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1 Introduction

Polypolyhedra are edge-transitive compounds of polyhedra, originating as origami models.
They were first systematically described and enumerated by R. Lang in [6]. His article
framed the problem of enumerating the polypolyhedra and divided it into steps. He
gave a definition of polypolyhedra and recognised the two criteria by which any two
polypolyhedra can be determined to be distinct or equivalent: first by symmetry, then
by topology. Lang’s methodology for enumerating polypolyhedra was computational and
essentially brute force; we favour instead an analytical approach and point out a mistake
in Lang’s algorithm herein. Only one paper concerning polypolyhedra has been published
since Lang’s, namely [4]. That paper enumerated symmetric colourings of polypolyhedra,
which is not the purpose of the present paper.

The present paper enumerates the polypolyhedra by symmetry without resorting to
a computer search. We frame the problem in more mathematical terms rather than with
reference to origami, but we inherit Lang’s division of the problem into steps, and confirm
his results. We derive a new, algebraic method of enumerating the polypolyhedra based
on symmetry, which extends to higher dimensional analogues of polypolyhedra.

Although our enumeration produces the same results as Lang’s, we find that Lang’s
method is based on an assumption which is not true, but which happened to lead him to
the correct answer in the 3-dimensional case. We explain his algorithm and its mistake
in Section 4.

The present section lays out the mathematical background for our main result; Section
2 develops the tools needed for our main result; Section 3 states our main result and the
data produced therein. Our conclusions form Section 5.
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1.1 Key Concepts

Lang’s definition of polypolyhedra is stated somewhat informally. We give an equivalent
definition of what we call strict polypolyhedra, stated without reference to origami. We
define a general polypolyhedron as a set of straight line segments which we call struts,
which connect a pair of points called endpoints, satisfying the following two properties.

1. There is a finite group of rotations about the origin which is transitive on the set of
struts.

2. Each endpoint must be incident to at least two struts.

The following additional properties define a strict polypolyhedron.

3. Each strut has precisely two points of intersection with other struts. These points
of intersection are called endpoints.

4. The struts are not all connected by a sequence of endpoints.

5. The curves defined by the union of the struts are topologically linked.

1.2 Overview of the Enumeration Strategy

Property 1 gives polypolyhedra a very simple algebraic structure, allowing us to capture all
of the important information about a polypolyhedron in few variables. The enumeration
of polypolyhedra follows by reducing polypolyhedra to a classification based on Property
1 and enumeration of each classification. Property 2 is merely a restriction by which we
filter out some possible polypolyhedra.

Enumeration depends on drawing distinction between objects. Determining whether
two polypolyhedra are distinct requires an equivalence relation, which is defined in terms
of orbits under a group action.

A group action G ýX is a representation of a group G as permutations on a set X,
or in our case transformations of a vector space. The origin-preserving isometries of a
vector space are an example of a group action.

The choice of group is the most fundamental property of a polypolyhedron. Previous
origami-based analysis only used the finite rotation groups of R3, whereas our main result
is more abstract and can be applied with any finite isometry group.

Since the group must be transitive on the set of struts, we need only specify the location
of one seed strut, with the remaining struts being generated by taking the images of the
seed strut under each action of the group. This bijection between a polypolyhedron and
its seed strut means that two seed struts are equivalent (in the same orbit) precisely when
the polypolyhedra they generate are equivalent. Therefore, our first task is to calculate
the number of orbits of (seed) struts.

A seed strut can be categorised (though not specified) by the orbits of its endpoints
under the group action, a pair which we call the orbit-type. Our main result, Theorem 3.1,
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computes the number of distinct polypolyhedra of a given orbit-type and group action as
the number of orbits of possible seed struts under the group.

The main new result is the calculation of Xw, the number of struts fixed by each
group element w. Below we list the steps needed to calculate the formula for the number
of general polypolyhedra of a given orbit-type,

1. Compute the sizes of certain conjugacy classes of the symmetry groups of the poly-
polyhedron W , WI , and WJ .

2. For each conjugacy class choose a representative, w P W .

3. Compute the number of possible endpoints of each orbit CI and CJ respectively
fixed by w using Theorem 2.7.

4. Compute the number of possible pCI , CJq struts fixed by w.

5. Compute the number of distinct struts using Burnside’s lemma.

6. Subtract the number of univalent struts.

This allows us to calculate the number of general polypolyhedra. Algebraic methods
may be inadequate for the enumeration of strict polypolyhedra, which we discuss in the
conclsuion.

1.3 Definitions and Notation

The central object of the present paper is a group action. A group action, W ýX, is the
data of a group W , a set X, and a pairing W ˆ X Ñ X, denoted pw, xq ÞÑ wpxq, which
satisfies:

(Identity) for all x P X epxq “ x;

(Compatibility) for all x P X and u, v P W upvpxqq “ puvqpxq.

Relevant to our purposes, a group of matrices is a group action on a vector space and
the symmetric group Sn is a group action on a set of n elements. The subset of W which
fixes some x P X is a subgroup called the stabiliser of x, or Stabpxq.

A conjugacy action is a group action of a group on itself, W ýW , defined by w : u ÞÑ

wuw´1. Given an element w P W , the centraliser Cpwq is the set tu P W | wu “ uwu,
which is the same as Stabpwq where W (as a group) acts on W (merely as a set). A
conjugacy class of w, ConjpW ;wq, is the set of images of w under the conjugacy action.
To know the size of a conjugacy class is to know the size of its centraliser, by the following
well-known lemma [3].

Lemma 1.1
|W | “ |ConjpW ;wq| |CpW ;wq|

Table 1 lists notation used in this paper. For the purpose of this table, I, J Ă S,
H ă W , w P W , and x P X.
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W ýX The symmetry group of the polypolyhedron, acting on the set X
W ýW The conjugacy action w : u ÞÑ wuw´1

S The simple reflections generating W , ts1, s2, ..., snu

n The rank (number of simple reflections) of W , |S|

W ˚ The set of rotations in W
ConjpH;wq The conjugacy class of w in H
CpH;wq The centraliser of w in H, tu P H | wu “ uwu

ZpW q The centre of W , tw P W | @u P W, wu “ uwu

GpW q The Coxeter graph of W
WI For I Ă S, WI is the group generated by I

Stabpxq tw P X | wpxq “ xu

Xw tx P X | wpxq “ xu

X{W The orbits of X under W
W {H The set of cosets of H in W

rW : Hs The index of H in W , |W {H|

fIpwq The size of tu P W {WI | wpuCIq “ uCIu

lpwq The length of w, defined in Section 2.1
P pW, I, Jq The number of distinct general polypolyhedra of a given orbit-type

Table 1: Notation used in the paper.

