
Investigations in Patterns in Last Digits of Square

Numbers and Higher Powers

S.J. Miller, E. Wiley, and J. Wiley

Abstract - It is interesting to see what patterns exist in the final digits of powers of integers;
the goal of this work is to introduce some new problems and results, which are ideally suited
for interested readers to pursue further. We start our investigation with squares and say a
square is a k-square good number if its last k digits base 10 are the same non-zero number,
and the last k + 1 digits are not identical. We completely analyze k-square good numbers;
when k = 1 we can have final digits of 1, 4, 5, 6 and 9 (with the second to last digit different),
when k = 2 we can end with 44 but not 444, when k = 3 we can end with 444 but not
4444, and there are no 4-square good numbers. We then generalize these arguments to look
at k-cube and k-fourth good numbers, completely analyzing these cases. Noting that any
even power 2m is the same as squaring an mth power, we can extend our results to even
powers more easily than to odd, as the behavior has to be a subset of what we have seen for
squares. There are complications arising from powers of 2 dividing our numbers, but using
results from elementary number theory (in particular concerning the totient function and
Euler’s theorem), we reduce the problem for even powers to a tractable finite computation,
and completely resolve this case, and then end with a list of accessible next problems.
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1 Introduction

One of the oldest problems in mathematics is trying to find patterns in digits; frequently
if we look at numbers in the proper way beautiful structure emerges. For example, Euler’s
constant e base 10 is not particularly appealing, starting off

2.718281828459045235360287471352662497757247093699959574966967627724076630353,

however its continued fraction expansion (see for example [5]) is

[2, 1, 2, 1, 1, 4, 1, 1, 6, . . . ] = 2 +
1

1 +
1

2 +
1

1 +
1

1 +
1

4 + · · ·

.
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We could look at decimal expansions of reciprocals of primes (see for more information [6];
by the pigeonhole principle these rational numbers must have either a finite or repeating
expansion, and it is an interesting question to find all primes p whose period is the largest
possible, p− 1 (see [2]). For our last motivating example, we consider the distribution of
leading digits. Amazingly, for many natural and mathematical data sets the probability
of having a first digit d is not the same for all d, but exhibits a pronounced bias where we
have d with probability log10(1+1/d). Thus about 30% of the time the leading digit is one,
with the probabilities decreasing down to around 4.6% for a first digit of 9; this is known
as Benford’s law, and there is an extensive literature on the subject and applications
(especially to data integrity and fraud detection); see [4].

These questions and results motivated us to look at the decimal expansion of numbers,
and investigate what possible patterns might emerge in arithmetic operations on it. As
this is a very general question, we concentrate on a specific case: what can we say about
the final digits of squares of integers? More specifically, how often can the final digits all
be the same?

Clearly, it is possible to have arbitrary long strings of the same digit in the end, simply
by looking at large powers of ten. As it is thus trivial to obtain squares with as many
zeros at the end as we wish, we exclude a final digit of zero and investigate what happens
for other digits.

In this paper, we examine the patterns of specific numbers of last digits of powers, so
we adopt the following definitions.

Definition 1.1 (k-square good number) We say a square number is a k-square good
number if the final k digits are the same non-zero number, but the final k + 1 are not.

Definition 1.2 (k-cube good number) We say a cube number is a k-cube good number
if the final k digits are the same non-zero number, but the final k + 1 are not.

Definition 1.3 (k-fourth-power good number) We say a fourth power of a number
is a k-fourth-power good number if the final k digits are the same non-zero number, but
the final k + 1 are not.

Later we consider arbitrary even powers, and leave the odd powers as a future project.

Theorem 1.4 Consider squares of integers.

a) There are infinitely many 1-square good numbers, ending with final digit 1, 4, 5, 6
or 9, and these are the only values for which this happens (and all of these cases
happen).

b) There are infinitely many 2-square good numbers, all ending in 44, which is the only
value for which this happens.

c) There are infinitely many 3-square good numbers, all ending in 444, which is the
only value for which this happens.
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d) There are no 4-square good numbers.

