

Now consider Ĝ(a51, a
4
1). Note that |E(a51, a

4
1)| = 9, |V ∩

4 (a51, a
4
1)| = 1, and |V ∪

3 (a51, a
4
1)| ≥

3. By (1), |E(Ĝ(a51, a
4
1))| ≤ 21 − 9 − 1 − 3 = 8, so by Corollary 3.5, the original starting

configuration cannot be part of an intrinsically knotted graph.
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Figure 4: Example 3.7

4 Vertex Degree

As a first step in identifying bipartite graphs with 21 edges that could be intrinsically
knotted, we determine the degrees that the vertices in such graphs can have. We begin
by eliminating some extreme cases.

Lemma 4.1 Let G be a graph with 21 edges that has at least one vertex whose degree is
less than 3. Then G is not intrinsically knotted.

Proof. Suppose that G has a vertex v whose degree is 1 or 2.
If the degree of v is 1, then deleting v and its adjacent edge produces a graph that

has 20 edges and cannot be intrinsically knotted by Theorem 2.1. Since reinstating v
and its adjacent edge does not create any additional cycles, the original graph cannot be
intrinsically knotted.

If the degree of v is 2, then one of its adjacent edges can be contracted to produce a
graph that has 20 edges and is not intrinsically knotted. Again, reinstating the contracted
edge will not produce additional cycles in the graph, so the original graph cannot be
intrinsically knotted. □

Lemma 4.2 If G is a bipartite graph with 21 edges in which each vertex has degree at
least 3, then for any vertex v in G, deg(v) ≤ 7.

Proof. Suppose G = (A ⊔ B,E) is a bipartite graph whose vertices all have degree at
least 3. If v ∈ A has degree at least 8, then B must contain at least 8 vertices that are
adjacent to v, each of which must have at least 2 additional edges. Since vertices in B are
not adjacent to one another this means that G must have at least 24 distinct edges. □

Proposition 4.3 If G = (A ⊔ B,E) is an intrinsically knotted bipartite graph with 21
edges and v is a vertex in G, then 3 ≤ deg(v) ≤ 5.

Proof. Lemmas 4.1 and 4.2 guarantee that 3 ≤ deg(v) ≤ 7. We also note that the
requirement that each vertex has degree at least 3 implies that |A| ≤ 7 and |B| ≤ 7. In
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the case where |A| = 7, respectively |B| = 7, each vertex in A, respectively B, must have
degree 3 since G only has 21 edges. To proceed, we assume, without loss of generality,
that v ∈ A. We show that if deg(v) = 7 or deg(v) = 6, then G cannot be intrinsically
knotted.

If deg(v) = 7, then B must have at least 7 vertices. As noted in the previous paragraph,
B can have no more than 7 vertices, so it has exactly 7 vertices. Furthermore, each of
these must be degree 3. Consider a ∈ A with a ̸= v. Then E(v, a) ≥ 10, V ∪

3 (v, a) = 7,

and |E(Ĝ(v, a))| ≤ 21 − 10 − 7 = 4 by (1). Such a graph is not intrinsically knotted by
Corollary 3.5, so G does not have a degree 7 vertex.

Suppose deg(v) = 6. We consider two cases: (i) B has 7 degree 3 vertices or (ii)
B has fewer than 7 vertices. In case (i), for a ∈ A with a ̸= v, we have E(v, a) ≥ 9,

V ∪
3 (v, a) ≥ 6, and by (1) and Corollary 3.5, |E(Ĝ(a, v)| ≤ 21−9−6 = 6 so that G cannot

be intrinsically knotted.
In case (ii), B has 6 vertices. The condition that G has 21 edges implies that at least

3 vertices in B must have degree 3, and at least one vertex in B must have degree greater
than 3. To see this, suppose that B has a degree 3 vertices, b degree 4 vertices, c degree
5 vertices, and d degree 6 vertices. Then a + b + c + d = 6 and 3a + 4b + 5c + 6d = 21
since B has 6 vertices and G has 21 edges. The only nonnegative integer solutions to this
system have a ≥ 3, and at least one of b, c, and d not equal to 0. Let b be the vertex of
maximal degree in B. Then 4 ≤ deg(b) ≤ 6.

If deg(b) > 4, then |E(v, b)| ≥ 10 and V ∪
3 (v, b) ≥ 3. By (1) and Corollary 3.5,

|E(Ĝ(v, b))| ≤ 21− 10− 3 = 8 and G is not intrinsically knotted.
If deg(b) = 4, then it must be the case that B has exactly 3 degree 3 vertices and 3

degree 4 vertices. Let a ∈ A such that a ̸= v and a ∼ b. Then we have |E(v, a)| ≥ 9,

|V ∪
3 (v, a)| ≥ 3, and |V ∩

4 (v, a)| ≥ 1. By (1) and Corollary 3.5, |E(Ĝ(v, a))| ≤ 21−9−3−1 =
8 and G is not intrinsically knotted.

Hence deg(v) cannot exceed 5.
□

Having shown that the vertices in any intrinsically knotted bipartite graph with 21
edges can only be of degrees 3, 4, or 5, we introduce some notation to help us keep track
of possibilities.