2 Background

2.1 Coxeter Groups

Our equivalence relation will be based on a group of isometries which preserve the origin.
This group of isometries forms a subgroup of the orthogonal group of order n, Opnq “

tQ P GLpR | QQT “ 1u. Every group we use in this paper is origin-preserving, so for
the sake of brevity we will not state that explicitly from now on. One kind of group
element is a reflection. Such an element is a matrix, R, with one eigenvalue equal to 1
and with multiplicity n ´ 1, and another eigenvalue equal to ´1 with multiplicity 1. The
orthogonal complement of the eigenvector with eigenvalue ´1 is clearly fixed, so it must
be the eigenspace of 1. Therefore the two eigenspaces, E1pRq and E´1pRq, are orthogonal
complements, meaning that R P Opnq.

Coxeter groups correspond to subgroups of Opnq generated by a subset of the reflec-
tions. This is essentially a consequence of the following lemma.

Lemma 2.1 Every M P Opnq can be expressed as a product of at most n reflections.

Proof. Denote by ei the ith standard basis vector for Rn. For each 1 ă k ď n, define
Mk inductively as Mk “ RkRk´1...R1, where Rk is the reflection which sends Mkpekq to
Mpekq. Further, define M0 “ In. We will show that Mn “ M .

Assume Mk´1peiq “ Mpeiq for all i ă k. If Mk´1pekq “ Mpekq then Rk “ In and
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Mkpeiq “ Mpeq for all i ă“ k. If not, then since RkpMk´1pekq “ Mpekq and R2
k “ In,

RkpMk´1pekq ´ Mpekqq “ ´pMk´1pekq ´ Mpekqq ‰ 0. Hence E´1pRkq “ spantMk´1pekq ´

Mk´1pekqu, which is orthogonal to Mk´1peiq for all i ‰ k. Therefore, Mk´1peiq P E1pRkq

for all i ă k. Hence Mkpeiq “ Mpeiq for all i ă“ k.
By induction Mnpeiq “ Mpeiq for all ei, so Mn is a product of reflections equal to

M . As a result, the finite subgroups of Opnq by which we compare polypolyhedra are
generated by finite sets of reflections. l

As stated above, this result provides a simplifying way to view these groups, in the
language of Coxeter theory [7, p. 31], as follows.

Any group defined in terms of a set of generating reflections is called a Coxeter group.
A description of a group in terms of a list of generators and relations between them is
called a presentation. The following is a presentation of a general Coxeter group, with the
list of generators on the left and the relations on the right. The relations are described
by a function mpi, jq, which is the order of the element sisj.

W “ xs1, s2, ..., sn | psisjq
mpi,jq

“ 1y

In this presentation, mpi, jq “ 1 if and only if i “ j, otherwise mpi, jq ě 2. It is trivial to
show that mpi, jq “ mpj, iq. The set S “ ts1, s2, ..., snu should be a minimal set needed
to generate W and is referred to as the set of simple reflections. The number of simple
reflections is denoted n, which is also least rank of a matrix representation of the group,
so we refer to n as the rank.

A Coxeter group W can be represented by a finite graph whose edges are labelled with
integers ě 3 called a Coxeter graph, or GpW q. This graph is constructed by mapping each
simple reflection to a unique node and adding an edge between the nodes corresponding
to si and sj with label mpi, jq if mpi, jq ě 3. Since all edges are labelled and the label 3
is most frequent, the label of 3 may be omitted [5, p. 31].

Example 2.2 Icosahedral symmetry, denoted H3, is the isometry group of a regular
icosahedron. It has the following presentation as a Coxeter group:

H3 “ xs1, s2, s3 | s21 “ s22 “ s23 “ ps1s2q
5

“ ps2s3q
3

“ ps3s1q
2

“ 1y.

It has Coxeter graph 5 . Each pair of reflections produce a distinct rotation of an
icosahedron. s1s2 is a vertex rotation, hence it has order 5; s2s3 is face rotation, hence it
has order 3; and s1s3 is an edge rotation, hence it has order 2.

A Coxeter group W is called irreducible precisely when GpW q is connected [5, p. 30].
The irreducible Coxeter groups have been classified and shown to correspond precisely to
the finite isometry groups which fix the origin in Rn [2]. Although our main result applies
to any group, it requires that one know the size of the centraliser of an arbitrary element.

The present paper only provides a method for finding centralisers for the series of
groups αn, βn, Dihd and H3, which constitute “nearly all”1 irreducible Coxeter groups.

1Similarly to the classification of simple groups, irreducible Coxeter groups come in three series, which
we cover, and a few exceptional groups, of which we only cover H3.
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We define these groups in Table 2 by their Coxeter graph. We have also included an
abstract group to which it is isomorphic, which we will need in Section 2.8.

Symbol Graph Abstract group [7, p. 33]
αn Sn`1, symmetric group

βn
4 S2 ≀ Sn`1, wreath product of symmetric groups

Dihd
d S2 ˙ Cn, semidirect product with cyclic group

H3
5 S2 ˆ A5, direct product with alternating group

Table 2: Description of the Coxeter groups we use in this paper.

2.2 The Length Function

By expressing group elements as products of a fixed set of generators, we get the following
map which will be needed to define the stabilisers of endpoints of polypolyhedra. Let
l : W Ñ Z be the minimum number of simple reflections for which a group element w can
be expressed as a product.

The kernel either of the determinant homomorphism or the homomorphism w ÞÑ

p´1qlpwq both give the index-2 subgroup of W which contains all of the rotations in
W , which we denote W ˚. The subgroup W ˚ is what we will use to “generate” the
polypolyhedra, explained in Subsection 2.4.

The Coxeter group presentation also allows us to express a type of subgroup which
will be useful in classifying the polypolyhedra. A standard parabolic subgroup, WI , is
the group generated by only the reflections of I Ď S. Its conjugates are called parabolic
subgroups. For example, if W “ β4 and I “ ts1, s3, s4u, WI is obtained by removing s2,
like so: 4 . The result is the group 4 , or S2 ˆ Dih4.

2.3 Facets

The orbit of an element of X is the set of its images under W ýX. The group structure
ensures that this is an equivalence relation, which we show in the following lemma.

Lemma 2.3 The relation y „ x defined by y “ wpxq for some w P W is an equivalence
relation on X.

Proof. Let x, y, z P X and u, v P W . If x „ y, y “ wpxq, so x “ w´1pyq. Thus y „ x
and so „ is symmetric. If z „ y, z “ vpyq then z “ vpupxqq “ vupxq, so z „ x, meaning „

is transitive. Since x “ epxq, x „ x, and so „ is reflexive. Therefore „ is an equivalence
relation. l

Thus we refer to the orbits as a partition of X.
We now give a useful classification of the points in Rn under the action of W . Let S

be a set of simple reflections and I Ă S. Noting that all reflections s fix a hyperplane
through the origin, let H0

i “ Hi be the hyperplane corresponding to si. The reflection si
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maps the negative half space H´
i to the positive half-space H`

i and vice versa. This gives
us the following characterisation [5]:

CI “
č

i

Hϵi
i , where ϵi “ 0 if si P I and ` if si R I

Because W is generated by S and this characterisation describes the action of S on CI ,
the action of W on CI is fully determined. As we shall see, the stabiliser of CI is WI .
Therefore the orbit of CI is composed of each wCI , which are called the facets of type I.
Since wCI “ CI ùñ w P StabpCIq “ WI , the orbit corresponds to the cosets W {WI ,
which is the orbit of the facet. Every point lies in the orbit of some CI , so we have an
abstract interpretation of CI .

