v-Palindromes: An Analogy to the Palindromes

C. Bispels, M. Boran, S.J. Miller, E. Sosis, and D. Tsai[∗]

Abstract - Around the year 2007, one of the authors, Tsai, accidentally discovered a property of the number 198 he saw on the license plate of a car. Namely, if we take 198 and its reversal 891, which have prime factorizations $198 = 2 \cdot 3^2 \cdot 11$ and $891 = 3^4 \cdot 11$ respectively, and sum the numbers appearing in each factorization getting $2 + 3 + 2 + 11 = 18$ and $3 + 4 + 11 = 18$, both sums are 18. Such numbers were later named v-palindromes because they can be viewed as an analogy to the usual palindromes. In this article, we introduce the concept of a v-palindrome in base b and prove their existence for infinitely many bases. We also exhibit infinite families of v-palindromes in bases $p+1$ and p^2+1 , for each odd prime $p.$ Finally, we collect some conjectures and problems involving v -palindromes.

Keywords : v -palindromes; primes

Mathematics Subject Classification (2020) : 11A63; 11A25; 11A51

1 Introduction

If I (D. Tsai) recall correctly, it was in the year 2007 when I was 15 years old. My mother and younger brother were in a video rental shop near our home in Taipei and my father and I were waiting outside the shop, standing beside our parked car. I was a bit bored and glanced at the license plate of our car, which was 0198-QB. For no clear reason, I took the number 198 and did the following. I factorized $198 = 2 \cdot 3^2 \cdot 11$, reversed the digits of 198, and factorized $891 = 3⁴ \cdot 11$. Then, I summed the numbers appearing in each factorization: $2+3+2+11=18$ and $3+4+11=18$, respectively. Surprisingly to me, they are equal! We also illustrate this pictorially in Figure [\(1\)](#page-0-0). Afterwards I spent some

> 198 = $2 \cdot 3^2 \cdot 11$ \longmapsto $2 + (3 + 2) + 11$ \uparrow k \uparrow digit reversal 18 \downarrow $891 = 3^4 \cdot 11 \longmapsto (3+4) + 11$

Figure 1: 198 is a v-palindrome in base 10

[∗]This work was supported in part by the 2022 Polymath Jr REU program.

THE PUMP JOURNAL OF UNDERGRADUATE RESEARCH 7 (2024), 186–206 186

time trying to prove there are infinitely many such numbers (we define them rigorously in Subsection [1.1\)](#page-1-0), but could not show it.

In October 2018, I published a one-and-a-half page note [\[23\]](#page-19-0) in the Sūgaku Seminar magazine, which is sort of like the American Mathematical Monthly of Japan, defining v-palindromes and showing their infinitude. However, I recall knowing how to show their infinitude as early as the summer of 2015.

In March, 2021, I published the paper $[24]$, first calling such numbers v-palindromes. I proved a general theorem [\[24,](#page-19-1) Theorem 1] describing a periodic phenomenon pertaining to v-palindromes. Then, in August of 2022, I published [\[20\]](#page-19-2) (formerly [\[21\]](#page-19-3) on arxiv), in which more in-depth investigations were done. I also wrote the manuscripts [\[22,](#page-19-4) [25,](#page-19-5) [26\]](#page-19-6) ([\[26\]](#page-19-6) is a former version of this manuscript) which are, at time of writing, preprints.

In Subsection [1.1](#page-1-0) we define v-palindromes in a general base, briefly discuss prime v palindromes, and explain why the v-palindromes can be considered an analogue to the usual palindromes. In Subsection [1.2,](#page-3-0) we give an outline of the rest of the paper. In Subsection [1.3,](#page-3-1) we review other related work.