Definition 4.4 If V is a set of vertices for a graph, we write deg(V ) = [c5, c4, c3] to
indicate that the number of degree 3 vertices in V is c3, the number of degree 4 vertices
in V is c4, and the number of degree 5 vertices in V is c5.

For a bipartite graph G = (A⊔B,E) with |E| = n, the sum of the degrees of the vertices
in each of A and B must equal n. So, for an intrinsically knotted bipartite graph with
vertex set A ⊔ B and 21 edges, we can determine all possibilities for deg(A) and deg(B)
by finding all nonnegative integer solutions to the equation

3c3 + 4c4 + 5c5 = 21.

Doing so gives us the following.
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Proposition 4.5 Let G = (A ⊔ B,E) be an intrinsically knotted bipartite graph with 21
edges. Then deg(A) and deg(B) can equal [3, 0, 2], [2, 2, 1], [1, 4, 0], [1, 1, 4], [0, 3, 3], or
[0, 0, 7].

5 Elimination of Values for deg(A) and deg(B)

In this section, we use the strategy described in Remark 3.6 together with Propositions
4.3 and 4.5 to prove the following.

Proposition 5.1 If G = (A ⊔ B,E) is an intrinsically knotted bipartite graph with 21
edges, then deg(A) = deg(B) = [0, 0, 7].

Proof. Let G = (A ⊔ B,E) be a bipartite graph with 21 edges. We consider three
possibilities:

• both A and B contain degree 5 vertices,

• exactly one of A and B has a degree 5 vertex, and

• G has at least one degree 4 vertex, but no degree 5 vertices.

For each of these possibilities, we show that G cannot be intrinsically knotted. By Propo-
sition 4.5, this implies that the only possible value for both deg(A) and deg(B) is [0, 0, 7].

We treat these three possibilities in the three subsections that follow. For the vertices
in A and B, we continue to use the notation established in Example 3.7: the vertex aji is
the ith vertex of degree j in A and bji is the ith vertex of degree j in B.

5.1 Both A and B Contain Degree 5 Vertices

In this case, deg(A) and deg(B) can equal [3, 0, 2], [2, 2, 1], [1, 4, 0], [1, 1, 4]. Let D =
{deg(A), deg(B)}. We consider three subcases:

• [3, 0, 2] or [2, 2, 1] is an element of D,

• [1, 4, 0] ∈ D ⊆ {[1, 4, 0], [1, 1, 4]}, and

• D = {[1, 1, 4]}.

5.1.1 [3, 0, 2] or [2, 2, 1] is an Element of D

Assume deg(A) = [3, 0, 2] or [2, 2, 1]. We will treat the four possibilities for deg(B)
separately.

In case (i), deg(B) = [3, 0, 2]. First suppose deg(A) = [3, 0, 2]. Consider a degree 5
vertex a5i in A and a degree 5 vertex b5j in B. We have |E(a5i , b

5
j)| = 9 and |V ∪

3 (a5i , b
5
j)| = 4.

By (1) and Corollary 3.5, |E(Ĝ(a5i , b
5
j))| ≤ 21−9−4 = 8 and G is not intrinsically knotted.

Otherwise suppose deg(A) = [2, 2, 1]. For any two of the degree five vertices, b5i and b5j , in
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B, we have |E(b5i , b
5
j)| = 10, |V ∩

4 (b5i , b
5
j)| = 2, and |V ∪

3 (b5i , b
5
j)| = 1. By (1) and Corollary

3.5, |E(Ĝ(b5i , b
5
j))| ≤ 21− 10− 2− 1 = 8 and G is not intrinsically knotted.

In case (ii), deg(B) = [2, 2, 1]. For any two of the degree five vertices a5i , a
5
j in A, we

have |E(a5i , a
5
j)| = 10, |V ∩

4 (a5i , a
5
j)| = 2, and |V ∪

3 (a5i , a
5
j)| = 1. By (1) and Corollary 3.5,

|E(Ĝ(a5i , a
5
j))| ≤ 21− 10− 2− 1 = 8 and G is not intrinsically knotted.

In case (iii), deg(B) = [1, 4, 0]. For any two of the degree five vertices a5i , a
5
j in A, we

have |E(a5i , a
5
j)| = 10 and |V ∩

4 (a5i , a
5
j)| = 4. By (1) and Corollary 3.5, |E(Ĝ(a5i , a

5
j))| ≤

21− 10− 4 = 7 and G is not intrinsically knotted.
In case (iv), deg(B) = [1, 1, 4]. For any two of the degree five vertices a5i , a

5
j in A, we

have |E(a5i , a
5
j)| = 10, and |V ∪

3 (a5i , a
5
j)| ≥ 3. By (1) and Corollary 3.5, |E(Ĝ(a5i , a

5
j))| ≤

21− 10− 3 = 8 and G is not intrinsically knotted.

