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Abstract - Around the year 2007, one of the authors, Tsai, accidentally discovered a
property of the number 198 he saw on the license plate of a car. Namely, if we take 198 and
its reversal 891, which have prime factorizations 198 = 2·32 ·11 and 891 = 34 ·11 respectively,
and sum the numbers appearing in each factorization getting 2 + 3 + 2 + 11 = 18 and
3 + 4 + 11 = 18, both sums are 18. Such numbers were later named v-palindromes because
they can be viewed as an analogy to the usual palindromes. In this article, we introduce the
concept of a v-palindrome in base b and prove their existence for infinitely many bases. We
also exhibit infinite families of v-palindromes in bases p + 1 and p2 + 1, for each odd prime
p. Finally, we collect some conjectures and problems involving v-palindromes.
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1 Introduction

If I (D. Tsai) recall correctly, it was in the year 2007 when I was 15 years old. My mother
and younger brother were in a video rental shop near our home in Taipei and my father
and I were waiting outside the shop, standing beside our parked car. I was a bit bored
and glanced at the license plate of our car, which was 0198-QB. For no clear reason, I
took the number 198 and did the following. I factorized 198 = 2 · 32 · 11, reversed the
digits of 198, and factorized 891 = 34 ·11. Then, I summed the numbers appearing in each
factorization: 2 + 3 + 2 + 11 = 18 and 3 + 4 + 11 = 18, respectively. Surprisingly to me,
they are equal! We also illustrate this pictorially in Figure (1). Afterwards I spent some

198 = 2 · 32 · 11 7−−→ 2 + (3 + 2) + 11

↑ ‖
digit reversal 18

↓ ‖
891 = 34 · 11 7−−→ (3 + 4) + 11

Figure 1: 198 is a v-palindrome in base 10
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time trying to prove there are infinitely many such numbers (we define them rigorously
in Subsection 1.1), but could not show it.

In October 2018, I published a one-and-a-half page note [23] in the Sūgaku Seminar
magazine, which is sort of like the American Mathematical Monthly of Japan, defining
v-palindromes and showing their infinitude. However, I recall knowing how to show their
infinitude as early as the summer of 2015.

In March, 2021, I published the paper [24], first calling such numbers v-palindromes.
I proved a general theorem [24, Theorem 1] describing a periodic phenomenon pertaining
to v-palindromes. Then, in August of 2022, I published [20] (formerly [21] on arxiv), in
which more in-depth investigations were done. I also wrote the manuscripts [22, 25, 26]
([26] is a former version of this manuscript) which are, at time of writing, preprints.

In Subsection 1.1 we define v-palindromes in a general base, briefly discuss prime v-
palindromes, and explain why the v-palindromes can be considered an analogue to the
usual palindromes. In Subsection 1.2, we give an outline of the rest of the paper. In
Subsection 1.3, we review other related work.

1.1 v-Palindromes

Recall the base b representation of a natural number where b ≥ 2 is the base. For every
natural number n, there exist unique integers L ≥ 1 and 0 ≤ a0, a1, . . . , aL−1 < b with
aL−1 6= 0 such that

n = a0b
(L−1) + a1b

(L−1)−1 + · · ·+ aL−1. (1)

We also denote this as n = (aL−1, · · · , a1, a0)b. Thus L is the number of base b digits of
n. We define the digit reversal in base b of n to be

rb(n) = aL−1 + aL−2b+ · · ·+ a0b
L−1.

For instance, r10(18) = 81, r10(2) = r10(200) = 2, and r2(2) = r2((1, 0)2) = 1. Next we
define a function v(n) to denote “summing the numbers appearing in the factorization”.

Definition 1.1 Suppose that the prime factorization of the natural number n is

n = pε11 · · · pεss q1 · · · qt, (2)

where s, t ≥ 0 and ε1, . . . , εs ≥ 2 are integers and p1, . . . , ps, q1, . . . , qt are distinct primes.
Then we set

v(n) =
s∑
i=1

(pi + εi) +
t∑

j=1

qj.

Notice that v(n) is an additive function, i.e., v(mn) = v(m) + v(n) whenever m and n
are relatively prime natural numbers. The values of v(n) have been created as sequence
A338038 in the On-Line Encyclopedia of Integer Sequences [13]. We can now make the
following definition.

the pump journal of undergraduate research 7 (2024), 186–206 187



Definition 1.2 (v-palindrome) Let b ≥ 2 be an integer. A natural number n is a v-
palindrome in base b if

(i) b - n,

(ii) n 6= rb(n), and

(iii) v(n) = v(rb(n)).

The set of v-palindromes in base b is denoted by Vb.

Condition (i) is included merely for the aesthetic look of n and rb(n) having the same
number of digits. Condition (ii) is included since if n = rb(n), then condition (iii) holds
trivially, and so nothing is surprising. The sequence of v-palindromes in base ten has been
created as sequence A338039 in [13]. A generalization of Figure (1), with the factorizing
step omitted, would be as follows:

n 7−−→ v(n)

↑ ‖
digit reversal in base b same number

↓ ‖
rb(n) 7−−→ v(rb(n))

Figure 2: v-palindromes in base b

Only base ten is dealt with in [20, 22, 23, 24, 25], but most of the results and proofs
therein generalize straightforwardly to a general base.

It is conjectured in [23, (a)] that there are no prime v-palindromes in base ten. Re-
cently, Boran et al. [2] characterized prime v-palindromes in base ten and showed that
they are precisely the primes of the form 5 · 10m − 1 such that 5 · 10m − 3 is also prime.
Thus, prime v-palindromes in base ten, if any exist, must be twin primes.

When we consider an arbitrary base, however, we have been able to find several prime
v-palindromes. For example, 109 is a prime v-palindrome in base 16. We have that
v(109) = 109 since 109 is prime, and r16(109) = r16((6, 13)16) = (13, 6)16 = 214. Then
v(r16(109)) = v(214) = 107 + 2 = 109, so 109 is a v-palindrome in base 16. Notice that
109 happens to be a twin prime, but we can also find examples of prime v-palindromes
that are not twin primes. For example, 467 is a prime v-palindrome in base 276, yet 467
is not a twin prime. It remains an open problem to classify which bases are similar to
base 10 where any prime v-palindrome must necessarily be a twin prime.