Theorem 1.5 Consider cubes of integers.

a) There are infinitely many 1-cube good numbers, ending with every non-zero possible
digit, and these are the only values for which this happens (and all of these cases
happen).

b) For any x ∈ {11, 33, 44, 77, 88, 99}, there are infinitely many 2-cube good numbers
whose last two digits are x, and there are no other 2-cube good numbers. These are
the only values for which this happens.

c) For any x ∈ {111, 333, 777, 888, 999}, there are infinitely many 3-cube good numbers
whose last three digits are x, and there are no other 3-cube good numbers. These
are the only values for which this happens.

d) For any x ∈ {1111, 3333, 7777, 8888, 9999}, there are infinitely many 4-cube good
numbers whose last four digits are x, and there are no other 4-cube good numbers.
These are the only values for which this happens.

e) For any x ∈ {11111, 33333, 77777, 88888, 99999}, there are infinitely many 5-cube
good numbers whose last five digits are x, and there are no other 5-cube good num-
bers. These are the only values for which this happens.

f) There are infinitely many 6-cube good numbers, all ending in 888888, which is the
only value for which this happens.

g) There are no 7-cube good numbers.

Theorem 1.6 Consider fourth powers of integers.

a) There are infinitely many 1-fourth-power good numbers, ending with final digit 1, 5,
or 6, and these are the only values for which this happens (and all of these cases
happen).

b) There are no 2-fourth-power good numbers.

At first it seems quite daunting to investigate all powers of all integers; fortunately
some arguments from number theory greatly winnow down the number of cases needed
to study if the power is even. In §5 we show it suffices to study integers of the form b · 2k,
with b ≤ 1000 odd and k ∈ {0, . . . , 103}, and we only need to study their mth power
where m ≤ 400 is congruent to 2 modulo 4.

Theorem 1.7 The only repeated final digits of x2m are 44 and 444. The only time the
final three digits are 444 is when 2m = 2, and the final three digits of x are 38, 462, 538,
and 962. There are many cases where the last two digits are 44, but the last three are not
444; see https: // tinyurl. com/ 3vtshze6 .
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As the analysis of the squares plays a key role in the proof for general powers, we start
with that case. After looking at square numbers and their patterns in last digits, we turn
to higher powers, and end with several accessible suggestions for future work (interested
readers should contact the first author at sjm1@williams.edu).

2 Squares

2.1 1-Square Good Numbers

Proof of Theorem 1.4.a: There are infinitely many 1-square good numbers,
ending with final digit 1, 4, 5, 6 or 9, and these are the only values for which
this happens (and all of these cases happen).

Proof. Without loss of generality, it suffices to consider numbers of the form 50n + b.
When this is squared, we get 2500n2 + 100bn+ b2. Thus the final two digits of (50n+ b)2

are just the final two digits of b2. There are only 49 choices of b to check. Take b to
equal 1, 2, 5, 6, and 3. We get final two digits of 01, 04, 25, 36, and 09, respectively;
a straightforward computation shows that none of the other possibilities give a different
final digit than 1, 4, 5, 6 and 9. Thus, there are infinitely many 1-square good numbers
with last digits 1, 4, 5, 6, and 9, and these are the only 1-square good numbers. �

2.2 2-Square Good Numbers

From Theorem 1.4.a, the only possible 2-square good numbers must end in 11, 44, 55, 66,
or 99; below we eliminate all but 44.

2.2.1 Digits 11, 55, 66, and 99

Lemma 1.4.b. There are no squares whose last two digits are 11, 55, 66, or
99.

Proof. Again it suffices to consider numbers of the form 50n+ b. When this is squared,
we get 2500n2 +100bn+b2, so the final two digits of (50n+b)2 are just the final two digits
of b2. We calculate b2 with b ranging from 1 through 49. From these calculations, we find
the only values of b so that b2 ends with the same two digits: 00 (which we exclude) and
44. Thus there are no square numbers with last two digits of 11, 55, 66, or 99. �

Since two-square good numbers cannot end with 11, 55, 66, and 99, we now only have
to consider the case of 44. To obtain two-square numbers, it suffices to find infinitely
many numbers ending with 144, which is 122.

Remark 2.1 Before continuing, we briefly remark on our efforts to minimize the com-
putations required. We are writing our numbers modulo 50; we cannot use a smaller
modulus and always have the last two digits the same as b2.