1.1 v-Palindromes

Recall the base b representation of a natural number where $b \geq 2$ is the base. For every natural number *n*, there exist unique integers $L \geq 1$ and $0 \leq a_0, a_1, \ldots, a_{L-1} < b$ with $a_{L-1} \neq 0$ such that

$$
n = a_0 b^{(L-1)} + a_1 b^{(L-1)-1} + \dots + a_{L-1}.
$$
\n⁽¹⁾

We also denote this as $n = (a_{L-1}, \dots, a_1, a_0)_b$. Thus L is the number of base b digits of n. We define the digit reversal in base b of n to be

$$
r_b(n) = a_{L-1} + a_{L-2}b + \cdots + a_0b^{L-1}.
$$

For instance, $r_{10}(18) = 81$, $r_{10}(2) = r_{10}(200) = 2$, and $r_2(2) = r_2((1,0)_2) = 1$. Next we define a function $v(n)$ to denote "summing the numbers appearing in the factorization".

Definition 1.1 Suppose that the prime factorization of the natural number n is

$$
n = p_1^{\varepsilon_1} \cdots p_s^{\varepsilon_s} q_1 \cdots q_t,\tag{2}
$$

where $s, t \geq 0$ and $\varepsilon_1, \ldots, \varepsilon_s \geq 2$ are integers and $p_1, \ldots, p_s, q_1, \ldots, q_t$ are distinct primes. Then we set

$$
v(n) = \sum_{i=1}^{s} (p_i + \varepsilon_i) + \sum_{j=1}^{t} q_j.
$$

Notice that $v(n)$ is an additive function, i.e., $v(mn) = v(m) + v(n)$ whenever m and n are relatively prime natural numbers. The values of $v(n)$ have been created as sequence A338038 in the On-Line Encyclopedia of Integer Sequences [\[13\]](#page-18-0). We can now make the following definition.

Definition 1.2 (v-palindrome) Let $b \geq 2$ be an integer. A natural number n is a vpalindrome in base b if

- (i) $b \nmid n$,
- (ii) $n \neq r_b(n)$, and
- (iii) $v(n) = v(r_b(n)).$

The set of v-palindromes in base b is denoted by \mathbb{V}_b .

Condition (i) is included merely for the aesthetic look of n and $r_b(n)$ having the same number of digits. Condition (ii) is included since if $n = r_b(n)$, then condition (iii) holds trivially, and so nothing is surprising. The sequence of v -palindromes in base ten has been created as sequence A338039 in [\[13\]](#page-18-0). A generalization of Figure [\(1\)](#page-0-0), with the factorizing step omitted, would be as follows:

Figure 2: v -palindromes in base b

Only base ten is dealt with in [\[20,](#page-19-2) [22,](#page-19-4) [23,](#page-19-0) [24,](#page-19-1) [25\]](#page-19-5), but most of the results and proofs therein generalize straightforwardly to a general base.

It is conjectured in [\[23,](#page-19-0) (a)] that there are no prime v-palindromes in base ten. Recently, Boran et al. [\[2\]](#page-18-1) characterized prime v-palindromes in base ten and showed that they are precisely the primes of the form $5 \cdot 10^m - 1$ such that $5 \cdot 10^m - 3$ is also prime. Thus, prime v-palindromes in base ten, if any exist, must be twin primes.

When we consider an arbitrary base, however, we have been able to find several prime v -palindromes. For example, 109 is a prime v -palindrome in base 16. We have that $v(109) = 109$ since 109 is prime, and $r_{16}(109) = r_{16}((6, 13)_{16}) = (13, 6)_{16} = 214$. Then $v(r_{16}(109)) = v(214) = 107 + 2 = 109$, so 109 is a *v*-palindrome in base 16. Notice that 109 happens to be a twin prime, but we can also find examples of prime v-palindromes that are not twin primes. For example, 467 is a prime v-palindrome in base 276, yet 467 is not a twin prime. It remains an open problem to classify which bases are similar to base 10 where any prime v-palindrome must necessarily be a twin prime.

We now explain how v-palindromes can be viewed as an analogy to usual palindromes. Recall the following definition of the usual palindrome.