5.1.2 [1, 4, 0] ∈ D ⊂ {[1, 4, 0], [1, 1, 4]}

Without loss of generality, assume deg(A) = [1, 4, 0]. There are two cases to consider:
deg(B) = [1, 4, 0] or deg(B) = [1, 1, 4]. The second case was treated in Example 3.7. For
the first case, consider the degree five and four vertices, a51, a

4
1, in A. We have |E(a51, a

4
1)| =

9 and |V ∩
4 (a51, a

4
1)| ≥ 3. By (1), |E(Ĝ(a51, a

4
1))| ≤ 21− 9− 3 = 9. Thus, by Corollary 3.5,

for G to be intrinsically knotted, we must have Ĝ(a51, a
4
1)

∼= K3,3. However, in creating

Ĝ(a51, a
4
1) from G, no degree 1 vertices are created. This implies that the degrees of a42,

a43, and a44 are unchanged. Since Ĝ(a51, a
4
1) has a degree 4 vertex, it cannot be K3,3 and G

is not intrinsically knotted.

5.1.3 D = {[1, 1, 4]}

In this case, deg(A) = deg(B) = [1, 1, 4]. Consider the degree five vertices a51 and b51.

We have |E(a51, b
5
1)| ≥ 9 and |V ∪

3 (a51, b
5
1)| ≥ 6. By (1) and Corollary 3.5, |E(Ĝ(a51, b

5
1))| ≤

21− 9− 6 = 6 and G is not intrinsically knotted.

5.2 Exactly One of A and B has a Degree 5 Vertex

Without loss of generality, assume only A has degree 5 vertices. By Proposition 4.5,
deg(A) can be [3, 0, 2], [2, 2, 1], [1, 4, 0] or [1, 1, 4] and deg(B) can be [0, 3, 3] or [0, 0, 7].
We handle the cases where A has more than one degree 3 vertex first, then consider each
remaining possibility separately.

5.2.1 deg(A) = [3, 0, 2] or deg(A) = [2, 2, 1]

We will consider two cases: (i) deg(B) = [0, 3, 3] or (ii) deg(B) = [0, 0, 7]. For case
(i), consider any two of the degree five vertices, a5i , a

5
j , in A. We have |E(a5i , a

5
j)| = 10,

|V ∪
3 (a5i , a

5
j)| ≥ 2, and |V ∩

4 (a5i , a
5
j)| ≥ 1. By (1) and Corollary 3.5, |E(Ĝ(a5i , a

5
j))| ≤ 21 −

10− 2− 1 = 8 and G is not intrinsically knotted.
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In case (ii), deg(B) = [0, 0, 7]. For any two of the degree five vertices, a5i , a
5
j , in A, we

have |E(a5i , a
5
j)| = 10 and |V ∪

3 (a5i , a
5
j)| ≥ 5. By (1) and Corollary 3.5, |E(Ĝ(a5i , a

5
j))| ≤

21− 10− 5 = 6 and G is not intrinsically knotted.

5.2.2 deg(A) = [1, 4, 0] and deg(B) = [0, 3, 3]

Consider the degree 5 vertex a51 in A. We distinguish two cases: (i) |V4(a
5
1)| = 3, and

(ii) |V4(a
5
1)| = 2. In the first case, |V4(a

5
1)| = 3. Then we have a51 ∼ b41, b

4
2, b

4
3. Since a51

has degree five, we may assume a51 ∼ b31, b
3
2. Since b33 is not adjacent to a51, b

3
3 is adjacent

to three degree 4 vertices in A. We may assume b33 ∼ a41, a
4
2, a

4
3. Consider Ĝ(a51, a

4
4). We

have |E(a51, a
4
4)| = 9, |V ∪

3 (a51, a
4
4)| = 3, and |V ∩

4 (a51, a
4
4)| ≥ 1. By (1) and Corollary 3.5,

|E(Ĝ(a5i , a
5
j))| ≤ 21− 9− 3− 1 = 8 and G is not intrinsically knotted.

In the second case, suppose |V4(a
5
1)| = 2. We may assume a51 ∼ b41, b

4
2. Since a51 has

degree five, a51 is adjacent to all three degree 3 vertices, b31, b
3
2, b

3
3. Since b43 ̸∼ a51, we must

have b43 ∼ a41, a
4
2, a

4
3, a

4
4. Since b41 has degree four, it is adjacent to three degree 4 vertices

in A, say a41, a
4
2, a

4
3. See Figure 5(a). Consider Ĝ(a51, b

4
3). We have |E(a51, b

4
3)| = 9 and

|V ∪
3 (a51, b

4
3)| ≥ 3. By (1) and Corollary 3.5, |E(Ĝ(a51, b

4
3))| ≤ 21 − 9 − 3 = 9. For G

to be intrinsically knotted, we must have Ĝ(a51, b
4
3)

∼= K3,3. In Ĝ(a51, b
4
3), a

4
1, a

4
2, a

4
3, a

4
4, b

4
1,

and b42 have degree three. Since b41 ∼ a41, a
4
2, a

4
3, the two sets of vertices in Ĝ(a51, b

4
3) are

{a41, a42, a43} and {b41, b42, a44}. Thus, we must have b42 ∼ a41, a
4
2, a

4
3 in G. See Figure 5(b).