To see that 50 is minimal, consider numbers of the form (an+ b)2. Let b = 12. When
we expand, we get a2n2 + 24an + 144. In order to make the last two digits of this equal
the last two digits of b2, one way to do this is to ensure that a2 and 2a have two zeros as
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their last two digits; this happens if a = 50. Perhaps, however, we might have a2n2+24an
is a multiple of 100 for all n, which would suffice. Such a result is possible; for example,
consider the simpler example of n2 + n, which equals n(n + 1). Note that 2 does not
always divide n, 2 does not always divide n + 1, but 2 always divides n(n + 1) because
multiplying two consecutive numbers results in an even number.

Returning to our analysis, a brute force computation shows that there is no a < 50
such that a2n2 + 24an is always a multiple of 100. Taking n = 1 gives the last two digits
are not 00 for all a < 50 except for a = 26. For a = 26, if we take n = 2, the last two
digits are not 00. Thus 50 is the smallest modulus we can use.

2.2.2 Digits 44

Lemma 1.4.b shows that the only possibility for a 2-square good number is 44.

Proof of Theorem 1.4.b: There are infinitely many 2-square good numbers,
all ending in 44, which is the only value for which this happens.

Proof. Consider numbers of the form 500n + 12, which, when squared, is 250000n2 +
12000n + 144. This lets us know immediately that the last three digits are 144. We get
infinitely many, one for each n. Thus, there are infinitely many square numbers with last
digits of 44 but not 444. �

2.3 3-Square Good Numbers

From Theorem 1.4.b, the only possible 3-square good numbers can end in 444.

Proof of Theorem 1.4.c: There are infinitely many 3-square good numbers,
all ending in 444, which is the only value for which this happens.

Proof. Consider numbers of the form (an + b)2, which is a2n2 + 2abn + b2. Since we
are only looking at the last three digits, if a2 and 2a end in at least three zeros, then we
know immediately that the last three digits are dependent only on b2. Multiples of 500
work for a: (500n + b)2 = 250000n2 + 1000bn + b2. We must calculate b2 for b ranging
from 1 to 499. We find that when b is 38 or 462, (500n+ b)2 ends in 444 (382 = 1444 and
4622 = 213444), but (500n + b)2 for b might end in 4444. Thus, consider numbers of the
form (5000n+ 38)2, which expands to (25 · 106)n2 + 380000n+ 1444, and (5000n+ 462)2,
which expands to (25 · 106)n2 + 4620000n + 213444. For every value of n, both of these
numbers will always end in 444 but not 4444, resulting in an infinite number of 3-square
good numbers. �

2.4 4-Square Good Numbers

Proof of Theorem 1.4.d: There are no 4-square good numbers.

Proof. From the proof of Theorem 1.4.c, we know that the only squares that end in 444
are of the form (500n + 38)2 and (500n + 462)2 and that when 10|n, these numbers are
not 4-square good.
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Consider numbers of the form (an + b)2, which is a2n2 + 2abn + b2. Since we are
only looking at the last four digits, if a2 and 2a end in at least four zeros, the last four
digits are dependent only on b2. We may look at multiples of 5000 for a: (5000n+ b)2 =
(25 · 106)n2 + 10000bn+ b2. We must calculate b2 for b ranging from 1 to 4999. Thus, to
prove that there is never a square number that ends in 4444, we just need to calculate
(500n+ 38)2 and (500n+ 462)2 for n = 0, 1, ..., 9 because 5000 divided by 500 is 10. From
the calculations, there is no square number whose last four digits are 4444. �

It is worth noting that our previous analysis paid enormous dividends here, as we only
had to check 20 possibilities.

3 Cubes

3.1 1-Cube Good Numbers

Proof of Theorem 1.5.a: There are infinitely many 1-cube good numbers,
ending with every non-zero possible digit (and all of these cases happen).

