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Abstract - A ∆-move is a local move on a link diagram. The ∆-Gordian distance between
links measures the minimum number of ∆-moves needed to move between link diagrams. A
self ∆-move only involves a single component of a link whereas a mixed ∆-move involves
multiple (2 or 3) components. We prove that two links are mixed ∆-equivalent precisely
when they have the same pairwise linking numbers and components; we also give a number
of results on how (mixed/self) ∆-moves relate to classical link invariants including the Arf
invariant and crossing number. This allows us to produce a graph showing links related by
a self ∆-move for algebraically split links with up to 9-crossings. For these links we also
introduce and calculate the ∆-splitting number and mixed ∆-splitting number, that is, the
minimum number of ∆-moves or mixed ∆-moves needed to separate the components of the
link.
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1 Introduction

A ∆-move is a local move on a knot or link diagram as in Figure 1. We call two links
∆-equivalent if we can move from a diagram for one to the other with a series of ∆-moves
and ambient isotopy. It is well-known that all knots are ∆-equivalent to the unknot and
that two links are ∆-equivalent precisely when their pairwise linking numbers are all the
same [6]. The ∆-move can be defined with any particular orientation, therefore we only
consider unoriented links. Additionally, there is a ∆-pathway between L and L′ exactly
when there is a ∆-pathway between mL and mL′.

The minimal number of ∆-moves needed to deform one link L into another link L′ is
called the ∆-Gordian distance, denoted d∆G(L,L

′). A link is called algebraically split if all
of its pairwise linking numbers equal zero. It is well-known that a link L is ∆-equivalent
to a trivial link if and only if it is algebraically split [6]. The ∆-unlinking number,
denoted u∆(L), is the ∆-Gordian distance between L and the trivial link. Similarly, the
∆-unknotting number, u∆(K), is the ∆-Gordian distance between a knot K and the
unknot. This has been well-studied [8] with many findings extended to algebraically split
links [2].
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∆←→ ∆←→ ∆←→

Figure 1: Left: A self ∆-move with all arcs of the same component. Center: Mixed ∆-
move containing arcs of two components. Right: Mixed ∆-move containing arcs of three
components.

In the case of links with at least two components, we can classify ∆-moves according
to the number of components involved in the ∆-move. In particular, if all three strands
belong to the same component of the link, the move is called a self ∆-move. If the strands
belong to either two or three components, then we will refer to the move as a mixed ∆-
move. See Figure 1. We can then introduce the notion of self or mixed ∆-equivalence and
self or mixed ∆-Gordian distance, denoted by ds∆(L,L’) and dm∆(L,L′), by restricting
the permitted ∆-moves between to either only self or mixed ∆-moves, respectively.

Links that are ∆-equivalent have been classified using the coefficients of the Conway
polynomial [7, 9]. Under this classification, we exhibit in Section 2 graphs of two compo-
nent algebraically split links with up to 9 crossings by self ∆-moves. This lets us tabulate
the ∆-Gordian distance between such pairs of links.

In the case of mixed ∆-moves, we prove the following result:

Theorem 1.1 Two links are mixed ∆-equivalent if and only if they have the same com-
ponents and pairwise linking numbers.

It immediately follows:

Corollary 1.2 A link L is mixed ∆-equivalent to a split union of its components if and
only if L is an algebraically split link.

Given this result, it is natural to consider the fewest number of mixed ∆-moves needed
to deform an algebraically split link into a split union of its components. We call this
the mixed ∆-splitting number and denote it spm∆(L). If we instead permit any kind of
∆-move, then we have the ∆-splitting number, denoted sp∆(L). In Section 3 we relate
spm∆(L) and sp∆(L) to the Arf invariant, ∆-unknotting number, and splitting number (as
defined in [3]), then we use these relations to determine the (mixed) ∆-splitting number
for algebraically split links with up to 9 crossings.

Throughout the paper we follow the Rolfsen naming convention for knots and links as
used in Knot Atlas [1].