The dotted edges represent the edges deleted to form G \ {a51, b43} and the blue edges are

the edges of G we “restore” to guarantee Ĝ(a51, b
4
3)

∼= K3,3. Now consider Ĝ(a51, a
4
1). We

have |E(a51, a
4
1)| = 9, |V ∪

3 (a51, a
4
1)| = 3, and |V ∩

4 (a51, a
4
1)| = 2. By (1) and Corollary 3.5,

|E(Ĝ(a51, a
4
1))| ≤ 21− 9− 3− 2 = 7 and G is not intrinsically knotted.

Figure 5: 5.2.2, case (ii)

5.2.3 deg(A) = [1, 4, 0] and deg(B) = [0, 0, 7]

In this case, consider the degree five vertex a51 and a degree four vertex a41 in A. We

have |E(a51, a
4
1)| = 9, and |V ∪

3 (a51, a
4
1)| ≥ 5. By (1) and Corollary 3.5, |E(Ĝ(a51, a

4
1))| ≤
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21− 9− 5 = 7 and G is not intrinsically knotted.

5.2.4 deg(A) = [1, 1, 4] and deg(B) = [0, 3, 3]

Consider the degree 5 vertex a51 in A. We distinguish two cases: (i) |V4(a
5
1)| = 3, and (ii)

|V4(a
5
1)| = 2.

In case (i), we have |V4(a
5
1)| = 3 and |V3(a

5
1)| = 2. The vertex a41 is adjacent to at least

one degree 4 vertex in B. If a41 is adjacent to exactly one degree 4 vertex in B, then it is
adjacent to three degree 3 vertices in B and

|V ∩
4 (a51, a

4
1)|+ |V ∪

3 (a51, a
4
1)| = 1 + 3 = 4.

If a41 is adjacent to 2 or more degree 4 vertices in B, then

|V ∩
4 (a51, a

4
1)|+ |V ∪

3 (a51, a
4
1)| ≥ 2 + 2 = 4.

In either case, since E(a51, a
4
1) = 9, we have |E(Ĝ(a51, a

4
1))| ≤ 21− 9− 4 = 8 by (1), and G

is not intrinsically knotted by Corollary 3.5.
In case (ii), |V4(a

5
1)| = 2 and |V3(a

5
1)| = 3. Suppose b41 is the degree 4 vertex in B that

is not adjacent to a51. We have |E(a51, b
4
1)| = 9 and |V ∪

3 (a51, b
4
1)| ≥ 6. By (1) and Corollary

3.5, |E(Ĝ(a51, b
4
1))| ≤ 21− 9− 6 = 6 and G is not intrinsically knotted.

5.2.5 deg(A) = A = [1, 1, 4] and deg(B) = [0, 0, 7]

In this case, consider the degree five vertex a51 and the degree four vertex a41 in A. We

have |E(a51, a
4
1)| = 9 and |V ∪

3 (a51, a
4
1)| ≥ 5. By (1) and Corollary 3.5, |E(Ĝ(a51, a

4
1))| ≤

21− 9− 5 = 7 and G is not intrinsically knotted.

5.3 G has at Least One Degree 4 Vertex, but no Degree 5 Vertices

We divide this subsection into two parts – one to consider the case where both A and B
have a degree 4 vertex and the other to consider the case where only one does.

5.3.1 Both A and B Have at Least one Degree 4 Vertex

In this case, deg(A) = [0, 3, 3] and deg(B) = [0, 3, 3].
We claim that the starting configuration cannot be part of an intrinsically knotted

graph if there exists a degree 4 vertex that is adjacent to three degree 3 vertices. For
example, if |V3(a

4
i )| = 3, then there exists a degree 4 vertex b4j such that b4j ̸∼ a4i . Consider

Ĝ(a4i , b
4
j). We have |E(a4i , b

4
j)| = 8 and |V ∪

3 (a4i , b
4
j)| ≥ 5. By (1), we have |E(Ĝ(a4i , b

4
j))| ≤

21−8−5 = 8. Thus, forG to be intrinsically knotted, we must have |V3(a
4
i )| ≤ 2, |V4(a

4
i )| ≥

2, |V3(b
4
i )| ≤ 2, and |V4(b

4
i )| ≥ 2.

Now consider two degrees 4 vertices in the same set, say a41 and a42. We consider the
following cases:

(i) |V ∩
3 (a41, a

4
2)| = 2 and |V ∩

4 (a41, a
4
2)| = 2
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(ii) |V ∩
3 (a41, a

4
2)| = 2 and |V ∩

4 (a41, a
4
2)| = 1

(iii) |V ∩
3 (a41, a

4
2)| = 1 and |V ∩

4 (a41, a
4
2)| = 3

(iv) |V ∩
3 (a41, a

4
2)| = 1 and |V ∩

4 (a41, a
4
2)| = 2

(v) |V ∩
3 (a41, a

4
2)| = 1 and |V ∩

4 (a41, a
4
2)| = 1

(vi) |V ∩
3 (a41, a

4
2)| = 0

In case (i), |V ∩
3 (a41, a

4
2)| = 2 and |V ∩

4 (a41, a
4
2)| = 2. We may assume a41, a

4
2 ∼ b41, b

4
2, b

3
1, b

3
2.

Then b43 must be adjacent to all three degree 3 vertices in A and by our claim, G is not
intrinsically knotted.