Proof. Consider numbers of the form 500n+b. When this is cubed, we get (125·106)n3+
750000bn2 + 1500b2n + b3. Thus the final two digits of (500n + b)3 are just the final two
digits of b3. So there are only 499 choices of b to check. Take b to equal 1, 8, 7, 4, 5, 6,
3, 2, and 9. We get final two digits of 01, 12, 43, 64, 25, 16, 27, 08, and 29, respectively.
Therefore for these choices, the only last digit of b3 is 1, 2, 3, 4, 5, 6, 7, 8, and 9. Thus,
every non-zero possible digit occurs. �

3.2 2-Cube Good Numbers

From Theorem 1.5.a, 2-cube good numbers can end in anything (i.e., 11, 22, 33, 44, 55,
66, 77, 88, or 99 are all possible); we eliminate three of these and show it must end with
11, 33, 44, 77, 88, or 99.

3.2.1 Digits 22, 55, and 66

Lemma 1.5.b: There are no cubes whose last two digits are 22, 55, or 66.

Proof.
We can consider numbers of the form 5000n+ b, whose cubes are

(125 · 109)n3 + (75 · 106)bn2 + 15000b2n+ b3,

and thus the final two digits of (5000n + b)3 are just the final two digits of b3. Let b
range from 1 through 4999. From calculations of b3 for these numbers, we find values of
b so that b3 ends with the same two digits for 6 digit pairs, 11, 33, 44, 77, 88, and 99.
Thus there are no cubes with the last two digits of 22, 55, or 66 (and the six options are
potential 2-good cube numbers). �
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3.2.2 Digits 11, 33, 44, 77, 88, and 99

Lemma 1.5.b shows that the only possibilities for a 2-cube good number are 11, 33, 44,
77, 88, and 99. We now show all these possibilities are realized.

Proof of Theorem 1.5.b: For any x ∈ {11, 33, 44, 77, 88, 99}, there are infinitely
many 2-cube good numbers whose last two digits are x, and there are no other
2-cube good numbers.

Proof. Consider numbers of the form 5000n+ b, which, when cubed, is

(125 · 109)n3 + (75 · 106)bn2 + 15000b2n+ b3,

and the last three digits are the last three digits of b3. The last three digits of 713, 773,
143, 533, 423, and 993 are 911, 533, 744, 877, 088, and 299, respectively. When b = 71,
77, 14, 53, 42, and 99, we get infinitely many 2-cube good numbers, one for each n. Thus,
there are infinitely many cube numbers with last digits of 11, 33, 44, 77, 88, and 99, but
not 111, 333, 444, 777, 888, or 999. �

3.3 3-Cube Good Numbers

From Theorem 1.5.b, the only possible 3-cube good numbers can end in 111, 333, 444,
777, 888, or 999, and here we eliminate 444.

3.3.1 Digits 444

Lemma 1.5.c: There are no cubes whose last three digits are 444.

Proof. Consider numbers of the form 5000n+ b, whose cubes are

(125 · 109)n3 + (75 · 106)bn2 + 15000b2n+ b3.

As always, the final three digits of (5000n+ b)3 are just the final three digits of b3. Take b
to range from 1 through 4999. From calculations of b3 for these numbers, we final values
of b so that b3 ends with the same last three digits only for 111, 333, 777, 888, and 999.
Thus, there are no cubes with the last three digits of 444. �

3.3.2 Digits 111, 333, 777, 888, and 999

Lemma 1.5.c shows that the only possibilities for a 3-cube good number are 111, 333, 777,
888, and 999. We show all of these work.

Proof of Theorem 1.5.c: For any x ∈ {111, 333, 777, 888, 999}, there are infinitely
many 3-cube good numbers whose last three digits are x, and there are no
other 3-cube good numbers. These are the only values for which this happens.

Proof. Consider numbers of the form (an+b)3, which is a3n3+3a2bn2+3ab2n+b3. Since
we are only looking at the last three digits, if a3, 3a2, and 3a end in at least three zeros,
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then we know immediately that the last three digits are dependent only on b3. Multiples
of 5000 work for a:

(5000n+ b)3 = (125 · 109)n3 + (75 · 106)bn2 + 15000b2n+ b3.