The intersection of k linearly independent hyperplanes Hi through the origin is a
subspace of dimension n ´ k. Since our set of hyperplanes come from I Ď S, and S
corresponds to a linearly independent set of hyperplanes dimCI “ n ´ |I|.

If |I| “ n then CI is just the origin, so to specify a non-trivial single point, we need
to take |I| “ n ´ 1, which gives us an axis. All points on an axis are identical in terms of
how they are acted upon by the group. Therefore, we can view the axis as a positive and
negative pair of a pre-determined radius.

The facets can also be named according to the corresponding facets of polyhedra under
polyhedral symmetry, though these names are comparatively less useful. As polyhedral
groups have three generating reflections, there are three subsets I Ă S with |I| “ 2. These
happen to be the vertices (V), the edges (E), and the faces (F). The empty subset are
called C points by Lang.

The group by which we compare struts for equivalence is not exactly the same as
that by which we generate the polypolyhedron from the seed strut. This is because
including the reflections of W in the generation of a polypolyhedron would create an
extra intersection for any reflection plane passing through and not containing the seed
strut. On the other hand, we would not like polypolyhedra which are simply reflections
of each other to be considered distinct.

2.4 Orbit-Type and Generation of Polypolyhedra

The seed strut is defined by an unordered pair of endpoints, which we shall classify by
the facet types CI and CJ of the endpoints. This is called the orbit-type, which we shall
write as pW, I, Jq. If I “ J the type is called “homoorbital” while if I ‰ J then the type
is called “heterorbital”.

A polypolyhedron is generated from its seed strut, ta, bu as the set, ttrpaq, rpbqu | r P

W ˚u. In English, a polypolyhedron is the set of images of the seed strut under W ˚.

2.5 The Conjugacy Action

The following theorem gives a correspondence between the orbits of W ýX and the
conjugacy action W ýW [7].
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Lemma 2.4 (Group action correspondence) The action of the group on a point x
corresponds to the conjugacy action on Stabpxq. If H ă W and u P W , XuHu´1

“ upXHq

and StabpupXqq “ u StabpXqu´1.

Proof. Let a, b P X, b “ u´1paq. For any τ P W , let w “ uτu´1. Then wpaq “ uτpbq,
so wpaq “ a, a P Xw if and only if τpbq “ b, b P Xτ . Therefore a P XuHu´1

if and only if
b P XH , i.e. a P upXHq, so XuHu´1

“ upXHq. Similarly, a P Xτ ùñ τ P StabpupXqq and
b P Xw ùñ τ P u StabpXqu´1, so StabpupXqq “ u StabpXqu´1. l

Theorem 2.5 If |I| “ n ´ 1 then StabpCIq “ xIy.

Proof.
Because for each s P I, spCIq “ CI , it is clear that xIy ď StabpCIq. We will need the

fact that S “ I Y ttu.
We define lT pwq : W ÞÑ Z as the minimum number of elements in the set T . The

automorphism u ÞÑ wuw´1 maps the generating set S to wSw´1 and therefore lSpuq “

lwSw´1pwuw´1q. To show that for all w P StabphCIq, w P xhIh´1y, we use induction on
lhSh´1pwq.

The base case is lSpwq “ 1 ùñ w P S. By definition, the only simple reflections
which fix CI are those in I.

If for any s P I, lSpwsq ă lSpwq then by the Exchange Condition [5], w can be written
as a product us for some u P W . Therefore, since s P StabpCIq, u P StabpCIq. Further,
lSpuq ă lSpwq, so by the induction hypothesis, u, s P xIy. Hence us P xIy. The same
argument follows for lpswq ă lpwq.

If we assume lpwsq “ lpswq ą lpwq, then w can only be written in a reduced expression
as w “ tut. Therefore wpCIq “ tutpCIq and so uptCIq “ tpwpCIqq ùñ uptCIq “ tCI ,
i.e. u P StabptCIq. Because ltStpwq “ lpuq ă lpwq, we know that w P xtIty. Therefore
u P StabpCIq, and so w R StabpCIq. l

2.6 Fixed Points of w

This section will explain our formula for calculating the size of the fixed set of group
action w P W ýX where X is restricted to a single orbit. In other words, we calculate
Xw for a transitive group action.

Lemma 2.6 Conjugation preserves the number of fixed elements.

• Conjugate elements fix the same number of elements of an orbit. That is, for all
v P ConjpW ;uq, we have that |Xu| “ |Xv|.

• Any two points in the same orbit are fixed by the same number of elements of each
conjugacy class. That is, for all v P W , we have:

|ConjpStabpxq;uq| “ |ConjpStabpvpxqq;uq|
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Proof. Let u, v, w P W such that wu “ vw, and suppose W ýX is transitive.

x P Xu
ùñ wupxq “ wpxq ùñ vwpxq “ wpxq

ùñ wpxq P Xv
ùñ |Xv

| ě |Xu
| .

Conversely,

x P Xv
ùñ w´1vpxq “ w´1

pxq ùñ uw´1
pxq “ w´1

pxq

ùñ w´1
pxq P Xu

ùñ |Xu
| ě |Xv

| .

Therefore, |Xu| “ |Xv|.
By Lemma 2.4,

u P |ConjpStabpxq;uq| ðñ v P
ˇ

ˇConjpw Stabpxqw´1;uq
ˇ

ˇ

Therefore, |ConjpStabpxq;uq| “ |ConjpStabpvpxqq;uq|. l

Lemma 2.6 allows us to prove the following theorem for the calculation of the fixed
sets of group actions.

Theorem 2.7 (Size of Fixed Set Formula) If |CpStabpxq;wq| “ 0 then |Xw| “ 0.
Otherwise,

|Xw
| “

|CpW ;wq|

|CpStabpxq;wq|

Proof. By counting the number of pairs px, uq where x P X and u P Conjpwq such that
upxq “ x in two different ways, we get the following equality:

ÿ

uPConjpwq

|Xw
| “

ÿ

x1PX

|ConjpStabpx1
q;wq| .

We apply Lemma 2.6 on the left and right to obtain,

|ConjpW ;wq| |Xw
| “ rW : Stabpxqs |ConjpStabpxq;wq|

If |CpStabpxq;wq| “ 0 then |Xw| “ 0 since |CpW ;wq| ‰ 0. Otherwise,

|W |

|CpW ;wq|
|Xw

| “
|W |

|Stabpxq|
|ConjpStabpxq;wq|

ùñ |Xw
| “

|CpW ;wq|

|Stabpxq|

|Stabpxq|

|CpStabpxq;wq|

ùñ |Xw
| “

|CpW ;wq|

|CpStabpxq;wq|

l

As an immediate consequence of this theorem, we have:

fIpwq “
|CpW ;wq|

|CpWI ;wq|
.