In case (ii), |V ∩
3 (a41, a

4
2)| = 2, and |V ∩

4 (a41, a
4
2)| = 1. We may assume a41, a

4
2 ∼ b41 and

a41, a
4
2 ∼ b31, b

3
2. Since |V4(a

4
1)| ≥ 2, a41 must be adjacent to at least one of b42 or b43, say

b42. Note that b42 ̸∼ a42, since |V ∩
4 (a41, a

4
2)| = 1. Since |V4(b

4
2)| ≥ 2, b42 must be adjacent

to a43. Similarly, b43 must be adjacent to a42, a
4
3, since |V4(b

3
4)| ≥ 2. This new starting

configuration is pictured in Figure 6. Now, we consider two possibilities: (1) |V3(b
3
3)| = 3

Figure 6: 5.3.1, case (ii)

and (2) |V3(b
3
3)| = 2.

If |V3(b
3
3)| = 3, then b33 ∼ a31, a

3
2, a

3
3. Since b43 has degree 4, it is adjacent to two degree

3 vertices in A, say a31, a
3
2. See Figure 7(a) for the configuration. Consider Ĝ(a41, b

3
3) and

Figure 7(b), where dotted edges represent edges removed from the starting configura-

tion to form Ĝ(a41, b
3
3). We have |E(a41, b

3
3)| = 7 and |V ∪

3 (a41, b
3
3)| = 5. By (1), we have

|E(Ĝ(a41, b
3
3))| ≤ 9. Since Ĝ(a41, b

3
3)) has degree 4 vertices, it does not contain K3,3 as a

minor. Thus, Ĝ(a41, b
3
3)) is planar and G is not intrinsically knotted.

Now consider the case where |V3(b
3
3)| = 2. Then |V4(b

3
3)| = 1 and b33 ∼ a43. Since

|V3(b
3
3)| = 2, we may assume b33 ∼ a31, a

3
2. See Figure 8(a). Suppose b41 ∼ a43 as in Figure

8(b). In this case, we have |E(a41, a
4
3)| = 8, |V ∩

4 (a41, a
4
3)| = 2, and |V ∪

3 (a41, a
4
3)| = 3. By (1)

and Corollary 3.5, we have |E(Ĝ(a41, a
4
3))| ≤ 8 and G is not intrinsically knotted.

Otherwise, suppose b41 ̸∼ a43. Since a43 has degree 4, it must be adjacent to one of b31
and b32. Assume a43 ∼ b31. Consider Ĝ(a41, b

3
3). We have |E(a41, b

3
3)| = 7 and |V ∪

3 (a41, b
3
3)| = 4.
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Figure 7: 5.3.1, case(ii), subcase (1)

By (1), we have |E(Ĝ(a41, b
3
3))| ≤ 10. By Corollary 3.5, in order for G to be intrinsically

knotted, Ĝ(a41, b
3
3) must contain K3,3 or K5 as a minor. Since it doesn’t have any degree

5 vertices, it must contain K3,3.

We note that there are two degree 4 vertices, a42 and b43, in Ĝ(a41, b
3
3), and that they

have an edge between them. Thus, it must be the case that Ĝ(a41, b
3
3) − (a42, b

4
3)

∼= K3,3.

We also note that a43 is a degree 3 vertex in Ĝ(a41, b
3
3) that is adjacent to both a42 and b43. It

follows that the two sets of vertices in Ĝ(a41, b
3
3)− (a42, b

4
3) are {a42, b42, b43} and {a43, a33, b41}.

These sets are colored red and black, respectively, in Figure 8(c). Based on this and what
we have established about the edges in G, we know a33 is adjacent to a42, b

4
2, and b43 in

Ĝ(a41, b
3
3), and we must have a33 adjacent to b32, b

4
2, and b43 in our starting configuration for

our graph to be intrinsically knotted. Since b41 has degree 4, we must have b41 ∼ a31, a
3
2

based on the degree information we have for the vertices in A. The restored edges are
colored blue in Figure 8(c). For this configuration, we now consider Ĝ(b41, b

3
2). We have

|E(b41, b
3
2)| = 7, |V ∩

4 (b41, b
3
2)| = 2, and |V ∪

3 (b41, b
3
2)| = 3. By (1), we have |E(Ĝ(b41, b

3
2))| ≤ 9.

Since Ĝ(b41, b
3
2)) has degree 4 vertices, it is not isomorphic to K3,3. Hence, we have a planar

Ĝ(b41, b
3
2)) and G is not intrinsically knotted.

(iii) Suppose |V ∩
3 (a41, a

4
2)| = 1 and |V ∩

4 (a41, a
4
2)| = 3. Then we have a41, a

4
2 ∼ b41, b

4
2, b

4
3,

and we may assume a41, a
4
2 ∼ b31. This configuration is shown in Figure 9(a). Consider

Ĝ(a41, a
4
2). We have |E(a41, a

4
2)| = 8, |V ∩

4 (a41, a
4
2)| = 3, and |V ∪

3 (a41, a
4
2)| = 1. By (1),

|E(Ĝ(a41, a
4
2))| ≤ 9.

Observe that if b31 is adjacent to any of the degree 3 vertices in A, then |VY (a
4
1, a

4
2)| = 1

and by (2), |E(Ĝ(a41, a
4
2)| ≤ 8. So for G to be intrinsically knotted, we must have b31 ∼ a43.