2 Self Delta-Pathways

The Arf invariant is a binary invariant of a knot that is changed by a ∆-move on a knot.
Since a self ∆-move on a link is a ∆-move on a single component of the link, it will change

the pump journal of undergraduate research 8 (2025), 273–285 274



the Arf invariant of that component. Thus, a self ∆-move changes the knot type of the
component. A self ∆-pathway between links is a series of transformations by self ∆-moves
and ambient isotopy. We call the number of self ∆-moves in a self ∆-pathway the length
of the self ∆-pathway.

Proposition 2.1 If there exist two self ∆-pathways of length n1 and n2 between the links
L and L′, then n1 ≡ n2 ≡

∑m
i=1 arf(Li) +

∑m
i=1 arf(L

′
i) (mod 2) where each Li (resp. L′

i)
is a component of L (resp. L′).

Proof. A self ∆-move on L changes the parity of
∑m

i=1 arf(Li). Therefore,

m∑
i=1

arf(Li) + n1 ≡
m∑
i=1

arf(L′
i) (mod 2)

and similarly,
m∑
i=1

arf(Li) + n2 ≡
m∑
i=1

arf(L′
i) (mod 2).

Thus,

n1 ≡
m∑
i=1

arf(Li) +
m∑
i=1

arf(L′
i) ≡ n2 (mod 2).

□
In particular, since the self ∆-Gordian distance is defined to be the length of the

minimal self ∆-pathway between two links, we have:

Corollary 2.2 Given self ∆-equivalent links L and L′,

ds∆G (L,L′) ≡
m∑
i=1

arf(Li) +
m∑
i=1

arf(L′
i) (mod 2).

Remark 2.3 The Arf invariant can be extended to proper links [4, 11], that is, links L
such that ∑

1≤i<j≤m

lk(Li, Lj) ≡ 0 (mod 2).

In particular, the Arf invariant is well defined for algebraically split links (i.e. links with
vanishing pairwise linking number). It has been shown that a ∆-move changes the parity
of the Arf invariant of a proper link and therefore d∆(L,L′) ≡ arf(L) + arf(L′) (mod 2)
[2]. Thus restricting to just self ∆-moves, we have ds∆(L,L′) ≡ arf(L)+ arf(L′) (mod 2).
It then follows that if there exist two ∆-pathways (of self and/or mixed ∆-moves) between
the links L and L′, they must have the same parity.

Example 2.4 Since both the links L8a2 and L8a4 can be deformed into the trivial link
with a single self ∆-move, 1 ≤ ds∆G (L8a2, L8a4) ≤ 2. See Figure 2. Further

ds∆G (L8a2, L8a4) ≡ arf(L8a2) + arf(L8a4) ≡ 0 (mod 2)
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Figure 2: Self ∆-moves connecting L8a2 and L8a4 via the trivial link.

and therefore ds∆G (L8a2, L8a4) = 2.

Additionally, we have the following:

Proposition 2.5 Given self ∆-equivalent links L and L′,

ds∆G (L,L′) ≥
m∑
i=1

∣∣u∆(Li)− u∆(L′
i)
∣∣ .

Proof. If L is self ∆-equivalent to L′, then (renumbering components, if necessary) there
exists a self ∆-pathway taking each component Li to the component L′

i. Since each self
∆-move only changes the knot type of a single component, we have:

ds∆G (L,L′) ≥
m∑
i=1

ds∆G (Li, L
′
i) ≥

m∑
i=1

∣∣u∆(Li)− u∆(L′
i)
∣∣ .

□

Example 2.6 There is a self-∆ pathway from mL5a1 to L7n2 to L9n3 to L9n6. Since

arf(mL5a1) + arf(L9n6) = 1 + 0 = 1,
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(δ1,δ2)=(0,0)
Trivial L8a2 L8a4

Trivial 0 1 1
L8a2 - 0 2
L8a4 - - 0

Table 1: Self ∆-Gordian distance between links.

Trivial Link

L8a2

L8a4

Figure 3: (δ1,δ2)=(0,0)

ds∆(mL5a1, L9n6) is either 1 or 3. However, since mL5a1 has as its components two
unknots, L9n6 has as its components an unknot and 51, and u∆(51) = 3 [10], we conclude
ds∆(mL5a1, L9n6) = 3.