Definition 1.3 (palindrome) Let $b \geq 2$ be an integer. A natural number n is a palindrome in base b if $n = r_b(n)$.

The definition of v-palindromes can be obtained from that of the usual palindromes by applying v to the equality $n = r_b(n)$ and then including the conditions (i) and (ii) for the reasons explained earlier. The mere application of v to the equality $n = r_b(n)$ causes palindromes and v-palindromes to behave very differently. Although the function v is a specific as function defined above, there is nothing special about it. It is equally conceivable to use any other function $f: \mathbb{N} \to \mathbb{C}$ instead in condition (iii), calling the defined kind of numbers f-palindromes.

1.2 Outline and Main Results of This Paper

In Section [2,](#page-4-0) we recall infinitely many more examples of v -palindromes in base ten from the previous works [\[23,](#page-19-0) [24,](#page-19-1) [25\]](#page-19-5). In Section [3,](#page-5-0) we state analogous results in a general base b of results in base ten from [\[20,](#page-19-2) [24\]](#page-19-1), as well as prove that if there exists a v-palindrome in a base b, then there exists infinitely many (Theorem [3.7\)](#page-7-0). In Section [4,](#page-7-1) we exhibit v-palindromes in bases $p + 1$ and $p^2 + 1$, for each odd prime p. In Section [5,](#page-12-0) we prove that v-palindromes exist in every base b satisfying a certain congruence (Corollary [5.8\)](#page-15-0). Finally in Section [6,](#page-16-0) we discuss further problems pertaining to v-palindromes in a general base.

1.3 Other Related Work

In this section, we give references to other works related to v -palindromes in various ways. For results on the usual palindromes, we refer the reader to Goins [\[5\]](#page-18-2), Hernández Hernández and Luca $[8]$, Pongsriiam $[15]$, Pongsriiam and Subwattanachai $[16]$, and the references therein, though there is much more literature available on palindromes.

Digit reversal has been studied in the past. In Hardy [\[7\]](#page-18-6), it is mentioned that $4.2178 =$ 8712 and $9 \cdot 1089 = 9801$. Therefore the numbers 2178 and 1089 have the property that their digit reversal is a multiple of (at least twice) themselves. Following Sutcliffe [\[19\]](#page-19-7), in general we are solving $kn = r_b(n)$ for integers $k \geq 2$, $n \geq 1$, and $b \geq 2$. If n has one base b digit, then $n = r_b(n)$ and there is no solution. Hence n has at least two base b digits. Then by the generalization of [\[2,](#page-18-1) Lemma 2.3] to a general base, n^2 has more base b digits than n. Now, as $r_b(n)$ has no more base b digits than n, we have that n^2 has more base b digits than $r_b(n)$. Consequently, $kn = r_b(n)$ implies that $kn = r_b(n) < n^2$, and so $k < n$. In [\[19\]](#page-19-7), the case of n having less than four base b digits is addressed completely, whereas the case of n having four base b digits is partially addressed. Klosinski and Smolarski [\[9\]](#page-18-7) also considered this problem, and mentioned that $4 \cdot 219 \cdots 978 = 879 \cdots 912$ for any number of 9's in between, generalizing the aforementioned $4 \cdot 2178 = 8712$ nicely.

Other functions similar to $v(n)$ have been studied by many authors. Alladi and Erdös [\[1\]](#page-18-8) and Lal [\[10\]](#page-18-9) studied the function

$$
A(n) = \sum_{i=1}^{s} p_i \varepsilon_i + \sum_{j=1}^{t} q_j,
$$

following the same notation as Equation [\(2\)](#page-1-1). In [\[1\]](#page-18-8), analytical and other aspects of $A(n)$ are studied. In [\[10\]](#page-18-9), iterates of $A(n)$ are investigated. Mullin [\[12\]](#page-18-10) and Gordon and

THE PUMP JOURNAL OF UNDERGRADUATE RESEARCH 7 (2024), 186–206 189

Robertson [\[6\]](#page-18-11) studied the function

$$
\psi(n) = \prod_{i=1}^s p_i \varepsilon_i \cdot \prod_{j=1}^t q_j.
$$

In [\[12\]](#page-18-10), research problems on $\psi(n)$ were posed, and [\[6\]](#page-18-11) proved two theorems on $\psi(n)$.