We now explain how v-palindromes can be viewed as an analogy to usual palindromes.
Recall the following definition of the usual palindrome.

Definition 1.3 (palindrome) Let b ≥ 2 be an integer. A natural number n is a palin-
drome in base b if n = rb(n).
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The definition of v-palindromes can be obtained from that of the usual palindromes by
applying v to the equality n = rb(n) and then including the conditions (i) and (ii) for
the reasons explained earlier. The mere application of v to the equality n = rb(n) causes
palindromes and v-palindromes to behave very differently. Although the function v is a
specific as function defined above, there is nothing special about it. It is equally conceiv-
able to use any other function f : N → C instead in condition (iii), calling the defined
kind of numbers f -palindromes.

1.2 Outline and Main Results of This Paper

In Section 2, we recall infinitely many more examples of v-palindromes in base ten from
the previous works [23, 24, 25]. In Section 3, we state analogous results in a general base
b of results in base ten from [20, 24], as well as prove that if there exists a v-palindrome
in a base b, then there exists infinitely many (Theorem 3.7). In Section 4, we exhibit
v-palindromes in bases p + 1 and p2 + 1, for each odd prime p. In Section 5, we prove
that v-palindromes exist in every base b satisfying a certain congruence (Corollary 5.8).
Finally in Section 6, we discuss further problems pertaining to v-palindromes in a general
base.

1.3 Other Related Work

In this section, we give references to other works related to v-palindromes in various
ways. For results on the usual palindromes, we refer the reader to Goins [5], Hernández
Hernández and Luca [8], Pongsriiam [15], Pongsriiam and Subwattanachai [16], and the
references therein, though there is much more literature available on palindromes.

Digit reversal has been studied in the past. In Hardy [7], it is mentioned that 4·2178 =
8712 and 9 · 1089 = 9801. Therefore the numbers 2178 and 1089 have the property that
their digit reversal is a multiple of (at least twice) themselves. Following Sutcliffe [19], in
general we are solving kn = rb(n) for integers k ≥ 2, n ≥ 1, and b ≥ 2. If n has one base
b digit, then n = rb(n) and there is no solution. Hence n has at least two base b digits.
Then by the generalization of [2, Lemma 2.3] to a general base, n2 has more base b digits
than n. Now, as rb(n) has no more base b digits than n, we have that n2 has more base b
digits than rb(n). Consequently, kn = rb(n) implies that kn = rb(n) < n2, and so k < n.
In [19], the case of n having less than four base b digits is addressed completely, whereas
the case of n having four base b digits is partially addressed. Klosinski and Smolarski
[9] also considered this problem, and mentioned that 4 · 219 · · · 978 = 879 · · · 912 for any
number of 9’s in between, generalizing the aforementioned 4 · 2178 = 8712 nicely.

Other functions similar to v(n) have been studied by many authors. Alladi and Erdös
[1] and Lal [10] studied the function

A(n) =
s∑
i=1

piεi +
t∑

j=1

qj,

following the same notation as Equation (2). In [1], analytical and other aspects of
A(n) are studied. In [10], iterates of A(n) are investigated. Mullin [12] and Gordon and
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Robertson [6] studied the function

ψ(n) =
s∏
i=1

piεi ·
t∏

j=1

qj.

In [12], research problems on ψ(n) were posed, and [6] proved two theorems on ψ(n).
Similar equalities to the condition v(n) = v(rb(n)) from the definition of

v-palindromes, with another function in place of v, have been studied by several authors.
Following Spiegelhofer [17], we define Stern’s diatomic sequence s(n) by s(0) = 0, s(1) = 1,
and s(2n) = s(n) and s(2n+1) = s(n)+s(n+1) for all n ≥ 1. In Dijkstra [3], a problem is
given asking to show s(n) = s(r2(n)) for all n ≥ 1. Dijkstra also proved this equality in [4,
pp. 230–232]. Following [17] again, we define the function b(n) introduced by Northshield
as b(0) = 0, b(1) = 1, and

b(3n) = b(n),

b(3n+ 1) =
√

2 · b(n) + b(n+ 1),

b(3n+ 2) = b(n) +
√

2 · b(n+ 1),

for all n ≥ 0. Then it is proved that b(n) = b(r3(n)) for all n ≥ 1 [17, Theorem 1]. [17,
Theorem 2] gives a slightly intricate sufficient condition for a complex-valued function
f(n) and integer b ≥ 2 to satisfy f(n) = f(rb(n)) for all n ≥ 1, to which [17, Theorem
1] is a corollary. Following Spiegelhofer [18], we define an analogue of Stern’s diatomic
sequence, the Stern polynomials sn(x, y), by s1(x, y) = 1 and s2n(x, y) = sn(x, y) and
s2n+1(x, y) = xsn(x, y) + ysn+1(x, y) for n ≥ 1. It was proved that sn(x, y) = sr2(n)(x, y)
for all n ≥ 1 [18, Theorem 1]. We introduce a final equality of this type from Morgenbesser
and Spiegelhofer [11]. Let σb be the sum-of-digits function in base b ≥ 2. For α ∈ R and
integers n ≥ 1, define

γ(α, n) = lim
x→∞

1

x

∑
k<x

e2πiα(σb(k+n)−σb(k)).

Then it is proved that γ(α, n) = γ(α, rb(n)) for all n ≥ 1 [11, Theorem 1].

2 More v-Palindromes in Base Ten

We illustrated in Figure (1) that 198 is a v-palindrome in base ten. That there are
infinitely many v-palindromes in base ten is shown in [23] by specifically showing that all
numbers

18, 198, 1998, . . . , (3)

with any number of nines in the middle are v-palindromes in base ten. Also, [23] mentions
that all numbers of the form

18, 1818, 181818, . . . , (4)
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with any number of 18s concatenated, are v-palindromes in base ten. In fact, the main
theorem of [24] is inspired by Equation (4). Both Equations (3) and (4) seem to be derived
from the number 18. They are subsets of the following more general family.