Given a link L, define
δ1(L) = a1(L) and

δ2(L) = a3(L)− a2(L)× (a2(L1) + a2(L2))

where the ai are coefficients of the Conway polynomial (see [5] for definition).
Nakanishi-Ohyama showed that two 2-component links are self ∆-equivalent precisely

when they have the same values for δ1 and δ2 [7][9]. The sign of δi is changed by mirroring
the link. The below graphs in Figures 3, 4, and 5 exhibit self ∆-pathways for prime links
with up to 9 crossing in the families (δ1, δ2) = (0, 0), (0,±1), and (0,±2). Moreover, for
each pair of links L and L′, we will use the above restrictions to tabulate in Tables 1, 2,
and 3 the possible values for ds∆G (L,L′).

Note that if there exists a self ∆-pathway between L and L′, then there exists such a
pathway of equal length between their mirrors mL and mL′, as well. Therefore

ds∆G (L,L′) = ds∆G (mL,mL′).

Values in Tables 2 and 3 with asterisks denote upper bounds to ds∆G (L,L′); the exact
values may be less but must be positive with the same parity as the provided bound.
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mL8n2

L7a1

L9a3

L9a1

L9a2

mL5a1

L7n2

L8a1

L9n8

L9n3

L9n6

Figure 4: (δ1,δ2)=(0,±1)

L7a4

L10n5

mL9a9

mL9a10

L9a8

L7a3

L9n2

L9a4

mL9n5

Figure 5: (δ1,δ2)=(0,±2)

(δ1,δ2)=(0,±1)
L7n2 mL8n2 L9n3 L7a1 L9n8 L9a3 L8a1 L9a1 L9n6 L9a2

mL5a1 1 1 2 2 2 3* 2 4* 3 5*
L7n2 0 2 1 3* 1 4* 1 1-5 2 6*
mL8n2 - 0 3 1 2 2 3* 3* 4 4*
L9n3 - - 0 4* 2 5* 2 6* 1 7*
L7a1 - - - 0 4* 1 4* 2 5* 3*
L9n8 - - - - 0 5* 2 6* 1 7*
L9a3 - - - - - 0 5* 1 6* 2
L8a1 - - - - - - 0 6* 3 7*
L9a1 - - - - - - - 0 7* 1
L9n6 - - - - - - - - 0 8*

Table 2: Self ∆-Gordian distance between links. *Upper bound on the self ∆-Gordian
distance.
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(δ1,δ2)=(0,±2)
Blank L7a3 L7a4 L9a4 L9a8 mL9a9 mL9a10 L9n2 mL9n5
L7a3 0 1 1 2 3* 4* 1 2
L7a4 - 0 2 1 2 3* 2 3
L9a4 - - 0 3 4* 5* 2 1
L9a8 - - - 0 3* 4* 3 4
mL9a9 - - - - 0 1 4* 5*
mL9a10 - - - - - 0 5* 6
L9n2 - - - - - - 0 1
mL9n5 - - - - - - - 0

Table 3: Self ∆-Gordian distance between links. *Upper bound on the self ∆-Gordian
distance.

3 Delta-Splitting Number

The splitting number of a link is defined to be the minimal number of crossing changes
involving different components needed to deform a link into a split union of the compo-
nents of the link. The splitting number has been tabulated for links with up to 9 crossings
[3].

Similarly, as any algebraically split link is ∆-equivalent to the trivial link, we can
define the ∆-splitting number sp∆(L) to be the minimum number of ∆-moves needed to
deform L into the split union of its components. As the split union is not necessarily
the trivial link, we have sp∆(L) ≤ u∆(L). The mixed ∆-splitting number spm∆(L) is
defined to be the minimum number of mixed ∆-moves needed to deform L into the split
union of its components. The following theorem and its corollary show that spm∆(L) is
well-defined for algebraically split links.

Theorem 3.1 Two links are mixed ∆-equivalent if and only if they have the same pairwise
linking numbers and components.