Similar equalities to the condition $v(n) = v(r_b(n))$ from the definition of v -palindromes, with another function in place of v , have been studied by several authors. Following Spiegelhofer [\[17\]](#page-18-12), we define *Stern's diatomic sequence* $s(n)$ by $s(0) = 0$, $s(1) = 1$, and $s(2n) = s(n)$ and $s(2n+1) = s(n) + s(n+1)$ for all $n \ge 1$. In Dijkstra [\[3\]](#page-18-13), a problem is given asking to show $s(n) = s(r_2(n))$ for all $n \geq 1$. Dijkstra also proved this equality in [\[4,](#page-18-14)] pp. 230–232. Following [\[17\]](#page-18-12) again, we define the function $b(n)$ introduced by Northshield as $b(0) = 0, b(1) = 1$, and

$$
b(3n) = b(n),
$$

\n
$$
b(3n + 1) = \sqrt{2} \cdot b(n) + b(n + 1),
$$

\n
$$
b(3n + 2) = b(n) + \sqrt{2} \cdot b(n + 1),
$$

for all $n \geq 0$. Then it is proved that $b(n) = b(r_3(n))$ for all $n \geq 1$ [\[17,](#page-18-12) Theorem 1]. [17, Theorem 2] gives a slightly intricate sufficient condition for a complex-valued function $f(n)$ and integer $b \ge 2$ to satisfy $f(n) = f(r_b(n))$ for all $n \ge 1$, to which [\[17,](#page-18-12) Theorem 1] is a corollary. Following Spiegelhofer [\[18\]](#page-18-15), we define an analogue of Stern's diatomic sequence, the *Stern polynomials* $s_n(x, y)$, by $s_1(x, y) = 1$ and $s_{2n}(x, y) = s_n(x, y)$ and $s_{2n+1}(x,y) = xs_n(x,y) + ys_{n+1}(x,y)$ for $n \ge 1$. It was proved that $s_n(x,y) = s_{r_2(n)}(x,y)$ for all $n \geq 1$ [\[18,](#page-18-15) Theorem 1]. We introduce a final equality of this type from Morgenbesser and Spiegelhofer [\[11\]](#page-18-16). Let σ_b be the sum-of-digits function in base $b \geq 2$. For $\alpha \in \mathbb{R}$ and integers $n \geq 1$, define

$$
\gamma(\alpha, n) = \lim_{x \to \infty} \frac{1}{x} \sum_{k < x} e^{2\pi i \alpha (\sigma_b(k+n) - \sigma_b(k))}.
$$

Then it is proved that $\gamma(\alpha, n) = \gamma(\alpha, r_b(n))$ for all $n \ge 1$ [\[11,](#page-18-16) Theorem 1].

2 More v-Palindromes in Base Ten

We illustrated in Figure (1) that 198 is a v-palindrome in base ten. That there are infinitely many v-palindromes in base ten is shown in [\[23\]](#page-19-0) by specifically showing that all numbers

$$
18, 198, 1998, \dots,\tag{3}
$$

with any number of nines in the middle are v -palindromes in base ten. Also, [\[23\]](#page-19-0) mentions that all numbers of the form

$$
18,1818,181818,\ldots,\t\t(4)
$$

with any number of 18s concatenated, are v-palindromes in base ten. In fact, the main theorem of [\[24\]](#page-19-1) is inspired by Equation [\(4\)](#page-4-1). Both Equations [\(3\)](#page-4-2) and [\(4\)](#page-4-1) seem to be derived from the number 18. They are subsets of the following more general family.