This allows us to calculate the number of polypolyhedral endpoints fixed by each group
element.
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2.7 The Fixed Set of Struts

With Theorem 2.7 we can compute fIpuq, which will allow us to calculate |Xu|, the number
of pW, I, Jq struts fixed by u. One may wonder why we do not apply Theorem 2.7 to the
strut directly. The reason is that the struts do not necessarily form a single orbit, so
their stabilisers might not form a single conjugacy class; in fact, if they did form a single
conjugacy class then there could only ever be one distinct polypolyhedron per orbit-type,
which would make this paper rather brief. A strut is fixed by an action u either if both
its endpoints are fixed or if the endpoints are swapped, or flipped.

In the heteroorbital case, the endpoints may not be swapped by u, since they are not
in the same orbit. So, we simply take all the possible ways of connecting a strut from the
set of fixed CI points to the set of fixed CJ points, the product fIpIq ¨ fJpuq.

In the homoorbital case, the number of ways to form a strut between fixed endpoints
is

`

fIpuq

2

˘

. We then take the number of points which are swapped and divide by two to
get the number of flipped struts, 1

2
pfIpu2q ´ fIpuqq. Therefore, the total number of fixed

struts is given by:

|Xu
| “

ˆ

fIpuq

2

˙

`
fIpu2q ´ fIpuq

2
“

fIpuq
`

fIpuq ´ 2
˘

` fIpu2q

2
(1)

Combining these results with Theorem 2.7, we have the following equations for |Xu|

when |CpWI ;uq| ‰ 0.

Theorem 2.8 For heterorbital types,

|Xu
| “

|CpW ;uq|
2

|CpWI ;uq| |CpWJ ;uq|
.

For homoorbital types, we have

|Xu
| “

|CpW ;uq|

2 |CpWI ;uq|

ˆ

|CpW ;uq|

|CpWI ;uq|
´ 2

˙

`
|CpW ;u2q|

2 |CpWI ;u2q|
.

When |CpWI ;uq| “ 0 and |CpWI ;u
2q| ‰ 0, fIpuq “ 0, so

|Xu
| “

|CpW ;u2q|

2 |CpWI ;u2q|
.

The following lemma allows us to determine precisely which orbit-types fix no struts
at all, and can therefore be ignored to simplify calculations.

Lemma 2.9 (Filtering of Conjugacy Classes) For heteroorbital types,

ConjpWI X WJ ;uq ‰ H ðñ Xu
‰ H.

For homoorbital types,

Conjp
a

WI ;uq ‰ H ðñ Xu
‰ H, where

a

WI “ tu P W | u2
P WIu.
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Proof.
For the heterorbital case, first note that Xu ‰ H ðñ fIpuq ą 0 and fJpuq ą 0.

ConjpWI XWJ ;uq “ H ùñ ConjpWI ;uq “ H without loss of generality. WI “ StabpCIq,
so by Theorem 2.4, ConjpStabpvCIq;uq “ ConjpStabpCIq;uq ‰ H for all v P W . This is
equivalent to the statement fIpuq “ 0.

For the homoorbital case,

Conjp
a

StabpCIq;uq “ H ðñ Conjp
a

StabpvCIq;uq “ H for all v P W,

again by Theorem 2.4. Therefore u2 R StabpvCIq “ vWIv
´1 and consequently u R vWIv

´1

as well. Equivalently, fIpuq “ fIpu2q “ 0. This is equivalent to the statement Xu “ H

by equation 1. l

2.8 Conjugacy Class

In Section 2.7, we used Theorem 2.7, which requires us to determine |CpW ;wq| and
|CpWI ;wq|. This means we need to know the sizes of the centralisers of conjugacy classes
in W and WI . By Lemma 1.1, this is equivalent to knowing the size of the conjugacy
classes, so we give both here.

A parabolic subgroup of W will always be a direct product of Coxeter groups [5], and
in particular a parabolic subgroup of any of the α, β, or H series will be a direct product
of groups in these series. Therefore, we need only determine the conjugacy classes for the
α, β, or H series.

2.8.1 Conjugacy Classes of αn

It has been shown that αn – Sn`1, the symmetric group on n ` 1 objects [7, p. 33]. It is
also well known that the conjugacy classes of Sn`1 correspond to cycle-types, where the
cycle-type of an element of Sn is the number of cycles of each length in that permutation.
Letting aj be the number of cycles of length j in a permutation u, we have the following
equations [7]:

|ConjpSn;uq| “
n!

śn
j“1 j

ajaj!
, (2)

|CpSn;uq| “

n
ź

j“1

jajaj! (3)

2.8.2 Conjugacy Classes of βn

It has been shown that βn – S2 ≀ Sn, where ≀ is a wreath product [7, p. 15]. A wreath
product is special kind of semi-direct product, in this case the product Sn

2 ˙ Sn, with
multiplication defined as follows:

βn – pSn
2 , Snq

ppbiq
n
i“1, vqppaiq

n
i“1, uq “ ppaibupiqq

n
i“1, vuq
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We define the flip parity2, f : βn Ñ S2. If x “ ppai, anq, uq where u is a cycle on the set
K, let fpxq “

ś

kPK ak.

Theorem 2.10 (Conjugacy of Equal Flip Parity Cycles) Let x “ ppaiq, uq and z “

ppbiq, vq where u and v are cycles. x „ z if and only if v „ u and fpzq “ fpxq.

Proof. To show that v „ u and fpzq “ fpxq implies x „ z, we construct an element
which maps x to z under conjugation. Let y “ ppsiq

n
i“1, eq where

si “

i´1
ź

j“1

aj.

Note that y´1 “ y. We now conjugate x by y:

yxy´1
“ yxy “ y

`

psiaiq
n
i“1, u

˘

“
`

psiaisupiqq
n
i“1, u

˘

.

We must consider the following cases.
Case 1: i R K. Here,

siaisupiq “ siaisi “ ai “ 1.

Case 2: i P K and i ă N . In this case,

siaisupiq “ siaisi`1 “

˜

i´1
ź

j“1

aj

¸

ai

˜

i
ź

j“1

aj

¸

“ aiai “ 1.

Case 3: i P K and i “ N . Finally, in this case

siaisupiq “ sNais1 “

˜

N´1
ź

j“1

aj

¸

aN1 “

N
ź

j“1

aj “ fpxq.

Therefore, if fpxq “ 1 then x „ pp1qni“1, uq, and if fpxq “ ´1 then

x „ pp´1 if i “ N, 1 if i ‰ Nq
n
i“1, uq.