Since a43 has degree 4, it is adjacent to three other vertices. If those three vertices are
b41, b42, and b43, then b32 and b33 must be adjacent to a31, a32, and a33 which implies that

|V3(b
4
1, b

4
2)| = 2. Then |E(Ĝ(b41, b

4
2))| ≤ 8 and G is not intrinsically knotted. So a34 is

adjacent to b32 or b33, say b32. Note that a43 must also be adjacent to two of b41, b
4
2, and

b43, since |V4(a
4
3)| ≥ 2. We assume, without loss of generality, that a43 ∼ b41, b

4
2. Then we

must have b33 ∼ a31, a
3
2, a

3
3. See Figure 9(b). If G is intrinsically knotted, then Ĝ(a41, a

4
2)
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Figure 8: 5.3.1, case(ii), subcase (2)

is isomorphic to K3,3. Since b33 ∼ a31, a
3
2, a

3
3, the vertex sets should be {a31, a32, a33} and

{a43, b32, b33}, colored black and red, respectively, in Figure 9(c). However, since a43 and b32
share an edge, Ĝ(a41, a

4
2) cannot be K3,3.

Figure 9: 5.3.1, case (iii)

In case (iv), |V ∩
3 (a41, a

4
2)| = 1, |V ∩

4 (a41, a
4
2)| = 2, and we may assume a41, a

4
2 ∼ b41, b

4
2, b

3
1.

Since |V4(b
4
3)| ≥ 2, b43 must be adjacent to a43 and one of a41, a

4
2, say a41. In addition, b43

must be adjacent to two degree 2 vertices, say a31, a
3
2. Since |V ∩

4 (a41, a
4
2)| = 2, a42 ̸∼ b43.

Thus, a42 is adjacent to a degree 3 vertex in B other than b31, say b32. Since |V4(a
4
3)| ≥ 2, a43

is adjacent to at least one of b41, b
4
2. We may assume a43 ∼ b41. See Figure 10(a) for the new

configuration. Consider Ĝ(a41, a
4
2). In this case, we have |E(a41, a

4
2)| = 8, |V ∩

4 (a41, a
4
2)| = 2,

and |V ∪
3 (a41, a

4
2)| = 2. By (1), we have |E(Ĝ(a41, a

4
2))| ≤ 9. Observe that |VY (a

4
1, a

4
2)| = 1, if

b31 is adjacent to any of the degree 3 vertex in A, in which case |E(Ĝ(a41, a
2
2))| ≤ 8 by (2).

So for G to be intrinsically knotted, we must have b31 ∼ a43 and Ĝ(a41, a
4
2)

∼= K3,3. Since

b43 ∼ a43, a
3
1, a

3
2, the two sets of vertices in Ĝ(a41, a

4
2) are {a43, a31, a32} and {a33, b43, b33}, colored

black and red, respectively, in Figure 10(b). Since a33 is adjacent to a
4
3 in Ĝ(a41, a

4
2), we have
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a33 ∼ b41. Consider Ĝ(b41, b
4
3). We have |E(b41, b

4
3)| = 8, |V ∩

4 (b41, b
4
3)| = 2, and |V ∪

3 (b41, b
4
3)| = 3.

By (1), we have |E(Ĝ(b41, b
4
3))| ≤ 8. Hence, Ĝ(b41, b

4
3) is planar and G is not intrinsically

knotted.

Figure 10: 5.3.1, case (iv)

In case (v), |V ∩
4 (a41, a

4
2)| = 1 and |V ∩

3 (a41, a
4
2)| = 1. We may assume a41 ∼ b41, b

4
2, b

3
1 and

a42 ∼ b41, b
4
3, b

3
1. Since |V4(b

4
2)| ≥ 2, we must have b42 ∼ a43. Similarly, we have b43 ∼ a43. Since

|V ∩
4 (a41, a

4
2)| = 1, a41 and a42 are adjacent to exactly two degree 4 vertices in B. Therefore,

a41 and a42 are adjacent to exactly two degree 3 vertices in B. Since |V ∩
3 (a41, a

4
2)| = 1, We

may assume a41 ∼ b32 and a42 ∼ b33. Since b43 has degree 4, we may assume b43 ∼ a31, a
3
2.

See Figure 11(a) for the configuration. Consider Ĝ(a41, a
4
2). We have |E(a41, a

4
2)| = 8,

|V ∩
4 (a41, a

4
2)| = 1, and |V ∪

3 (a41, a
4
2)| = 3. By (1), we have |E(Ĝ(a41, a

4
2))| ≤ 9. Observe

that |VY (a
4
1, a

4
2)| = 1, if b31 is adjacent to any of the degree 3 vertices in A. For G to be

intrinsically knotted, we must have b31 ∼ a43. If G is intrinsically knotted, then Ĝ(a41, a
4
2)

is isomorphic to K3,3. Based on the remaining edges, we see that the vertex sets must be
{a43, a31, a32} and {a33, b42, b43} which are colored black and red, respectively in Figure 11(b).
It follows that b42 ∼ a31, a