We must calculate b3 for b ranging from 1 to 4999. From the calculations, the last
four digits of 4713, 4773, 17533, 1923, and 9993 are 7111, 1333, 4777, 7888, and 2999,
respectively, but (5000n + b)3 for b might end in 1111, 3333, 7777, 8888, or 9999 as our
analysis only cared about the final three digits. Thus, we increase the modulus a and
consider numbers of the form (50000n+ 471)3, which expands to

(125 · 1012)n3 + (75 · 108)bn2 + 150000b2n+ b3.

For every value of n, all such numbers with b equal to one of 471, 477, 1753, 192, and
999, will respectively always end in 111 but not 1111, 333 but not 3333, 777 but not 7777,
888 but not 8888, and 999 but not 9999, resulting in an infinite number of 3-cube good
numbers. �

3.4 4-Cube Good Numbers

From Theorem 1.5.c, we know that the only possible 4-cube good numbers can end in
1111, 3333, 7777, 8888, or 9999; we show all happen.

Proof of Theorem 1.5.d: For any x ∈ {1111, 3333, 7777, 8888, 9999}, there are
infinitely many 4-cube good numbers whose last four digits are x, and there
are no other 4-cube good numbers. These are the only values for which this
happens.

Proof. Consider numbers of the form (an+b)3, which is a3n3+3a2bn2+3ab2n+b3. Since
we are only looking at the last four digits, if a3, 3a2, and 3a end in at least four zeros,
then we know immediately that the last four digits are dependent only on b3. Multiples
of 50000 work for a:

(50000n+ b)3 = (125 · 1012)n3 + (75 · 108)bn2 + 150000b2n+ b3.

We must calculate b3 for b ranging from 1 to 49999. From the calculations, the last five
digits of 84713, 64773, 7533, 44423, and 99993 are 71111, 53333, 57777, 18888, and 29999,
respectively, but (50000n + b)3 for b might end in 11111, 33333, 77777, 88888, or 99999.
Thus, consider numbers in the form (5 · 105n+ b)3, which expands to

(125 · 1015)n3 + (75 · 1010)bn2 + (15 · 105)b2n+ b3.

For every value of n, all such numbers with b equal to 8471, 6477, 753, 4442, or 9999, will
respectively always end in 1111 but not 11111, 3333 but not 33333, 7777 but not 77777,
8888 but not 88888, and 9999 but not 99999, resulting in an infinite number of 4-cube
good numbers. �
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3.5 5-Cube Good Numbers

From Theorem 1.5.d, we know that the only possible 5-cube good numbers can end in
11111, 33333, 77777, 88888, or 99999; we show all happen.

Proof of Theorem 1.5.e: For any x ∈ {11111, 33333, 77777, 88888, 99999}, there
are infinitely many 5-cube good numbers whose last five digits are x, and
there are no other 5-cube good numbers. These are the only values for which
this happens.

Proof. Consider numbers in the form (an + b)3, which is a3n3 + 3a2bn2 + 3ab2n + b3.
Since we are only looking at the last five digits, if a3, 3a2, and 3a end in at least five zeros,
then we know immediately that the last five digits are dependent only on b3. Multiples
of 5 · 105 work for a:

(5 · 105n+ b)3 = (125 · 1015)n3 + (75 · 1010)bn2 + (15 · 105)b2n+ b3.

We must calculate b3 for b ranging from 1 to 499999. From the calculations, the last six
digits of 884713, 464773, 607533, 19423, and 999993 are 511111, 533333, 577777, 988888,
and 299999, respectively, but (5 ·105n+b)3 for b might end in 11111, 33333, 77777, 88888,
or 99999. Thus, consider numbers in the form (5 · 106n+ b)3, which expands to

(125 · 1018)n3 + (75 · 1012)bn2 + (15 · 106)b2n+ b3.

For every value of n, all such numbers with b equal to 88471, 46477, 60753, 1942, or
99999, will always respectively end in 11111 but not 111111, 33333 but not 333333, 77777
but not 777777, 88888 but not 888888, and 99999 but not 999999, resulting in an infinite
number of 5-cube good numbers. �

3.6 6-Cube Good Numbers

From Theorem 1.5.e, we know that the only possible 6-cube good numbers can end in
111111, 333333, 777777, 888888, or 999999, and here we eliminate all but 888888.