Therefore if v „ u and fpxq “ fpyq then x „ z.
To the converse, it follows immediately from x „ z that that v „ u. Moreover, if y is

the element such that yxy´1 “ z, then since f is a homomorphism, we have that

fpzq “ fpy´1
q ¨ fpxq ¨ fpyq “ fpy´1

¨ yq ¨ fpxq “ fpxq ùñ fpzq “ fpxq.

l

We can decompose the Sn component of each element into a product of disjoint cycles
u P Sn [7]. Therefore, elements of βn can be decomposed into disjoint cycles (including
1-cycles) of Sn, each with an associated flip parity. By Theorem 2.10, two elements of

2The word flip is used because we want to distinguish this from reflections in general.
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βn are conjugate if and only if their decomposition contains the same number of each
cycle-type and flip parity combination.

We now calculate the size of the conjugacy class and centraliser of an arbitrary element,
which we denote w “ ppaiq

n
i“1, uq. We already have a formula for |ConjpSn;uq|, which we

multiply by the possible combinations of flip parities. Let the total number of cycles of
length j in w be Aj and the total number of positive flip parity cycles of length j be Bj.
Hence there are

`

Aj

Bj

˘

choices of flip parities.

Each element i in a cycle corresponds to an ai P S2. Therefore there are 2
j choices for

a cycle on any choice of j elements. Half of the choices are positive flip parity and half
are negative, so there are 2j´1 choices given a flip parity.

Therefore, the following expression is the number of distinct elements with a given
cycle type:

n
ź

j“1

ˆ

Aj

Bj

˙

p2j´1
q
Aj .

Hence we have the following derivation for |Conjpβn;wq|.

|ConjpSn;uq|

n
ź

j“1

ˆ

Aj

Bj

˙

p2j´1
q
Aj “ n!

˜

n
ź

j“1

1

jAjAj!

¸ ˜

n
ź

j“1

Aj!

Bj!pAj ´ Bjq!
p2j´1

q
Aj

¸

“ n!
n

ź

j“1

1

Bj!pAj ´ Bjq!

ˆ

2j´1

j

˙Aj

.

By Lemma 1.1, we have the following expression for |Cpβn;wq|:

|Cpβn;wq| “ 2n
n

ź

j“1

Bj!pAj ´ Bjq!

ˆ

j

2j´1

˙Aj

. (4)

2.8.3 Conjugacy Classes of H3

According to Wilson [7, p .33] H3 – A5 ˆ S2, where A5 is the alternating group on five
letters. The conjugacy classes of A5 are the subset of S5 consisting of the even cycle types
[3]. We can find the size of the conjugacy classes of A5 simply using the formula for those
of S5. To obtain the conjugacy classes of H3, we just create two copies for each class of
A5, corresponding to the two choices of the S2 factor.

2.8.4 Conjugacy Classes of a Direct Product of Groups

A direct product can contain any combination of conjugacy classes of the constituent
groups. We simply add the frequency of each conjugacy class together, and count any
new conjugacy classes formed by combining conjugacy classes of each group together.

Now that we know the size of the conjugacy classes, we can calculate the number of
points fixed by each group element.
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2.9 Orbit Counting Theorem

We now use Burnside’s lemma calculate the number of orbits of the struts from the number
of struts fixed by each u P W .

Lemma 2.11 (Burnside’s Lemma) The following equation can be used to compute the
number of orbits of a group action on a set [3]:

|X{G| “
1

|G|

ÿ

gPG

|Xg
| .

Applying Lemma 2.6, we can split the sum up by conjugacy class. Let ui be a represen-
tative of the ith conjugacy class of W .

Lemma 2.12 (Orbit Counting by Conjugacy) Since struts are considered distinct
precisely when they are not equivalent under W , we can calculate the number of distinct
seed struts as

|X{W | “
1

|W |

ÿ

i

|Xui | |CpW ;uiq| “
ÿ

i

|Xui |

|CpW ;uiq|
.

We can substitute in our equations for |Xui | from Theorem 2.8.

Theorem 2.13 Now let ui be a representative of the ith conjugacy class of WI XWJ . In
the heteroorbital case, we obtain the following sum by substituting for Xui using Theorem
2.8:

|X{W | “
ÿ

i

|CpW ;uiq|

|CpWI ;uiq| |CpWJ ;uiq|
.

For homoorbital types we have two sums: one for conjugacy classes which intersect
WI and the other for all those which intersect

?
WI . Let ui be a representative of the ith

conjugacy class of WI and let wj be a representative of the jth conjugacy class of
?
WI .

We have

|X{W | “
ÿ

i

„

|CpW ;uiq|

2 |CpWI ;uiq| |CpWI ;uiq|
´

1

|CpWI ;uiq|

ȷ

`
ÿ

j

ˇ

ˇCpW ;w2
j q

ˇ

ˇ

2
ˇ

ˇCpWI ;w2
j q

ˇ

ˇ |CpW ;wjq|
.

We can simplify the second term because

|X{W | “
ÿ

i

|WI |

|CpWI ;uiq|
“

ÿ

i

|ConjpWI ;uiq| “ |WI | ùñ
ÿ

i

1

|CpWI ;ujq|
“ 1.

Hence, we can rewrite the expression for the number of distinct struts as

|X{W | “
1

2

«

ÿ

i

|CpW ;uiq|

|CpWI ;uiq|
2 `

ÿ

j

ˇ

ˇCpW ;w2
j q

ˇ

ˇ

ˇ

ˇCpWI ;w2
j q

ˇ

ˇ |CpW ;wiq|

ff

´ 1.
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2.10 Univalent Polypolyhedra

In this section we will eliminate the number of polypolyhedra which do not satisfy property
2 of the definition of polypolyhedra in Section 1.1 by checking the valency, d, of the two
endpoints, CI and CJ . If either endpoint has valency less than 2, then it is not an
intersection point, and so we eliminate that seed strut. We shall refer to the seed strut
as x and the set of all struts as X. We will use the following two consequences of having
a univalent endpoint, which without loss of generality we let be CI , to deduce when this
can occur.

Lemma 2.14 If dpCIq “ 1 and I “ J , then 2 |X| “ rW : WIs. But if dpCIq “ 1 and
I ‰ J , then |X| “ rW : WIs.

Proof. The second condition follows from the handshaking lemma, 2 |E| “
ř

vPV dpvq.
Letting the struts, X, play the part of edges and endpoints that of vertices, we have that
if I “ J then 2 |X| “ rW : WIsdpCIq. But if I ‰ J then |X| “ rW : WIsdpCIq. The
lemma follows by substituting 1 for dpCIq. l

We will now apply these lemmas to determine how many distinct polypolyhedra have
univalent seed struts there are of each orbit-type . We shall assume that I ‰ H and
J ‰ H. The case where I “ H is dealt with in Lemma 2.18.

Lemma 2.15 A seed strut has univalent endpoints precisely when there exists some w P

W zWI such that wIw´1 Ă S.