Theorem 2.1 ([[\[25\]](#page-19-5), **Theorem 3**]) If ρ is a palindrome in base ten consisting entirely of the digits 0 and 1, then 18ρ is a v-palindrome in base ten.

This theorem relates the usual palindromes with the v-palindromes. If we take ρ to be a repunit, then we get Equation [\(3\)](#page-4-2). If we take ρ to have alternating digits of 0 and 1, then we get Equation [\(4\)](#page-4-1). If we take ρ to have only the first and last digits being 1 and at least one 0 in between, then we deduce the family of v -palindromes in base ten

1818, 18018, 180018, . . . ,

with any number of 0's in between two 18 's.

Thus the infinitude of v-palindromes in base ten is well-established.

3 Past Results for a General Base

In this section we state some past results from [\[20,](#page-19-2) [24\]](#page-19-1), which were just for base ten, for a general base. The base ten proofs generalize straightforwardly to a general base. Finally we show that if there exists a v-palindrome in a base b , then there exists infinitely many (Theorem [3.7\)](#page-7-0).

3.1 A Periodic Phenomenon

We state the main theorem of [\[24\]](#page-19-1), which describes a periodic phenomenon involving v palindromes and repeated concatenations in base ten, for a general base. The proof in [\[24\]](#page-19-1) is only for base ten, but is easily adapted for a general base. Before that, we provide notation for repeated concatenations.

Definition 3.1 Suppose that $n = (a_{L-1}, \ldots, a_1, a_0)_b$ is a base b representation and $k \ge 1$ is an integer, then we denote the repeated concatenation of the base b digits of n consisting of k copies of n by $n(k)_b$. That is,

$$
n(k)_b = (a_{L-1}, \dots, a_1, a_0, a_{L-1}, \dots, a_1, a_0, \dots, a_{L-1}, \dots, a_1, a_0)_{b}
$$

\n*k* copies of a_{L-1}, \dots, a_1, a_0
\n
$$
= n(1 + b^L + \dots + b^{(k-1)L}) = n \cdot \frac{1 - b^{Lk}}{1 - b^L}.
$$

For instance, $18(3)_{10} = 181818$ and $201(4)_{10} = 201201201201$. Now we can state the main theorem of [\[24\]](#page-19-1) for a general base as follows.

Theorem 3.2 ([[\[24\]](#page-19-1), Theorem 1] for a general base) Let $b \ge 2$ be an integer. For every natural number n with $b \nmid n$ and $n \neq r_b(n)$, there exists an integer $\omega \geq 1$ such that for all integers $k \geq 1$,

$$
n(k)_b \in V_b
$$
 if and only if $n(k+\omega)_b \in V_b$.

Based on this theorem, we can make the following definitions.

Definition 3.3 The smallest possible ω in the above theorem is denoted by $\omega_0(n)_b$. If the base b digits of n can be repeatedly concatenated to form a v-palindrome in base b, i.e., if there exists an integer $k \geq 1$ such that $n(k)_b \in V_b$, then the smallest k is denoted by $c(k)_b$; otherwise we set $c(n)_b = \infty$.

The sequence of numbers n such that $c(n)_{10} < \infty$ has been created as sequence A338371 in the On-Line Encyclopedia of Integer Sequences [\[13\]](#page-18-0). Hence there remains the problem of finding $\omega_0(n)_b$ and $c(n)_b$. [\[20\]](#page-19-2) solves this problem for $b = 10$ by associating to each n a periodic function $\mathbb{Z} \to \{0,1\}$ which we describe in the next subsection.