Theorem 2.1 ([[25], Theorem 3]) If ρ is a palindrome in base ten consisting entirely
of the digits 0 and 1, then 18ρ is a v-palindrome in base ten.

This theorem relates the usual palindromes with the v-palindromes. If we take ρ to be
a repunit, then we get Equation (3). If we take ρ to have alternating digits of 0 and 1,
then we get Equation (4). If we take ρ to have only the first and last digits being 1 and
at least one 0 in between, then we deduce the family of v-palindromes in base ten

1818, 18018, 180018, . . . ,

with any number of 0’s in between two 18’s.
Thus the infinitude of v-palindromes in base ten is well-established.

3 Past Results for a General Base

In this section we state some past results from [20, 24], which were just for base ten, for a
general base. The base ten proofs generalize straightforwardly to a general base. Finally
we show that if there exists a v-palindrome in a base b, then there exists infinitely many
(Theorem 3.7).

3.1 A Periodic Phenomenon

We state the main theorem of [24], which describes a periodic phenomenon involving v-
palindromes and repeated concatenations in base ten, for a general base. The proof in
[24] is only for base ten, but is easily adapted for a general base. Before that, we provide
notation for repeated concatenations.

Definition 3.1 Suppose that n = (aL−1, . . . , a1, a0)b is a base b representation and k ≥ 1
is an integer, then we denote the repeated concatenation of the base b digits of n consisting
of k copies of n by n(k)b. That is,

n(k)b = (aL−1, . . . , a1, a0, aL−1, . . . , a1, a0, . . . . . . , aL−1, . . . , a1, a0︸ ︷︷ ︸
k copies of aL−1, . . . , a1, a0

)b

= n(1 + bL + · · ·+ b(k−1)L) = n · 1− bLk

1− bL
.

For instance, 18(3)10 = 181818 and 201(4)10 = 201201201201. Now we can state the main
theorem of [24] for a general base as follows.
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Theorem 3.2 ([[24], Theorem 1] for a general base) Let b ≥ 2 be an integer. For
every natural number n with b - n and n 6= rb(n), there exists an integer ω ≥ 1 such that
for all integers k ≥ 1,

n(k)b ∈ Vb if and only if n(k + ω)b ∈ Vb.

Based on this theorem, we can make the following definitions.

Definition 3.3 The smallest possible ω in the above theorem is denoted by ω0(n)b. If the
base b digits of n can be repeatedly concatenated to form a v-palindrome in base b, i.e.,
if there exists an integer k ≥ 1 such that n(k)b ∈ Vb, then the smallest k is denoted by
c(k)b; otherwise we set c(n)b =∞.

The sequence of numbers n such that c(n)10 <∞ has been created as sequence A338371
in the On-Line Encyclopedia of Integer Sequences [13]. Hence there remains the problem
of finding ω0(n)b and c(n)b. [20] solves this problem for b = 10 by associating to each n a
periodic function Z→ {0, 1} which we describe in the next subsection.

3.2 Associated Periodic Function

Fix a base b ≥ 2 and a natural number n with b - n and n 6= rb(n) throughout this
subsection. To have a clearer picture of the periodic phenomenon illustrated in Theorem
3.2, we define the function Inb : N→ {0, 1} by setting

Inb (k) =

{
0 if n(k)b /∈ Vb,

1 if n(k)b ∈ Vb.

Then by Theorem 3.2 Inb is a periodic function. It therefore has a unique periodic extension
Inb : Z→ {0, 1} which we give the same notation. By [20, Theorem 11], Inb can be expressed
as a linear combination when b = 10, and the same holds for a general base. We first give
notation for certain functions used to form the linear combination.

Definition 3.4 For a natural number a, denote by Ia : Z → {0, 1} the function defined
by

Ia(k) =

{
0 if a - k
1 if a | k.

That is, Ia is the indicator function of aZ in Z.

We can now state the linear combination as follows.

Theorem 3.5 ([[20], Theorem 11] for a general base) The function Inb can be ex-
pressed in the form

Inb = λ1Ia1 + λ2Ia2 + · · ·+ λuIau , (5)

where the u ≥ 0, 1 ≤ a1 < a2 < · · · < au, and λ1, λ2, . . . , λu 6= 0 are integers.
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Having expressed the function Inb in the form of Equation (5), we use the following result
to find ω0(n)b and c(n)b.

Theorem 3.6 ([[20], Corollaries 4 and 5] for a general base) The smallest period
ω0(n)b and c(n)b can be found from the expression (5) by

ω0(n)b = lcm{a1, a2, . . . , au},

c(n)b = inf{a1, a2, . . . , au} =

{
∞ if u = 0

a1 if u ≥ 1.

This infimum is thought of as that in the extended real number system.
We did not say how to express Inb in the form of Equation (5). A definite procedure

for doing this, for b = 10, is described in [20], and is easily adapted for a general base.

3.3 One Implies Infinitely Many

We show that if there exists a v-palindrome in base b, then there exist infinitely many.

Theorem 3.7 Let b ≥ 2 be an integer. If there exists a v-palindrome in base b, then there
exist infinitely many v-palindromes in base b.

Proof. Suppose that n is a v-palindrome in base b. We have the associated function
Inb from the previous subsection. If n is a v-palindrome in base b that means Inb (1) = 1.
Since Inb is periodic, say with period ω, we see that

Inb (1) = Inb (1 + ω) = Inb (1 + 2ω) = · · · .

Consequently,
n(1)b, n(1 + ω)b, n(1 + 2ω)b, . . .

are all v-palindromes in base b. �

4 v-Palindromes in Bases p+ 1 and p2 + 1

In this section we give more examples of v-palindromes in bases other than ten. In
Subsection 4.1, we give examples of v-palindromes in bases p + 1, for each odd prime p.
In Subsection 4.2, we give examples of v-palindromes in bases p2 + 1, for each odd prime
p. We first prove the following lemmas.