Proof. Suppose CI is a univalent endpoint. We have

rW : Stabpxqs “ rW ˚ : Stabpxq
˚
s “ |X| .

Then, by Lemma 2.14, in the homoorbital case we have,

2rW : Stabpxqs “ rW : WIs ùñ rWI : Stabpxqs “ 2

And in the heteroorbital case we have,

rW : Stabpxqs “ rW : WIs ùñ WI “ Stabpxq

Because WI ď Stabpxq we have that x, along with both of its endpoints, is contained in
the axis

Ş

iPI Hi. Therefore wIw´1 “ J Ă S for some w P W . Moreover, if I “ J , since
2rW : Stabpxqs “ rW : WIs and WI ă Stabpxq, we have Stabpxq – S2 ˆ WI . The S2

component corresponds to a flip of the axis, which is a non-trivial element of W zWI . l

Definition 2.16 (Dual Coxeter Group) Define the dual of a Coxeter group W to be
the the image of the map si ÞÑ sn´i`1. We denote the dual of a subgroup H by H.

The dual map is an isomorphism of graphs from GpW q to its mirror image. Clearly,
the dual map is a bijection, but it is only a homomorphism—hence automorphism—if
mpi, jq “ mpn´ i`1, n´ j `1q. Equivalently, the dual map is an autormphism of GpW q.
Precisely when the dual map is an automorphism we shall say that G is self-dual. For
example, is self-dual while 4 is not.
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Theorem 2.17 There is exactly one seed strut with a univalent endpoint precisely when
ZpW q is non-trivial and I “ J , or ZpW q is trivial and I “ J .

Proof. Suppose a pW, I, Jq seed strut has univalent endpoints. By Lemma 2.15, there
is some w P W zWI such that wIw´1 Ă S. Let us denote the automorphism u ÞÑ wuw´1

by ϕ.
We first prove that ϕpSq “ S. Since |I| “ n ´ 1, let sk denote the single element of

SzI and sl denote the single element of SzϕpIq. Since

pϕpskqϕpsiqq
mpk,iq

“ pϕpslqϕpsiqq
mpk,iq

“ 1 for each 1 ď i ď n,

we have ϕpskqsl “ ϕpskqϕpskq “ 1, and hence ϕpskq “ sl P S and ϕpSq “ S. Hence ϕ is a
graph automorphism of GpW q, meaning ϕ either fixes S pointwise or maps S to S.
Case 1: ZpW q is non-trivial. Therefore ϕ fixes S pointwise, so I “ J (homoorbital). We
have wsw´1 “ s for all s P S, so w P ZpW q. Since e P WI , ZpW q must be non-trivial.

Conversely, if w P ZpW qzteu then w P Stabpxq and if I “ J then WI ă Stabpxq, so
w P StabpxqzWI . Hence in this case a seed strut has univalent endpoints precisely when
I “ J .
Case 2: ZpW q is trivial. Of the groups in Table 2 with trivial centre, all are self-dual, so
we shall assume that W is self-dual. Therefore ϕ maps S to its dual, and by extension
I “ ϕpJq “ J .

Conversely, if I “ J and GpW q is self-dual, then we can construct w in the following
way. The self-dual groups fall into two classes, Dihd and αn; we shall construct w explicitly
in both cases. If W “ Dihd, d odd, then let w “ ps1s2q

d´1
2 . We can then confirm that w

is dual map,

ws1w
´1

“ ps1s2q
d´1
2 s1ps2s1q

d´1
2 “ ps1s2q

d´1s1 “ ps1s2q
ds2 “ s2

.
Since W “ αn – Sn`1, we can represent si P S as the transposition pi, i` 1q. Then we

let w “
ś

1ďiďn
2
pi, n ´ i ` 1q. Since w is a product of disjoint transpositions, w “ w´1.

We confirm that conjugation by w is equivalent to the dual map by taking an arbitrary
element sk P S.

wskw
´1

“ wskw “
`

ź

1ďiďn
2

pi, n ´ i ` 1q
˘

pk, k ` 1q
`

ź

1ďiďn
2

pi, n ´ i ` 1q
˘

“ pk, n ´ k ` 1qpk ` 1, n ´ kqpk, k ` 1qpk, n ´ k ` 1qpk ` 1, n ´ kq

“ pn ´ k ` 1, n ´ kq “ sk.

Hence in this case a seed strut has univalent endpoints precisely when I “ J . l

The groups with from Table 2 with non-trivial centre are βn, H3, and Dihd where d is
even; the only groups with trivial centre are αn and Dihd where d is odd [1, ch. 12]. We
can use theorem 2.17 to determine for which orbit-types there is precisely one seed strut
with univalent endpoints and for which there are none.

the pump journal of undergraduate research 7 (2024), 207–230 222



2.10.1 H Orbit-Types

There can be more univalent orbit-types when I “ H. Most notably, any heteroorbital
type.

Lemma 2.18 If I “ H then all seed struts for which I ‰ J have a univalent endpoint
and UpW ˚,H,Hq is equal to the number of order 2 elements of W ˚.

Proof. Case 1: I ‰ J . Then if w P Stabpxq, w cannot transpose the endpoints of x, so w
must fix both of endpoints. One such endpoint is CH, so w “ e. Therefore Stabpxq “ teu.
Hence |X| “ rW ˚ : teus “ |W ˚|. By Lemma 2.14 we have,

|X| “ rW ˚ : WHsdpCHq ùñ dpCHq “
|X|

rW ˚ : WHs
“

|W ˚|

|W ˚|
“ 1.

Hence CH is univalent.
Case 2: I “ J . By Lemma 2.14,

2rW ˚ : Stabpxq
˚
s “ rW ˚ : WHsdpCHq ùñ dpCHq “

2

|Stabpxq˚|
.

Therefore CH is univalent precisely when |Stabpxq˚| “ 2. This is the same as a strut being
flipped, as in Section 2.7. Therefore we know that UpW ˚,H,Hq is equal to the number
of order 2 elements of W ˚. l

3 Results

We now have a pair of formulae for the number of distinct polypolyhedra for a given
orbit-type, pW, I, Jq in terms of the centralisers of elements in W , WI , and WJ . Let
UpW, I, Jq P t0, 1u denote the number of univalent struts, which we determine using
Theorem 2.17. We calculate P pW, I, Jq as |X{W | ´ UpW, I, Jq.

Theorem 3.1 (Main Result) Let ui be a representative of the ith conjugacy class of
WI X WJ . For the heteroorbital case, we have

P pW, I, Jq “
ÿ

i

|CpW ;uiq|

|CpWI ;uiq| |CpWJ ;uiq|
´ UpW, I, Jq.