Proof. One direction follows immediately from the fact that mixed ∆-moves preserve
linking numbers and does not change knot type of the components. For the converse,
suppose m-component links L and L′ have the same pairwise linking numbers and equal
components Li = L′

i for 1 ≤ i ≤ m. Let λij denote lk(Li, Lj) = lk(L′
i, L

′
j) for all

1 ≤ i < j ≤ m. There exists a link S with the same linking information as L with the
same m components Si = Li such that any two components Si and Sj intersect in λij

clasps as in Figure 6. In general, such a link S can be formed by taking the split union of
the components Li then band summing with Hopf links with appropriate orientation to
achieve the desired linking numbers λij. We will argue that L is mixed ∆-equivalent to
S, thus L′ is also mixed ∆-equivalent to S, and hence L and L′ are mixed ∆-equivalent
to one another.

First observe that given the components Li and Lj in L, we can deform them so that
the components intersect in pairs of clasps such that the difference between the number
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Figure 6: A link S with linking numbers λ12 = 3, λ13 = 2, and λ23 = −1.

of clasps contributing +1 to the linking number and those clasps contributing -1 to the
linking number is λij. If there exist both positive and negative clasps, we can arrange the
diagram such that two clasps with opposite contributions to linking number are adjacent
to each other, possibly with other clasps representing intersections of the component with
itself or other components between the claps, as in Figure 7.a.

Figure 7: Separating two components of an algebraically split link with claps slides (mixed-
∆ moves).

We can move one clasp past another using a single ∆-move, as in Figure 8. Observe
that if at least two components are included in one of the clasps, this will be a mixed
∆-move. Repeated application of this move allows us to move any pairs of positive and
negative clasps adjacent to each other with no other clasps between them as in Figure 7.b
and 7.c. The two clasps then cancel, as in Figure 7.d.

We can repeat this process until all clasps between Li or Lj are negative or positive.
But then there are exactly |λij| such clasps, the sign of which is determined by the sign
of λij. Hence, we have transformed L into S via mixed ∆-moves. □

Recall that an algebraically split link is a link with pairwise vanishing linking numbers.
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Figure 8: Moving a clasp over another with a mixed-∆ move.

Thus it follows:

Corollary 3.2 A link L is mixed ∆-equivalent to a split union of its components if and
only if L is an algebraically split link.

Hence the mixed ∆-splitting number, denoted spm∆(L), is well-defined for an alge-
braically split link L. And since mixed ∆-moves are a subset of ∆-moves more generally
(self or mixed), we have spm∆(L) ≥ sp∆(L). Also, since any two ∆-pathways between
L and the split union of the components of L have the same parity (see Remark 2.3), it
follows that spm∆(L) ≡ sp∆(L) (mod 2). Additionally we have:

Proposition 3.3 Given an algebraically split link L,

spm∆(L) ≡ arf(L) +
m∑
i=1

arf(Li) (mod 2).

Proof. Let S denote the split union of the components of L. Then, making use of
Remark 2.3, we have:

spm∆(L) = dm∆
G (L, S) ≡ arf(L) + arf(S) ≡ arf(L) +

m∑
i=1

arf(Li) (mod 2).

□

Example 3.4 The link L8a2 has as its components the unknot and 41. There exists a

length two mixed ∆-pathway to the split union of its components: L8a4
∆−→ mL8n2

∆−→
01 ⊔ 41. Therefore 1 ≤ spm∆(L8a4) ≤ 2. However, as

spm∆(L8a4) ≡ arf(L8a2) + (arf(01) + arf(41)) = 1 + (0 + 1) ≡ 0 (mod 2)

we have spm∆(L8a4) = 2.

Moreover, we have the following relationship:

Proposition 3.5 Given an algebraically split link L with components L1, . . . , Lm, we
have:

spm∆(L) ≥ u∆(L)−
m∑
i=1

u∆(Li).
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∆ ∆

∆

∆

∆

∆

≈

≈

Figure 9: L8a2 is two mixed ∆-moves away from the split union of the unknot and 41.