Lemma 4.1 Let n ∈ N. Then rn+1(2n) = n2.

Proof. We have
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rn+1(2n) = rn+1(2(n+ 1− 1))

= rn+1(2n+ 2− 2)

= rn+1(n+ 1 + (n+ 1− 2))

= (n+ 1− 2) · (n+ 1) + 1

= (n+ 1)2 − 2(n+ 1) + 1

= (n+ 1− 1)2

= n2.

�

Lemma 4.2 Let p be an odd prime. Then v(2p) = v(p2).

Proof. We find that

v(2p) = v(2) + v(p) = 2 + p = v(p2).

�

4.1 v-Palindromes in Base p+ 1

We have the following theorem.

Theorem 4.3 Let p be an odd prime. Then 2p ∈ Vp+1.

Proof. We have 2p and by Lemma 4.1 we obtain

rp+1(2p) = p2. (6)

It is clear from the base p + 1 representation of 2p, namely (1, p − 1)p+1, that we have
p+ 1 - 2p and 2p 6= rp+1(2p). Finally, because p is an odd prime, using Equation (6) and
Lemma 4.2, we have

v(2p) = 2 + p = v(p2) = v(rp+1(2p)).

This shows that 2p ∈ Vp+1. �
Next we consider repeated concatenations of 2p in base p+1, where p is an odd prime.

As in the proof of Theorem 4.3, both 2p and p2 are two digits long in base p + 1. Using
similar notation to [24], we define

ρk,2 :=
k−1∑
i=0

(p+ 1)2i = 1 +
k−1∑
i=1

(p+ 1)2i,

for integers k ≥ 1. We find that 2 | p + 1 as p is odd, so 2 |
∑k−1

i=1 (p + 1)2i, and hence
2 - ρk,2. We also want to know when p is coprime with ρk,2.
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Note that

ρk,2 =
k−1∑
i=0

(p+ 1)2i ≡
k−1∑
i=0

12i ≡ k mod p. (7)

Thus, p | ρk,2 if and only if p | k. We use these two facts to prove the following theo-
rem, recalling that (2p)(k)p+1 and (p2)(k)p+1 denote repeated concatenations according
to Definition 3.1.

Theorem 4.4 Let p be an odd prime and k ∈ N. Then (2p)(k)p+1 ∈ Vp+1 if and only if
p - k.

Proof. Since 2p = (1, p− 1)p+1, we have rp+1(2p) = (p− 1, 1)p+1 = p2 and that

(2p)(k)p+1 = 2p · ρk,2, rp+1(2p · ρk,2) = p2 · ρk,2. (8)

Since ρk,2 is an odd number and from Equation (7), given p - k we know p is coprime
with ρk,2. Using the additive property of v, Lemma 4.2, and Equation (8), we find,

v(2p · ρk,2) = v (2p) + v(ρk,2)

= v
(
p2
)

+ v(ρk,2)

= v
(
p2 · ρk,2

)
= v (rp+1 (2p · ρk,2)) .

Since 2p · ρk,2 = (1, p − 1, . . . , 1, p − 1)p+1, we know that p + 1 - 2p · ρk,2. Lastly, we
know that 2p · ρk,2 6= rp+1 (2p · ρk,2) = p2 · ρk,2 as 2p 6= p2, therefore (2p)(k)p+1 ∈ Vp+1.

Conversely, assume (2p)(k)p+1 ∈ Vp+1. Suppose p | k. According to Equation (8),
(2p)(k)p+1 = 2p · ρk,2 and rp+1((2p)(k)p+1) = p2 · ρk,2. Equation (7) tells us that ρk,2 ≡ k
mod p. Since p | k we have

ρk,2 ≡ 0 mod p,

so p | ρk,2. Hence we can rewrite ρk,2 as ρk,2 = pa · n, where a, n ∈ N and p - n. Note that
ρk,2 is odd so 2 - n. Applying v to (2p)(k)p+1 we find

v((2p)(k)p+1) = v(2p · ρk,2) = v(2 · pa+1 · n) = 2 + p+ a+ 1 + v(n)

and
v(rp+1((2p)(k)p+1)) = v(p2 · ρk,2) = v(pa+2 · n) = p+ a+ 2 + v(n),

which contradicts the fact that (2p)(k)p+1 ∈ Vp+1. Hence if (2p)(k)p+1 ∈ Vp+1, then p - k.
�

For our last pattern of v-palindromes in these bases, we require the following lemma.

Lemma 4.5 Let n, k ∈ N with n ≥ 2 and b = n+ 1. Then

1. (1, n, . . . , n︸ ︷︷ ︸
k

, n− 1)n+1 = 2n · 1(k + 1)b, and
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2. (n− 1, n, . . . , n︸ ︷︷ ︸
k

, 1)n+1 = n2 · 1(k + 1)b.

Proof. Note that 2n = (1, n− 1)n+1 and n2 = (n− 1, 1)n+1. Using this, we find

1.
2n · 1(k + 1)b = (1, n− 1)n+1 · (1, · · · , 1︸ ︷︷ ︸

k+1

)n+1

= (1, n− 1 + 1, n− 1 + 1, . . . , n− 1 + 1︸ ︷︷ ︸
k

, n− 1)n+1

= (1, n, . . . , n︸ ︷︷ ︸
k

, n− 1)n+1,

2.
n2 · 1(k + 1)b = (n− 1, 1)n+1 · (1, · · · , 1︸ ︷︷ ︸

k+1

)n+1

= (n− 1, 1 + n− 1, . . . , 1 + n− 1︸ ︷︷ ︸
k

, 1)n+1

= (n− 1, n, . . . , n︸ ︷︷ ︸
k

, 1)n+1.

�
We use this to prove the following theorem.