3.6.1 Digits 111111, 333333, 777777, and 999999

Lemma 1.5.f: There are no cubes whose last six digits are 111111, 333333,
777777, or 999999.

Proof. Consider numbers in the form 5 · 106n+ b. When this is cubed, we get

(125 · 1018)n3 + (75 · 1012)bn2 + (15 · 106)b2n+ b3,

and thus the final six digits of (5 · 106n + b)3 are just the final six digits of b3. Take b
to equal 1 through 4999999. From calculations of b3 for these numbers, we find only one
value of b so that b3 ends with the same last six digits, and those digits are 888888. Thus,
there are no cubes with the last six digits of 111111, 333333, 777777, and 999999. �

the pump journal of undergraduate research 7 (2024), 14–28 22



3.6.2 Digits 888888

Lemma 1.5.f shows that the only possibility for a 6-cube good number is 888888.

Proof of Theorem 1.5.f: There are infinitely many 6-cube good numbers, all
ending in 888888, which is the only value for which this happens.

Proof. Consider numbers of the form (an + b)3, which is a3n3 + 3a2bn2 + 3ab2n + b3.
Since we are only looking at the last six digits, if a3, 3a2, and 3a end in at least six zeros,
then we know immediately that the last six digits are dependent only on b3. Multiples of
5 · 106 work for a:

(5 · 106n+ b)3 = (125 · 1018)n3 + (75 · 1012)bn2 + (15 · 106)b2n+ b3.

We must calculate b3 for b ranging from 1 to 4999999. From the calculations, the last
seven digits of 769423 are 0888888, but (5 · 106n+ b)3 for b might end in 8888888. Thus,
consider numbers in the form (5 · 107n+ b)3, which expands to

(125 · 1021)n3 + (75 · 1014)bn2 + (15 · 107)b2n+ b3.

For every value of n, all numbers with b = 76942 will always end in 888888 but not
8888888, resulting in an infinite number of 6-cube good numbers. �

3.7 7-Cube Good Numbers

Proof of Theorem 1.5.g: There are no 7-cube good numbers.

Proof. From Theorem 1.5.f, we know that the only numbers that end in 888888 are of
the form (5 · 106n + 76942)3. Consider numbers of the form (an + b)3, which is a3n3 +
3a2bn2 + 3ab2n + b3. Since we are only looking at the last seven digits, if a3, 3a2, and
3a end in at least seven zeros, then we know immediately that the last seven digits are
dependent only on b3. We may look at multiples of 5 · 107 for a:

(5 · 107n+ b)3 = (125 · 1021)n3 + (75 · 1014)bn2 + (15 · 107)b2n+ b3.

We must calculate b3 for b ranging from 1 to 49999999. Thus, to prove that there is never
a cube that ends in 8888888, we just need to check (5 · 106n+ 76942)3 for n = 0, 1, . . . , 9
because 5 · 107 divided by 5 · 106 is 10, which thanks to the analysis above is now a very
short calculation.

(5 · 106n+ 76942)3

n = 0 : (5 · 106 · 0 + 76942)3 = 455502130888888
n = 1 : (5 · 106 · 1 + 76942)3 = 130859906572590888888
n = 2 : (5 · 106 · 2 + 76942)3 = 1023260657643050888888
n = 3 : (5 · 106 · 3 + 76942)3 = 3427202708713510888888
n = 4 : (5 · 106 · 4 + 76942)3 = 8092686059783970888888
n = 5 : (5 · 106 · 5 + 76942)3 = 15769710710854430888888
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n = 6 : (5 · 106 · 6 + 76942)3 = 27208276661924890888888
n = 7 : (5 · 106 · 7 + 76942)3 = 43158383912995350888888
n = 8 : (5 · 106 · 8 + 76942)3 = 64370032464065810888888
n = 9 : (5 · 106 · 9 + 76942)3 = 91593222315136270888888.

Thus, there is no cube whose last seven digits are 8888888. �

4 Fourth Powers

4.1 1-Fourth-Power Good Numbers

Proof of Theorem 1.6.a: There are infinitely many 1-fourth-power good num-
bers, ending with final digit 1, 5, or 6, and these are the only values for which
this happens (and all of these cases happen).