Let ui be a representative of the ith conjugacy class of WI and let wj be a representative
of the jth conjugacy class of

?
WI . In the homoorbital case, we have

P pW, I, Jq “
1

2

«

ÿ

i

|CpW ;uiq|

|CpWI ;uiq|
2 `

ÿ

j

ˇ

ˇCpW ;w2
j q

ˇ

ˇ

ˇ

ˇCpWI ;w2
j q

ˇ

ˇ |CpW ;wjq|

ff

´ 1 ´ UpW, I, Jq.
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3.1 Examples

We will now show some worked examples of Theorem 3.1 before presenting the number of
polypolyhedra for a selection of rank 3 groups on which Lang performed his enumeration
[6].

Example 3.2 (α4, ts1, s2, s3u, ts1, s2, s4u ) This is a heteroorbital type, with W “ α4

WI “ α3, and WJ “ α2 ˆ S2. GpW q is , GpWIq is , and GpWJq is .
By proposition 2.9 we need only consider the conjugacy classes of α3Xpα2ˆS2q. These

are equivalent to S4 and S3 ˆ S2, so our conjugacy classes are either in S3 or S2 ˆ S2.
In Table 3, we choose representatives of each conjugacy class in α3 X pα2 ˆ S2q and

calculate the size of the centralisers of these representatives using Equation 3.

Class Rep., w e p12q p123q p12qp34q

CpW ;wq 120 12 6 8
Cpα3;wq 24 4 3 8

Cpα2 ˆ α1;wq 12 3 6 4

Table 3: Table of centralisers in α4.

The equation for the number of polypolyhedra of a heteroorbital type is given by

ÿ

i

|CpW ;uiq|

|CpWI ;uiq| |CpWJ ;uiq|
´ UpW, I, Jq.

Since α4 has trivial centre and I ‰ J , by Theorem 2.17 there can be no univalent
endpoints, so UpW, I, Jq “ 0. Evaluating the sum we obtain

P pα4, ts1, s2, s3u, ts1, s2, s4uq “
120

12 ¨ 24
`

12

3 ¨ 4
`

6

6 ¨ 3
`

8

4 ¨ 8
´ 0 “ 2.

Thus there are precisely 2 non-univalent polypolyhedra with orbit-type
pα4, ts1, s2, s3u, ts1, s2, s4uq.

Example 3.3 (H3, ts1, s2u, ts1, s2u) This is a homoorbital type, with W “ H3 and WI “

Dih5. GpW q is 5 and GpWIq is 5 .
By proposition 2.9 we need only consider the conjugacy classes of

?
Dih5. It turns out

that
?
Dih5 “ Dih5. In Table 4, we choose representatives of each conjugacy class and

calculate the size of the centralisers of these representatives using Theorem 2.8.3.
The equation for the number of polypolyhedra is

1

2

«

ÿ

i

|CpW ;uiq|

|CpWI ;uiq|
2 `

ÿ

j

ˇ

ˇCpW ;w2
j q

ˇ

ˇ

ˇ

ˇCpWI ;w2
j q

ˇ

ˇ |CpW ;wjq|

ff

´ 1 ´ UpW, I, Jq.
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Class Rep., w e p12qp23q p12345q p13524q

CpW ;wq 120 8 10 10
CpDih5;wq 10 2 5 5

w2 e e p13524q p12345q

CpW ;w2q 120 120 10 10
CpDih5;w

2q 10 10 5 5

Table 4: Table of centralisers in H3.

Since H3 has non-trivial centre and I “ J , by Theorem 2.17, there is precisely one
possible polypolyhedron with univalent endpoints, so UpW, I, Jq “ 1. Evaluating the
sum we obtain,

P pH3, ts1, s2u, ts1, s2uq

“
1

2

„

120

102
`

8

22
`

10

52
`

10

52
`

120

10 ¨ 120
`

120

10 ¨ 8
`

10

5 ¨ 10
`

10

5 ¨ 10

ȷ

´ 1 ´ 1 “ 1.

Thus there is precisely 1 non-univalent polypolyhedron with orbit-type
pH3, ts1, s2u, ts1, s2uq.

Example 3.4 (β3,H,H) This is a homoorbital type, with W “ β3 and WI “ teu.
By proposition 2.9 we need only consider the conjugacy classes of

a

teu. In Table 5,
we choose representatives of each conjugacy class and calculate the size of the centralisers
of these representatives using Equation 4.

Class Rep., w e p000, p12qq p001, p12qq p001, eq p011, eq p111, eq
CpW ;wq 48 8 8 16 16 48
Cpteu;wq 1 0 0 0 0 0

w2 e e e e e e
CpW ;w2q 48 48 48 8 8 16
Cpteu;wq 1 1 1 1 1 1

Table 5: Table of centralisers in β3.

By Lemma 2.18, Upβ3,H,Hq is equal to sum of the number of elements in each
conjugacy class with order 2. Therefore we have

Upβ3,H,Hq “ |Conjpβ3; p000, p12qqq| ` |Conjpβ3; p001, p12qqq|

` |Conjpβ3; p001, eq| ` |Conjpβ3; p011, eqq| ` |Conjpβ3; p111, eqq|

“ 8 ` 8 ` 3 ` 3 ` 1 “ 23

1

2

«

ÿ

i

|CpW ;uiq|

|CpWI ;uiq|
2 `

ÿ

j

ˇ

ˇCpW ;w2
j q

ˇ

ˇ

ˇ

ˇCpWI ;w2
j q

ˇ

ˇ |CpW ;wjq|

ff

´ 1 ´ UpW, I, Jq.
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Evaluating this sum we obtain,

P pβ3,H,Hq “
1

2

„

48

12
`

48

48
`

48

8
`

48

8
`

48

16
`

48

16
`

48

48

ȷ

´ 1 ´ 23 “ 13.

Thus there are precisely 23 non-univalent polypolyhedra with orbit-type pβ3,H,Hq.

3.2 Number of Polypolyhedra With Groups of Rank 3

Table 7 lists the number of non-univalent polypolyhedra of each orbit-type where W is
one of Dih6, α3, β3, or H3. Tables 6 and 8 list the total number of polypolyhedra and
number of univalent polypolyhedra respectively.

The data in Table 6 corresponds to the values which Lang’s programme computed
to obtain the total number of 188 distinct possible polypolyhedra across these groups [6,
p. 8]. These are calculated using Theorem 2.8. In order for our table to comparable with
Lang’s work, we had to account for the fact that his H orbits are computed using only
W ˚, which means that they have half as many elements 3.

We also had to add rows for what Lang refers to as quasi-homoorbital types, which
describe struts whose endpoints have the same stabiliser, but due to being at different
radial distances from the origin, are not in the same orbit. Quasi-homoorbital types have
been omitted from the present paper because they have the same algebraic properties as
homorbital types. Consider the map which scales each endpoint to have radial distance
1. The result is a either a homoorbital polypolyhedron or, when the struts were originally
between paired endpoints, no polypolyhedron at all. This map is clearly a bijection to the
set of homoorbital polypolyhedra together with the degenerate “non-polypolyhedron”.
Hence the number of quasihomoorbital pW, I, Iq polypolyhedra is always precisely one
more than the number of homoorbital pW, I, Iq polypolyhedra. Thus it is unneccessary
to calculate the number of quasihomoorbital polypolyhedra separately.