Theorem 4.6 Let p be an odd prime, k ∈ N, p - k+1, and b = p+1. Then 2p·1(k+1)b ∈
Vp+1.

Proof. We find that

(1, p, . . . , p︸ ︷︷ ︸
k

, p− 1)p+1 6= (p− 1, p, . . . , p︸ ︷︷ ︸
k

, 1)p+1

= rp+1((1, p, . . . , p︸ ︷︷ ︸
k

, p− 1)p+1)

(this also shows rp+1(2p · 1(k + 1)p+1) = p2 · 1(k + 1)p+1). We have

1(k + 1)b =
k∑
i=0

(p+ 1)i.

From this, we find

1(k + 1)b ≡
k∑
i=0

(p+ 1)i ≡
k∑
i=0

(1)i ≡ k + 1 mod p.

the pump journal of undergraduate research 7 (2024), 186–206 196



Since p - k+1 we know p - 1(k+1)b. Additionally, we know 2 - 1(k+1)b. Further, we find
p+1 - 2 ·1(k+1)b so p+1 - 2p ·1(k+1)b. Finally we show the numbers are v-palindromes
by using the additivity of v, Lemma 4.2, and Equation (8). We find that

v((1, p, . . . , p︸ ︷︷ ︸
k

, p− 1)p+1) = v (2p · 1(k + 1)b)

= v(2p) + v(1(k + 1)b)

= v(p2) + v(1(k + 1)b)

= v(p2 · 1(k + 1)b)

= v((p− 1, p, . . . , p︸ ︷︷ ︸
k

, 1)p+1).

This shows that 2p · 1(k + 1)b ∈ Vp+1. �

4.2 v-Palindromes in Base p2 + 1

Recall [25, Theorem 3], which applies to a base b = 32 + 1. We begin by generalizing this
Theorem to all bases one greater then an odd prime squared. We set base b = p2 + 1 as
our base, keeping p as an odd prime for the remainder of this section.

Theorem 4.7 Let p be an odd prime. If ρ is a palindrome in base b = p2 + 1 consisting
entirely of the digits 0 and 1, then 2p2ρ ∈ Vp2+1.

Proof. We begin by noting that b - ρ, since if ρ has a last digit of 0 then it has a leading
digit of 0, however this means ρ is not a palindrome as any leading digits of 0 are ignored
making ρ of the form 1, . . . , 0. Thus we know the last digit of ρ is 1. Further, since we
know p is odd, p2 + 1 is even thus any number with last digit 1 is odd, so we know 2 - ρ.

When read from left to right, ρ must be formed by a1 ones, followed by a2 zeros,
followed by a3 ones, and so on until lastly, a2r−1 ones, where r, a1, a2, . . . , a2r−1 ∈ N such
that ai = a2r−i for integers i ∈ [1, 2r − 1]. Writing out ρ we get

ρ = (1, . . . , 1︸ ︷︷ ︸
a1

,

a2︷ ︸︸ ︷
0, . . . , 0, 1, . . . 1,︸ ︷︷ ︸

a3

. . . 1, . . . 1,︸ ︷︷ ︸
a3

a2︷ ︸︸ ︷
0, . . . 0, 1, . . . 1︸ ︷︷ ︸

a1

)p2+1.

Using the equalities 2p2 = (1, p2 − 1)p2+1 and p4 = (p2 − 1, 1)p2+1 we find

2p2ρ =

(1, p2, . . . , p2︸ ︷︷ ︸
a1−1

, q,

a2−1︷ ︸︸ ︷
0, . . . , 0, 1, p2, . . . , p2︸ ︷︷ ︸

a3−1

, q, . . . , 1, p2, . . . , p2︸ ︷︷ ︸
a3−1

, q,

a2−1︷ ︸︸ ︷
0, . . . , 0, 1, p2, . . . , p2︸ ︷︷ ︸

a1−1

, q)p2+1

and

p4ρ =

(q, p2, . . . , p2︸ ︷︷ ︸
a1−1

, 1,

a2−1︷ ︸︸ ︷
0, . . . , 0, q, p2, . . . , p2︸ ︷︷ ︸

a3−1

, 1, . . . , q, p2, . . . , p2︸ ︷︷ ︸
a3−1

, 1,

a2−1︷ ︸︸ ︷
0, . . . , 0, q, p2, . . . , p2︸ ︷︷ ︸

a1−1

, 1)p2+1
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where q = p2 − 1 has been substituted to save space. From this we clearly see that
p2 + 1 - 2p2ρ and that p4ρ = rp2+1(2p

2ρ) 6= 2p2ρ. Let α ≥ 0 and n ≥ 1 be integers such
that ρ = pαn and (p, n) = 1. Then

v(2p2ρ) = v(2p2 · pαn)

= v(2p2+αn)

= 2 + p+ 2 + α + v(n)

= v(p4+αn)

= v(p4 · pαn)

= v(rp2+1(2p
2ρ)).

This shows that 2p2ρ ∈ Vp2+1.
�

Next we prove three Corollaries to Theorem 4.7 that mirror the three theorems proved
in Subsection 4.1.

Corollary 4.8 Let p be an odd prime. Then 2p2 ∈ Vp2+1.

Proof. Note that 2p2 = 2p2 · 1. Since 1 is a palindrome consisting only of the digit 1,
by Theorem 4.7, we have 2p2 ∈ Vp2+1. �

Corollary 4.9 Let p be an odd prime and k ∈ N. Then (2p2)(k)p2+1 ∈ Vp2+1.

Proof. We note that (2p2)(k)p2+1 = 2p2 · ρk, where

ρk := (1, 0, 1, 0, . . . , 0, 1, 0, 1︸ ︷︷ ︸
2k−1

)p2+1;

ρk is a palindrome consisting entirely of the digits 0 and 1. Thus, by Theorem 4.7 we
know (2p2)(k)p2+1 ∈ Vp2+1 �

Corollary 4.10 Let p be an odd prime, k ∈ N and b = p2+1. Then 2p2 ·1(k+1)b ∈ Vp2+1.