Proof. Consider numbers of the form 50n+ b. When this is raised to the power of four,
we get

6250000n4 + 500000n3n+ 15000n2b2 + 200nb3 + b4,

thus the final two digits of (50n+ b)4 are just the final two digits of b4 and there are only
49 choices of b to check. When 1 through 49 is raised to the fourth power, the last digits
of those results only end in 1, 5, and 6, so 2, 3, 4, 7, 8, and 9 cannot be the last digit of
a fourth power. Taking b to equal 1, 5, and 2, we get final two digits are 01, 25, and 16,
respectively. Thus, there are infinitely many 1-square good numbers with last digits 1, 5,
and 6. �

4.2 2-Fourth-Power Good Numbers

From Theorem 1.6.a, the only possible 2-fourth-power good numbers can end in 11, 55,
or 66, and here we eliminate all. This result will play a key role in our later analysis of
higher powers.

Proof of Theorem 1.6.b There are no 2-fourth-power good numbers.

Proof. Consider numbers in the form 50n+ b. When this is raised to the power of four,
we get

6250000n4 + 500000n3n+ 15000n2b2 + 200nb3 + b4,

and thus the final two digits of (50n+b)4 are just the final two digits of b4. Take b to equal
1 through 49. From calculations of b4 for these numbers, we find no values of b so that
b4 ends with the same last two digits of 11, 55, or 66. Thus, there are no fourth powers
with last two digits of 11, 55, or 66, and therefore there are no 2-good fourth powers. �
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5 General Even Powers

We now turn to looking for how often, and when, the last d digits of np are the same
but not the last d + 1. We shall study only even powers here, and leave the odd powers
for future work. From our earlier analysis we know that the only possible repeated final
digits for squares are 44 and 444, and there are no repeated final digits for fourth powers.
Thus if we look at n2m there cannot be repeated digits at the end if 2m is a multiple of
four; thus it suffices to consider 2m ≡ 2 mod 4. As n2m = (nm)2 is a square, we know the
only possible repeated final digits are 44 and 444, and thus it suffices to see when either
of these happen.

We recall the definition of Euler’s totient function, φ(n), which is the number of
non-negative integers at most n which are relatively prime to n; this is a multiplicative
function, with φ(ab) = φ(a)φ(b) if a and b are relatively prime and for p prime we have
φ(pr) = pr−1(p−1). Of its many important properties, for us the most important is that if
a is a positive integer relatively prime to m, then aφ(m) ≡ 1 mod a. See for example [2, 5]
for proofs. We can now prove our main result on even powers, noting we have already
analyzed squares and fourth powers.

Proof of Theorem 1.7.a: The only repeated final digits of x2m are 44 and 444.
The only time the final three digits are 444 is when 2m = 2, and the final three
digits of x are 38, 462, 538, and 962. There are many cases where the last two
digits are 44, but the last three are not 444; see https://tinyurl.com/3vtshze6.

Proof. By using Euler’s Totient Theorem and the pigeonhole principle, we can reduce the
calculations and analyses for even powers to a very reasonable number of computations.
We can write any n2m as (b · 2k)2m, where b is odd and k is a non-negative integer. As we
only need to study the final three digits, it suffices to look at n mod 1000.

If b is a multiple of 5 then we know the final digit must be a 5 and thus we cannot end
with 44 or 444, and thus we may exclude all such odd b. Thus it suffices to study odd
b ∈ {1, 3, 7, 9, 11, . . . , 999}. As

φ(1000) = φ(8)φ(125) = 22(2− 1) · 52(5− 1) = 400,

we only need to look at 400 powers of the odd number b before the final three digits cycle.
For powers of 2, we notice

21 = 2, 22 = 4, 23 = 8, . . . , 2103 mod 1000 = 008;

thus the last three digits of powers of 2 cycle with a period of 100, but starting not with
the zeroth or first power but with the third. Fortunately 100 is a divisor of 400, and
combining these two observations we see it suffices to study (b · 2k)2m mod 1000 for odd b
relatively prime to 5 that are less than 1000 and k ∈ {0, 1, 2, . . . , 102}.