Proof. Let S denote the link composed of the split union of L1, ..., Lm. Then L can be
deformed into S with spm∆(L) mixed ∆-moves and each component of S can be deformed
into the unknot in u∆(Li) ∆-moves. Since mixed ∆-moves preserve the knot type of the
components, regardless of if the mixed ∆-move involves 2 or 3 components, and u∆(L) is
the minimal number of ∆-moves needed to deform L into the trivial link, we have

u∆(L) ≤ spm∆(L) +
m∑
i=1

u∆(Li).

□
Finally, a mixed ∆-move can be achieved with two crossing changes, each between

different components, as in Figure 10. Thus 2spm∆(L) ≥ sp(L) or equivalently:

Proposition 3.6 spm∆(L) ≥ 1
2
sp(L).

Crossing
Change

≈ Crossing
Change

Figure 10: A mixed ∆-move as two crossing changes.

Together, these bounds help us determine the ∆-splitting number and mixed ∆-
splitting number for algebraically split links with up to 9 crossings. See Figure 11 and
Table 4.
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01 ⊔ 01

L8a1

L5a1

L9a9

L9a4

mL9a40

L7a4

L9a18

L9a38

L9a1

L7a1

L9a35

L9a42

01 ⊔ 31

mL7n2

L8a4 L7a3

mL9a17

L9a2

L9a3

01 ⊔ 41 mL8n2

L8a2

mL9a8

L9a10

01 ⊔ 51

mL9n6

mL9n5

L9a14

01 ⊔ 52

mL9n8

L9n2

L9a15

L9a4

L9n3

Figure 11: Edges represent a mixed ∆-move.

Link Components sp∆(L) spm∆(L) u∆(L) Σu∆(Li) sp(L) Arf(L) ΣArf(Li)
L5a1 01, 01 1 1 1 0 2 1 0
L6a4 01, 01, 01 1 1 1 0 2 1 0
L7a1 01, 01 1 1 1 0 2 1 0
L7a3 01, 31 2 2 3 1 2 1 1
L7a4 01, 01 2 2 2 0 2 0 0
L7n2 01,m31 1 1 2 1 2 0 1
L8a1 01, 01 1 1 1 0 2 1 0
L8a2 01, 41 1 2 1 1 2 1 1
L8a4 01,m31 2 2 1 1 2 1 1
L8n2 01, 41 1 1 2 1 2 0 1
L9a1 01, 01 1 1 1 0 2 1 0
L9a2 01, 31 1 1 2 1 2 0 1
L9a3 01, 31 1 1 2 1 2 0 1
L9a4 01, 52 2 2 4 2 2 0 0
L9a8 01, 41 2 2 3 1 2 1 1
L9a9 01, 01 2 2 2 0 2 0 0
L9a10 01, 41 2 2 3 1 2 1 1
L9a14 01, 51 1 or 3 1 or 3 4 or 6 3 2 0 1
L9a15 01, 52 1 or 3 1 or 3 3 or 5 2 2 1 0
L9a17 01,m31 1 or 3 1 or 3 2 or 4 1 2 0 1
L9a18 01, 01 3 3 3 0 2 1 0
L9a35 01, 01 1 1 1 0 2 1 0
L9a38 01, 01 2 2 2 0 2 0 0
L9a40 01, 01 3 3 3 0 4 1 0
L9a42 01, 01 1 1 1 0 2 1 0
L9a53 01, 01, 01 1 1 1 0 2 1 0
L9a54 01, 01, 01 3 3 3 0 4 1 0
L9n2 01, 52 2 2 4 2 2 0 0
L9n3 01,m52 1 1 3 2 2 1 0
L9n5 01,m51 2 2 5 3 2 1 1
L9n6 01,m51 1 1 4 3 2 0 1
L9n8 01,m52 1 1 3 2 2 1 0
L9n25 01, 01, 01 2 2 2 0 2 0 0
L9n27 01, 01, 01 2 2 2 2 4 0 0

Table 4: Determine (mixed) ∆-splitting number.
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