Proof. As 1(k + 1)b consists only of the digit 1, we know it is a palindrome. Therefore,
by Theorem 4.7 we know 2p2 · 1(k + 1)p2+1 ∈ Vp2+1.

�

5 Existence of v-Palindromes for Infinitely Many Bases

In this section we show the existence of v-palindromes (and therefore infinitely many v-
palindromes by Theorem 3.7) for infinitely many bases. Everything is based on the simple
fact that v(5) = v(6). Since v(n) is an additive function, for every integer t ≥ 1 with
(t, 30) = 1, we have v(5t) = v(6t).

Imagine that we have a base b ≥ 2 for which we would like to show that a v-palindrome
exists. The first attempt would be to look at two-digit numbers. That is, numbers
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(a, c)b = ab+ c, where 1 ≤ a < c < b are integers. By definition, (a, c)b is a v-palindrome
in base b if and only if v((a, c)b) = v((c, a)b), or equivalently,

v(ab+ c) = v(cb+ a).

This would hold if for some integer t ≥ 1 with (t, 30) = 1,{
ab+ c = 5t,

cb+ a = 6t,
(9)

simply by the observation in the previous paragraph. To summarize, we have shown the
following.

Lemma 5.1 Let b ≥ 2 be an integer. If there exists an ordered triple (a, c, t) of positive
integers such that a < c < b, (t, 30) = 1, and Equation (9) holds, then the two-digit
number (a, c)b is a v-palindrome in base b. Hence, there exists a v-palindrome in base b.

Definition 5.2 We call a triple (a, c, t) in the premise of the above lemma a permissible
triple for b.

Our strategy is to try to find permissible triples. The system (9) can be written in matrix
from as (

b 1
1 b

)(
a
c

)
= t

(
5
6

)
.

Solving this we have(
a
c

)
= t

(
b 1
1 b

)−1(
5
6

)
=

t

b2 − 1

(
b −1
−1 b

)(
5
6

)
=

t

b2 − 1

(
5b− 6
−5 + 6b

)
=

(
t(5b−6)
b2−1

t(−5+6b)
b2−1

)
.

We write this separately as

a =
t(5b− 6)

b2 − 1
, c =

t(6b− 5)

b2 − 1
, (10)

from which we also see that 0 < a < c. Hence we have the following lemma.

Lemma 5.3 Let b ≥ 2 be an integer. For every integer t ≥ 1, there exist unique rational
numbers a, c ∈ Q such that Equation (9) holds, and they are given by Equation (10).
Moreover, 0 < a < c.

Hence the only possible permissible triples for b are(
t(5b− 6)

b2 − 1
,
t(−5 + 6b)

b2 − 1
, t

)
,
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for an integer t ≥ 1 with (t, 30) = 1. The only missing conditions to fulfill are

t(5b− 6)

b2 − 1
,
t(−5 + 6b)

b2 − 1
∈ Z, (11)

and
t(−5 + 6b)

b2 − 1
< b. (12)

We write

t(5b− 6)

b2 − 1
=
t(5b− 6)/(5b− 6, b2 − 1)

(b2 − 1)/(5b− 6, b2 − 1)
,

t(−5 + 6b)

b2 − 1
=
t(−5 + 6b)/(−5 + 6b, b2 − 1)

(b2 − 1)/(−5 + 6b, b2 − 1)
.

Hence we see that Equation (11) holds if and only if t is a multiple of

f(b) =

[
b2 − 1

(5b− 6, b2 − 1)
,

b2 − 1

(−5 + 6b, b2 − 1)

]
;

here we also defined the function f(b) for integers b ≥ 2. Hence we have shown the
following lemma.

Lemma 5.4 Let b ≥ 2 be an integer. Then the permissible triples of b are precisely the
triples (

t(5b− 6)

b2 − 1
,
t(−5 + 6b)

b2 − 1
, t

)
,

where

t ∈ S(b) =

{
t ∈ N : (t, 30) = 1, f(b) | t, t < b(b2 − 1)

−5 + 6b

}
;

where we also defined the set-valued function S(b) for integers b ≥ 2.

While the above lemma does not guarantee that permissible triples exist, i.e., S(b) 6= ∅,
we can derive the following sufficient condition.

Lemma 5.5 Let b ≥ 2 be an integer. If

(f(b), 30) = 1, f(b) <
b(b2 − 1)

−5 + 6b
,

then f(b) ∈ S(b), and consequently there is a permissible triple for b.

Since f(b) | b2 − 1, if (b2 − 1, 30) = 1 then (f(b), 30) = 1. Hence the above lemma can be
weakened to the following.

Lemma 5.6 Let b ≥ 2 be an integer. If

(b2 − 1, 30) = 1, f(b) <
b(b2 − 1)

−5 + 6b
, (13)

then f(b) ∈ S(b), and consequently there is a permissible triple for b.
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We now consider the condition (b2 − 1, 30) = 1. It is easily shown that this is equivalent
to having both b ≡ 0 (mod 6) and b ≡ 0, 2, 3 (mod 5). In particular, b ≡ 0 (mod 30) is a
sufficient condition. Suppose that k ≥ 1 is an integer, then

f(30k) =

[
(30k)2 − 1

(5(30k)− 6, (30k)2 − 1)
,

(30k)2 − 1

(−5 + 6(30k), (30k)2 − 1)

]
=

[
(30k)2 − 1

(6k − 2, 11)
,

(30k)2 − 1

(5k + 2, 11)

]
,

where for the second equality we used a property of the greatest common divisor function
to simplify. Because of the right inequality in Equation (13), we want f(30k) to be small.
Thus it might be good if we have (6k − 2, 11) = (5k + 2, 11) = 11, which is easily shown
to be equivalent to k ≡ 4 (mod 11). If we assume that k ≡ 4 (mod 11), then

f(30k) =
(30k)2 − 1

11
.

On the other hand, the right-hand-side of the right inequality (13) becomes

(30k)((30k)2 − 1)

−5 + 6(30k)
.