Table 8 is calculated using Theorem 2.17 for types without CH endpoints and Lemma
2.18 for types with CH endpoints. Table 7 is calculated using Theorem 3.1, and this result
gives us a final total of 128 distinct non-univalent polypolyhedra from the four groups we
considered.

4 Lang’s Algorithm

To verify our main result we compare it with Lang’s main result, which is based on the
implicit assumption that two struts of the same orbit-type are equivalent if they have the
same length. Our analysis in this section shows that this assumption is not in general
true, but as we show, it is by serendipity true for all groups of rank 3 (although this would
likely not have been known to Lang).

Here we explain the main step of Lang’s algorithm in order to point out where the
implicit assumption is. If our orbit type is pW, I, Jq, we first choose any point p P R3 of

3If I ‰ H, rWI : W˚
I s “ rW : W˚s “ 2, so W˚{W˚

I “ W {WI . In contrast, rH : H˚s “ 1, so
2 |W˚{WH| “ |W {WH|.
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Dih6 α3 β3 H3

ts1, s2u, ts1, s2u 3 1 2 3
(Quasi-homoorbital) 4 2 3 4

ts1, s2u, ts1, s3u 3 2 3 5
ts1, s2u, ts2, s3u 1 2 2 4
ts1, s3u, ts1, s3u 3 2 4 8

(Quasi-homoorbital) 4 3 5 9
ts1, s3u, ts2, s3u 1 2 3 7
ts2, s3u, ts2, s3u 1 1 3 5

(Quasi-homoorbital) 2 2 4 6
H,H 9 7 16 37
Total 31 24 45 88

Table 6: Number of univalent and non-univalent polypolyhedra for Coxeter groups of
rank 3.

Dih6 α3 β3 H3

ts1, s2u, ts1, s2u 1 0 1 1
ts1, s2u, ts1, s3u 0 0 0 0
ts1, s2u, ts2, s3u 0 1 0 0
ts1, s3u, ts1, s3u 1 1 1 1
ts1, s3u, ts2, s3u 0 0 0 0
ts2, s3u, ts2, s3u 1 0 1 1

H,H 1 9 23 31
Total 4 11 26 34

Table 7: Number of univalent polypolyhedra for Coxter groups of rank 3.

type I, which without loss of generality we may take to be CI . Let Q denote the set of
points of type J , twCJ | w P W u. Let pp,Qq “ tpp, qq | q P Qu, which represents the set
of all possible struts incident to p. Given any strut pp1, qq where p1 is a CI point and q is
a CJ point, there must be a w P W such that wpp1q “ p. Since wpqq P Q, it must be the
case that pwpp1q, wpqqq P pp,Qq. Hence, pp,Qq contains a representative of every orbit of
the struts.

Recall from Section 2.1 that Coxeter groups of rank n have a representation as sub-
groups of Opnq, which preserve Euclidean distance. Therefore, if two struts are in the
same orbit then their lengths are equal. Lang’s algorithm computes the list of the lengths
of each potential seed strut in pp,Qq and considers two struts to be equivalent precisely
when they have the same length. Since each orbit of struts has a representative in pp,Qq,
each possible length of strut is represented.

However, in order for distinct struts not to be considered equivalent, this approach
relies on the implicit assumption that struts of equal length are always in the same orbit.
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Dih6 α3 β3 H3

ts1, s2u, ts1, s2u 2 1 1 2
ts1, s2u, ts1, s3u 3 2 3 5
ts1, s2u, ts2, s3u 1 1 2 4
ts1, s3u, ts1, s3u 2 1 3 7
ts1, s3u, ts2, s3u 1 2 3 7
ts2, s3u, ts2, s3u 0 1 2 4

H,H 5 7 12 44
Total 14 15 26 73

Table 8: Number of non-univalent polypolyhedra for Coxter groups of rank 3.

The following counter-example demonstrates that this is not necessarily so.
Let W “ β4 ( 4 ) and I “ J “ ts1, s3, s4u ( 4 ). Since β4 – S2 ≀ S4, we can

represent β4 as a matrix group in two steps. First, we take a permutation of the four
standard basis vectors teiu

4
i“1, namely p1, 0, 0, 0q, p0, 1, 0, 0q, p0, 0, 1, 0q, and p0, 0, 0, 1q,

encoding the information from S4. Then we multiply this by a diagonal matrix with
entries ´1 or 1, which gives us a wreath product with S2. One choice of generating
reflections is

s1 “

»

—

—

–

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

fi

ffi

ffi

fl

, s2 “

»

—

—

–

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

fi

ffi

ffi

fl

,

s3 “

»

—

—

–

0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

fi

ffi

ffi

fl

, s4 “

»

—

—

–

´1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

fi

ffi

ffi

fl

The point CI should be fixed by s1, s3, and s4 and not by s2. We shall represent
CI by a “ p0, 0, 1, 1q. It is easy to see that the orbit of CI is precisely the set of vectors
t˘ei˘ej | i ‰ ju. Moreover, a straight-forward check shows that the vectors b “ p1, 1, 0, 0q

and c “ p0, 0, 1,´1q are equal distance from a, and yet the pair ta, bu is not in the same
orbit ta, cu under W . Thus we have an example of struts with equal length which are
nonetheless not equivalent. This shows that Lang’s algorithm is not in general valid.

5 Conclusion

We gave a direct enumeration of polypolyhedra, giving a count of 128. In contrast to
the earlier, partially-computational work of Lang, we obtained the number of distinct
polypolyhedra by calculating the number of orbits of possible seed struts under a given
Coxeter group, W , and subtracting the number of univalent polypolyhedra.

The number of orbits was calculated by using a modified version of Burnside’s lemma.
This required us to calculate the number of struts fixed by an element of each conjugacy
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class of W , which in turn required calculating the number of each type of endpoint fixed
by an element of each conjugacy class. The latter calculation was the subject of the main
theorem of our paper, Theorem 2.7. This relied on a calculation of the conjugacy classes
of W and its parabolic subgroups.

Polypolyhedra which do not meet property 3-5 of Section 1.1 are often subjectively
as interesting as those which do. However, these classes of polypolyhedra do not meet
Lang’s original definition of polypolyhedra, so we would at least like to know how many
there are. That we were not able to determine this is probably because the precise number
of intersections is essentially a topological rather than algebraic property, so there might
not be a better approach than Lang’s brute force algorithm to enumerate this class of
polypolyhedra.

For future consideration, we speculate here that insights from the theory of root sys-
tems, which is very well developed, could be applied to polypolyhedra whose symmetry
group is a Weyl group4.

Finally, the algebraic approach employed in the present paper—especially our Theorem
2.7—can be gainfully applied to other geometrical enumeration problems, such as those
arising in applications, for example in chemistry.
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