Case I: n is relatively prime to 10.
By the above analysis, we need to study b2m mod 1000 for 2m ∈ {2, 6, 10, . . . , 398} and

odd b relatively prime to 5 and at most 999. This leads to 400 choices of b and 200 choices
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of m, or only 80,000 calculations. As these numbers are always odd, they cannot end in
44 or 444, so there are no odd numbers whose even power ends with repeated digits. All
that is left is seeing what first digits are possible, and a quick analysis shows that the
powers of odd integers relatively prime to 5 always end in a 1 or a 9 (the interested reader
can write down a formula for which odd numbers and which odd powers end with a 1
versus a 9).

Case II: n is a multiple of 2 but not 5.
From the above analysis, we have to study (b · 2k)2m mod 1000 where 2m ≡ 2 mod 4,

b ≤ 999 is an odd number relatively prime to 5, and k is a positive integer at most 102.
The possible final digits of even numbers to even powers are just 4 and 6; note we cannot
end in 66 so we just have to study the n ending with a 4 (the interested reader can write
down a formula for when the final digit is a 6). The calculation is 102 times larger than
the previous, but this can be handled in less than a minute on a reasonable laptop. We
find that the only power where the final three digits are 444 is 2, coming from our integer
n being 38, 462, 538 or 962 modulo 1000 (all of these are divisible by 2 but not by 4).

There are more situations where the final two digits are 44 but not 444; see https:

//tinyurl.com/3vtshze6 to view the cases1. There are 64 numbers that, when raised
to an even power, have inputs ending in 44 but not 444, and they are 2, 8, 12, 22, 28, 38,
42, 48, 52, 58, 62, 72, 78, 88, 92, 98, 102, 108, 112, 122, 128, 138, 142, 148, 152, 158, 162,
172, 178, 188, 192, 198, 202, 208, 212, 222, 228, 238, 242, 248, 252, 258, 262, 272, 278,
288, 292, 298, 302, 308, 312, 322, 328, 338, 342, 348, 352, 358, 362, 372, 378, 388, 392,
and 398.

For all of these 64 numbers, starting at 2, the corresponding even powers cycle every
four numbers. The corresponding even powers for the first number are 18, 38, 58, 78, 98,
118, 138, 158, 178, 198, 218, 238, 258, 278, 298, 318, 338, 358, 378, 398. The powers for
the second number are 6, 26, 46, 66, 86, 106, 126, 146, 166, 186, 206, 226, 246, 266, 286,
306, 326, 346, 366, 386. The powers for the third number are 2, 22, 42, 62, 82, 102, 122,
142, 162, 182, 202, 222, 242, 262, 282, 302, 322, 342, 362, 382. The powers for the fourth
number are 14, 34, 54, 74, 94, 114, 134, 154, 174, 194, 214, 234, 254, 274, 294, 314, 334,
354, 374, 394. The next four numbers have the same powers, but the order is flipped so
that the fifth number’s first power is 2, and the eighth number’s first power is 18. The
next four powers flip again so that their powers are the same as the first four numbers.
This cycle happens all the way through 398. �

6 Future Work

One of the main purposes of this research was to propose accessible problems for future
students to explore; if interested contact the first named author at sjm1@williams.edu.

1. We analyzed the case of even powers, what happens for odd powers? In particular,
we saw for cubes there were a lot more possibilities for repeated final digits (both

1Email the authors for the code if interested.
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in terms of number and length). What happens for other odd powers? Is there a
maximum number of repeated final digits one can have as we vary the power and
integer, or can we find arbitrarily long strings of the same last digits when raised to
an appropriate power?

2. The above questions are for base 10; what happens if we look at other bases? The
simplest generalization is to look at base b expansions, starting with b−2, but there
are other possible extensions. For example, one can study the Zeckendorf expansion
of a number2, and look at what happens to the “digits” when we raise to various
powers. See for example [1, 3] for an introduction to these types of decompositions.

3. We only looked at how often the last digits are the same, but one could (and should)
explore all the possibilities. What fraction of the final digit tuples arise for squares?
If we look at just the last digit, it is one, four, five, six, nine, which is 5/9. If we
include zero, it is 60 percent. What fraction of the possible final two digits are
realized for squares? How often do each of these occur? What happens if we look
at other powers and other bases?
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