That f(30k) is strictly less than the above quantity is equivalent to

−5 + 6(30k) < 11(30k),

which always holds. Hence the above lemma can be further weakened to the following.

Theorem 5.7 Let k ≡ 4 (mod 11) be a positive integer, then(
−6 + 150k

11
,
−5 + 180k

11
,
−1 + 900k2

11

)
is a permissible triple for the base 30k. In particular, the two-digit number(

−6 + 150k

11
,
−5 + 180k

11

)
30k

is a v-palindrome in base 30k.

Hence we have proved the existence of v-palindromes for infinitely many bases, summa-
rized as follows.

Corollary 5.8 If b ≡ 120 (mod 330) is a positive integer, then there exists a v-palindrome
in base b.

In particular there is a positive density of bases b ≥ 2 for which a v-palindrome exists.
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6 Further Problems

In this section we describe some directions for further investigation.

6.1 Three Conjectures

In the short note [23], three conjectures on v-palindromes in base ten have been proposed
by commentators and we restate them as follows.

Conjecture 6.1 ([[23], (a)]) There does not exist a prime v-palindrome in base ten.

Conjecture 6.2 ([[23], (b)]) There are infinitely many v-palindromes n in base ten such
that both n and r10(n) are square-free.

Conjecture 6.3 ([[23], (c)]) The only positive integer n such that n 6= r10(n) and n =
v(r(n)) is 49.

As mentioned in Subsection 1.1, the prime v-palindromes in base ten are characterized
in [2]. This result, however, does not prove nor disprove Conjecture 6.1. Also noted in
Subsection 1.1 is that there are prime v-palindromes in bases 16 and 276. Hence we may
consider the following problem.

Problem 6.4 Let b ≥ 2 be an integer. When does there exist a prime v-palindrome in
base b?

We may also consider Conjectures 6.2 and 6.3 for a general base.

6.2 Two Problems

While [16] provides an exact formula for the number of palindromes up to a given positive
integer, the same can be considered for v-palindromes, namely the following.

Problem 6.5 Let b ≥ 2 be an integer. Is there a formula for the number of v-palindromes
in base b up to a given positive integer? If not, how can it be approximated?

From 199 until 575 are 377 consecutive positive integers which are not v-palindromes in
base ten. Just as sequences of consecutive composite numbers can be arbitrarily long, we
may consider the following problem.

Problem 6.6 Let b ≥ 2 be an integer. Can a sequence of consecutive positive integers
each not a v-palindrome in base b be arbitrarily long?
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6.3 Existence of v-Palindromes in an Arbitrary Base

Section 4
showed that v-palindromes exist in bases p+ 1 and p2 + 1 for any odd prime p. Section 5
showed that v-palindromes exist in all basesb ≡ 120 (mod 330). However we are still left
with the problem of determining, for an arbitrary integer b ≥ 2, whether a v-palindrome
in base b exists.

The proof in the previous section is based on the equality v(5) = v(6). It is conceivable
that the same method basing on other common values of v will find other bases b for which
a v-palindrome exists. For instance, we have

v(5) = v(6) = v(8) = v(9),

v(7) = v(10) = v(12) = v(18).

We give the following table of the smallest v-palindrome, i.e., min(Vb), for the first
few bases, calculated using PARI/GP [14].

Table 1: The smallest v-palindrome for bases b ≤ 19.
b min(Vb) written in base 10 min(Vb) written in base b

2 175 1, 0, 1, 0, 1, 1, 1, 1
3 1280 1, 2, 0, 2, 1, 0, 2
4 6 1, 2
5 288 2, 1, 2, 3
6 10 1, 4
7 731 2, 0, 6, 3
8 14 1, 6
9 93 1, 1, 3
10 18 1, 8
11 135 1, 1, 3
12 22 1, 10
13 63 4, 11
14 26 1, 12
15 291 1, 4, 6
16 109 6, 13
17 581 2, 0, 3
18 34 1, 16
19 144 7, 11

Acknowledgments

This work was supported in part by the 2022 Polymath Jr REU program.

the pump journal of undergraduate research 7 (2024), 186–206 203



References

[1] K. Alladi, P. Erdös, On an additive arithmetic function, Pacific J.
Math., 71 (1977), 275–294. Available online at the URL: https://

projecteuclid.org/journals/pacific-journal-of-mathematics/volume-71/issue-2/

On-an-additive-arithmetic-function/pjm/1102811427.full.

[2] M. Boran, G. Choi, S. J. Miller, J. Purice, D. Tsai, A characterization of prime v-palindromes,
preprint, 2023. Available online at the URL: https://arxiv.org/abs/2307.00770.

[3] E.W. Dijkstra, Problem 563, Nieuw Arch. Wisk., 27 (1980), 115.

[4] E.W. Dijkstra, Selected Writings on Computing: A Personal Perspective, Texts and Monographs
in Computer Science, Springer-Verlag, New York, 1982. Available at the URL: https://link.

springer.com/book/10.1007/978-1-4612-5695-3.

[5] E.H. Goins, Palindromes in different bases: A conjecture of J. Ernest Wilkins, Integers, 9 (2009),
Paper No. A55. Available online at the URL: http://math.colgate.edu/~integers/j55/j55.pdf.

[6] B. Gordon, M.M. Robertson, Two theorems on mosaics, Canad. J. Math., 17
(1965), 1010–1014. Available online at the URL: https://www.cambridge.org/core/

journals/canadian-journal-of-mathematics/article/two-theorems-on-mosaics/

8B3ECBB3B19A038EDC0074B92E2524A5.

[7] G.H. Hardy, A mathematician’s apology, Canto, Cambridge University Press, Cam-
bridge, 1992. Available online at the URL: https://www.cambridge.org/core/books/

mathematicians-apology/A344F9D097F5AFF45BDA21B57B54BDCA.

[8] S. Hernández Hernández, F. Luca, Palindromic powers, Rev. Colombiana Mat., 40 (2006), 81–86.