3
2. Based on the degree and edge information we have for the

vertices in B, we must have a33 ∼ b41, b
3
2, b

3
3. See Figure 11(b). Consider Ĝ(a41, b

4
3). We

have |E(a41, b
4
3)| = 8, and |V ∪

3 (a41, b
4
3)| = 4. By (1), we have |E(Ĝ(a41, b

4
3)| ≤ 9. If G is

intrinsically knotted, then Ĝ(a41, b
4
3) is isomorphic to K3,3. Based on the remaining edges,

we see that the vertex sets must be {a42, b42, a33} and {b41, a43, b33} which are colored black and

red, respectively, in 11(c). Since a43 is adjacent to a33 in Ĝ(a41, a
4
3), we have a

4
3 ∼ b32. By the

degree information of vertices in A, b41 and b33 must be adjacent to a31, a
3
2. We may assume

b41 ∼ a31 and b33 ∼ a32. Now, |E(Ĝ(a43, a
3
2))| ≤ 9, since |E(a43, a

3
2)| = 7, |V ∩

4 (a43, a
3
2)| = 2,

and |V ∪
3 (a43, a

3
2)| = 3. But Ĝ(a43, a

3
2) is not isomorphic to K3,3, since it has three degree 4

vertices.
In case (vi), |V ∩

3 (a41, a
4
2)| = 0. It follows that |V ∪

3 (a41, a
4
2)| = 2 or 3. If |V ∪

3 (a41, a
4
2)| = 2,

then a41 and a42 share 6 edges with the degree 4 vertices in B. Then |E(Ĝ(a41, a
4
2))| ≤ 8,

since |V ∩
4 (a43, a

3
2)| = 3. If |V ∪

3 (a41, a
4
2)| = 3, then |V ∩

4 (a41, a
4
2)| = 2 and again, we have

|E(Ĝ(a41, a
4
2))| ≤ 8. By Corollary 3.5, G is not intrinsically knotted.
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Figure 11: 5.3.1, case (v)

5.3.2 Only one of A and B Contains Degree 4 Vertices

Without loss of generality, suppose only A contains degree 4 vertices. Then deg(A) =
[0, 3, 3] and deg(B) = [0, 0, 7]. First, we show that G cannot be intrinsically knotted if any
degree three vertex in B is adjacent to more than one degree four vertex in A. Suppose
|V4(b

3
1)| ≥ 2, then there exists a degree four vertex a41 in A that is not adjacent to b31.

Consider Ĝ(a41, b
3
1). We have |E(a41, b

3
1)| = 7 and |V ∪

3 (a41, b
3
1)| ≥ 6. By (1) and Corollary

3.5, |E(Ĝ(a41, b
3
1))| ≤ 21− 7− 6 = 8 and G is not intrinsically knotted.

Since B has 7 vertices, |V ∩
3 (a4i , a

4
j)| ≥ 1 for any a4i , a

4
j in A. It follows that at least one

of the degree three vertex in B is adjacent to both a4i and a4j . Thus, G is not intrinsically
knotted. This completes the proof of Proposition 5.1. □

6 The Only Bipartite Intrinsically Knotted Graph
With 21 Edges

We use this section to prove our main theorem.

Theorem 6.1 The only bipartite intrinsically knotted graph with 21 edges is the Heawood
graph.

We use the next two lemmas to prove this theorem.

Lemma 6.2 Let G = (A ⊔ B,E) be a bipartite graph with deg(A) = deg(B) = [0, 0, 7].
If G contains a 4-cycle, then G is not intrinsically knotted.

Proof. Suppose G contains a 4-cycle C. We may assume that the vertices of C are
a31, b

3
1, a

3
2, and b32. We will consider two cases: (i) |V ∪

3 (a31, a
3
2)| = 3 or (ii) |V ∪

3 (a31, a
3
2)| = 4.

In case (i), |V ∪
3 (a31, a

3
2)| = 3 and we may assume a31, a

3
2 ∼ b33. Since |V ∪

3 (b31, b
3
2, b

3
3)| ≤ 5,

at least two vertices in A are not adjacent to b31, b
3
2, b

3
3. Assume a33 ̸∼ b31, b

3
2, b

3
3. Since a33

has degree three, we may assume a33 ∼ b34, b
3
5, b

3
6. Since b37 has degree three, it must be
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adjacent to three vertices in A other than a31, a
3
2, a

3
3. So we may assume b37 ∼ a34, a

3
5, a

3
6.

See Figure 12(a). Consider Ĝ(a31, a
3
3). We have |E(a31, a

3
3)| = 6, and |V ∪

3 (a31, a
3
3)| = 6. By

(1), |E(Ĝ(a31, a
3
3))| ≤ 21 − 6 − 6 = 9. For G to be intrinsically knotted, we must have

Ĝ(a31, a
3
3)

∼= K3,3. Since b37 ∼ a34, a
3
5, a

3
6 in Ĝ(a31, a

3
3), the vertex sets must be {a34, a35, a36}

and {a32, a37, b37}, colored red and black, respectively in Figure 12(b). Since a32 is adjacent

to a34, a
3
5, a

3
6 in Ĝ(a31, a

3
3), we may assume b31 ∼ a34,b

3
2 ∼ a35, and b33 ∼ a36. Since a37 is

adjacent to a34, a
3
5, a

3
6 in Ĝ(a31, a

3
3), we may assume a37 connects to a34, a

3
5, a

3
6 in Ĝ(a31, a

3
3) via

b34, b
3
5, b

3
6, respectively. See Figure 12(b). Consider Ĝ(a34, b

3
7), as shown in Figure 12(c). It

is straightforward to show directly that this graph has a planar embedding, so G is not
intrinsically knotted.