[9] L.F. Klosinski, D.C. Smolarski, On the reversing of digits, Math. Mag., 42 (1969), 208–210. Available
online at the URL: https://www.jstor.org/stable/2688542.

[10] M. Lal, Iterates of a number-theoretic function, Math. Comp., 23 (1969), 181–183. Available online
at the URL: https://www.ams.org/journals/mcom/1969-23-105/S0025-5718-1969-0242765-9.

[11] J.F. Morgenbesser, L. Spiegelhofer, A reverse order property of correlation measures of the sum-of-
digits function, Integers, 12 (2012), Paper No. A47. Available online at the URL: http://math.
colgate.edu/~integers/m47/m47.pdf.

[12] A.A. Mullin, Some related number-theoretic functions, Research Problem 4, Bull. Amer. Math.
Soc., 69 (1963), 446–447. Available online at the URL: https://www.ams.org/journals/bull/

1963-69-04/S0002-9904-1963-10961-1.

[13] OEIS Foundation Inc. (2023), The On-Line Encyclopedia of Integer Sequences, Published electron-
ically at http://oeis.org.

[14] The PARI Group, PARI/GP version 2.13.0, Univ. Bordeaux, 2020, http://pari.math.

u-bordeaux.fr/.

[15] P. Pongsriiam, Longest arithmetic progressions of palindromes, J. Number Theory, 222 (2021),
362–375. Available online at the URL: https://www.sciencedirect.com/science/article/pii/
S0022314X20303577.

[16] P. Pongsriiam, K. Subwattanachai, Exact formulas for the number of palindromes up to a given
positive integer, Int. J. Math. Comput. Sci., 14 (2019), 27–46. Available online at the URL: http:
//ijmcs.future-in-tech.net/14.1/R-Pongsriiam.pdf.

[17] L. Spiegelhofer, A digit reversal property for an analogue of Stern’s sequence, J. Integer Seq.,
20 (2017), Art. 17.10.8. Available online at the URL: https://cs.uwaterloo.ca/journals/JIS/
VOL20/Spiegelhofer/spieg2.

[18] L. Spiegelhofer, A digit reversal property for Stern polynomials, Integers, 17 (2017), Paper No. A53.
Available online at the URL: http://math.colgate.edu/~integers/r53/r53.pdf.

the pump journal of undergraduate research 7 (2024), 186–206 204

https://projecteuclid.org/journals/pacific-journal-of-mathematics/volume-71/issue-2/On-an-additive-arithmetic-function/pjm/1102811427.full
https://projecteuclid.org/journals/pacific-journal-of-mathematics/volume-71/issue-2/On-an-additive-arithmetic-function/pjm/1102811427.full
https://projecteuclid.org/journals/pacific-journal-of-mathematics/volume-71/issue-2/On-an-additive-arithmetic-function/pjm/1102811427.full
https://arxiv.org/abs/2307.00770
https://link.springer.com/book/10.1007/978-1-4612-5695-3
https://link.springer.com/book/10.1007/978-1-4612-5695-3
http://math.colgate.edu/~integers/j55/j55.pdf
https://www.cambridge.org/core/journals/canadian-journal-of-mathematics/article/two-theorems-on-mosaics/8B3ECBB3B19A038EDC0074B92E2524A5
https://www.cambridge.org/core/journals/canadian-journal-of-mathematics/article/two-theorems-on-mosaics/8B3ECBB3B19A038EDC0074B92E2524A5
https://www.cambridge.org/core/journals/canadian-journal-of-mathematics/article/two-theorems-on-mosaics/8B3ECBB3B19A038EDC0074B92E2524A5
https://www.cambridge.org/core/books/mathematicians-apology/A344F9D097F5AFF45BDA21B57B54BDCA
https://www.cambridge.org/core/books/mathematicians-apology/A344F9D097F5AFF45BDA21B57B54BDCA
https://www.jstor.org/stable/2688542
https://www.ams.org/journals/mcom/1969-23-105/S0025-5718-1969-0242765-9
http://math.colgate.edu/~integers/m47/m47.pdf
http://math.colgate.edu/~integers/m47/m47.pdf
https://www.ams.org/journals/bull/1963-69-04/S0002-9904-1963-10961-1
https://www.ams.org/journals/bull/1963-69-04/S0002-9904-1963-10961-1
http://oeis.org
http://pari.math.u-bordeaux.fr/
http://pari.math.u-bordeaux.fr/
https://www.sciencedirect.com/science/article/pii/S0022314X20303577
https://www.sciencedirect.com/science/article/pii/S0022314X20303577
http://ijmcs.future-in-tech.net/14.1/R-Pongsriiam.pdf
http://ijmcs.future-in-tech.net/14.1/R-Pongsriiam.pdf
https://cs.uwaterloo.ca/journals/JIS/VOL20/Spiegelhofer/spieg2
https://cs.uwaterloo.ca/journals/JIS/VOL20/Spiegelhofer/spieg2
http://math.colgate.edu/~integers/r53/r53.pdf


[19] A. Sutcliffe, Integers that are multipled when their digits are reversed, Math. Mag., 39 (1966), 282–
287. Available online at the URL: https://www.tandfonline.com/doi/abs/10.1080/0025570X.
1966.11975742.

[20] D. Tsai, On the computation of fundamental periods of v-palindromic numbers, Integers, 22 (2022),
Paper No. A77. Available online at the URL: http://math.colgate.edu/~integers/w77/w77.pdf.

[21] D. Tsai, The fundamental period of a periodic phenomenon pertaining to v-palindromes, preprint,
2021 (previous arxiv version of [20]). Available online at the URL: https://arxiv.org/abs/2103.
00989.

[22] D. Tsai, The invariance of the type of a v-palindrome, preprint, 2021. Available online at the URL:
https://arxiv.org/abs/2112.13376.

[23] D. Tsai, Natural numbers satisfying an unusual property, Sūgaku Seminar, 57 (2018), 35–36 (written
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