In case (ii), |V ∪
3 (a31, a

3
2)| = 4. We may assume a31 ∼ b33 and a32 ∼ b34. If |V ∪

3 (b31, b
3
2)| = 3,

then we are done by case (i). Therefore, |V ∪
3 (b31, b

3
2)| = 4 and we assume b31 ∼ a33, and

b32 ∼ a34. Since a33 has degree 3 and a33 ∼ b31, at least one of b35, b
3
6, b

3
7 is not adjacent to

a33, say b35. Consider Ĝ(a33, b
3
5). We have |E(a33, b

3
5)| = 6, and |V ∪

3 (a31, b
3
5)| = 6. By (1),

|E(Ĝ(a33, b
3
5))| ≤ 21− 6− 6 = 9. Since a31, a

3
2,and b32 form a triangle in Ĝ(a33, b

3
5), it cannot

be isomorphic to K3,3. Therefore, G is not intrinsically knotted. See Figure 13. □

Figure 12: Lemma 6.2, case(i)

Lemma 6.3 Let G = (A ⊔ B,E) be a bipartite graph with deg(A) = deg(B) = [0, 0, 7].
For any vertices a3i , a

3
j ∈ A ( resp bi, bj ∈ B ), G is not intrinsically knotted if V ∩

3 (a3i , a
3
j) ̸=

1 (resp V ∩
3 (bi, bj) ̸= 1).

Proof. Consider a31, a
3
2 in A. If V ∩

3 (a31, a
3
2) ≥ 2, then G has a 4-cycle, so G is not intrinsi-

cally knotted by Lemma 6.2. Now, suppose V ∩
3 (a31, a

3
2) = 0. We may assume a31 ∼ b31, b

3
2, b

3
3

and a32 ∼ b34, b
3
5, b

3
6. Since b

3
7 is not adjacent to a31, a

3
2, we may assume b37 ∼ a35, a

3
6, a

3
7. Then,

V ∪
3 (a33, a

3
1) ≤ 4 or V ∩

3 (a33, a
3
2) ≥ 2. In either case G has a 4-cycle and is not intrinsically

knotted by Lemma 6.2.
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Figure 13: Lemma 6.2, case(ii)

Figure 14: Lemma 6.3

□
We finish with the proof of Theorem 6.1.

Proof. Suppose that G = (A ⊔ B,E) is an intrinsically knotted bipartite graph with 21
edges. Then deg(A) = deg(B) = [0, 0, 7] by Proposition 5.1.

Consider a31, a
3
2 in A. For G to be intrinsically knotted, we must have V ∩

3 (a31, a
3
2) = 1

by Lemma 6.3. We assume a31 ∼ b31, b
3
2, b

3
3 and a32 ∼ b33, b

3
4, b

3
5. Since b33 has degree three,

we may assume b33 ∼ a33. For G to be intrinsically knotted, we must have V ∩
3 (a31, a

3
3) = 1

and V ∩
3 (a32, a

3
3) = 1. Therefore, a33 ∼ b36, b

3
7. Since b36 has degree three, we may assume

b36 ∼ a34, a
3
5. For G to be intrinsically knotted, we must have V ∩

3 (b36, b
3
7) = 1, so b37 ∼ a36, a

3
7.

Since V ∩
3 (b31, b

3
6) = 1 and V ∩

3 (b31, b
3
7) = 1, b31 must be adjacent to one of a34, a

3
5, and one of

a36, a
3
7. We assume b31 ∼ a34, a

3
6. Since V ∩

3 (a34, a
3
2) = 1, a34 must be adjacent to one of b34, b

3
5,

say b34. See Figure 15(a). Consider Ĝ(b36, b
3
7). we have |E(b36, b

3
7)| = 6, |V ∪

3 (b36, b
3
7)| = 5, and

|VY = (b36, b
3
7)| = 1. By (2), we have |E(Ĝ(b36, b

3
7))| ≤ 9. Thus, for G to be intrinsically

knotted, we must have Ĝ(b36, b
3
7)

∼= K3,3. In this case, the two set of vertices of Ĝ(b36, b
3
7) are
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{a31, b34, b35}, and {b31, b32, a32}. Since b31 is adjacent to b35 in Ĝ(b36, b
3
7), we must have a36 ∼ b35.

Since V ∩
3 (b34, b

3
7) = 1, b34 ∼ a37. Since b32 is adjacent to b34 in Ĝ(b36, b

3
7), we have b32 ∼ a37.

Since b32 has degree three, b32 ∼ a35. Since a35 has degree three, a35 ∼ b35. See Figure 15(b).
The restored graph is the Heawood graph. By Corollary 2.3, the proof is complete.

Figure 15: Theorem 6.1

□
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