3.2 Associated Periodic Function

Fix a base $b \geq 2$ and a natural number n with $b \nmid n$ and $n \neq r_b(n)$ throughout this subsection. To have a clearer picture of the periodic phenomenon illustrated in Theorem [3.2,](#page-5-1) we define the function $I_b^n : \mathbb{N} \to \{0, 1\}$ by setting

$$
I_b^n(k) = \begin{cases} 0 & \text{if } n(k)_b \notin \mathbb{V}_b, \\ 1 & \text{if } n(k)_b \in \mathbb{V}_b. \end{cases}
$$

Then by Theorem [3.2](#page-5-1) I_b^n is a periodic function. It therefore has a unique periodic extension $I_b^n: \mathbb{Z} \to \{0,1\}$ which we give the same notation. By [\[20,](#page-19-2) Theorem 11], I_b^n can be expressed as a linear combination when $b = 10$, and the same holds for a general base. We first give notation for certain functions used to form the linear combination.

Definition 3.4 For a natural number a, denote by $I_a: \mathbb{Z} \to \{0,1\}$ the function defined by

$$
I_a(k) = \begin{cases} 0 & \text{if } a \nmid k \\ 1 & \text{if } a \mid k. \end{cases}
$$

That is, I_a is the indicator function of a $\mathbb Z$ in $\mathbb Z$.

We can now state the linear combination as follows.

Theorem 3.5 ([[\[20\]](#page-19-2), Theorem 11] for a general base) The function I_b^n can be expressed in the form

$$
I_b^n = \lambda_1 I_{a_1} + \lambda_2 I_{a_2} + \dots + \lambda_u I_{a_u}, \tag{5}
$$

where the $u \geq 0$, $1 \leq a_1 < a_2 < \cdots < a_u$, and $\lambda_1, \lambda_2, \ldots, \lambda_u \neq 0$ are integers.

The pump journal of undergraduate research 7 (2024), 186–206 192

Having expressed the function I_b^n in the form of Equation [\(5\)](#page-6-0), we use the following result to find $\omega_0(n)_b$ and $c(n)_b$.

Theorem 3.6 ([[\[20\]](#page-19-2), Corollaries 4 and 5] for a general base) The smallest period $\omega_0(n)_b$ and $c(n)_b$ can be found from the expression [\(5\)](#page-6-0) by

$$
\omega_0(n)_b = \text{lcm}\{a_1, a_2, \dots, a_u\},
$$

$$
c(n)_b = \inf\{a_1, a_2, \dots, a_u\} = \begin{cases} \infty & \text{if } u = 0\\ a_1 & \text{if } u \ge 1. \end{cases}
$$

This infimum is thought of as that in the extended real number system.

We did not say how to express I_b^n in the form of Equation [\(5\)](#page-6-0). A definite procedure for doing this, for $b = 10$, is described in [\[20\]](#page-19-2), and is easily adapted for a general base.

3.3 One Implies Infinitely Many

We show that if there exists a v-palindrome in base b , then there exist infinitely many.

Theorem 3.7 Let $b \geq 2$ be an integer. If there exists a v-palindrome in base b, then there exist infinitely many v-palindromes in base b.

Proof. Suppose that n is a v-palindrome in base b . We have the associated function I_b^n from the previous subsection. If n is a v-palindrome in base b that means $I_b^n(1) = 1$. Since I_b^n is periodic, say with period ω , we see that

$$
I_b^n(1) = I_b^n(1 + \omega) = I_b^n(1 + 2\omega) = \cdots.
$$

Consequently,

$$
n(1)b, n(1 + \omega)b, n(1 + 2\omega)b, \ldots
$$

are all v-palindromes in base b. \Box

4 v-Palindromes in Bases $p+1$ and p^2+1

In this section we give more examples of v-palindromes in bases other than ten. In Subsection [4.1,](#page-8-0) we give examples of *v*-palindromes in bases $p + 1$, for each odd prime p. In Subsection [4.2,](#page-11-0) we give examples of v-palindromes in bases $p^2 + 1$, for each odd prime p. We first prove the following lemmas.

Lemma 4.1 Let $n \in \mathbb{N}$. Then $r_{n+1}(2n) = n^2$.

Proof. We have

$$
r_{n+1}(2n) = r_{n+1}(2(n + 1 - 1))
$$

= $r_{n+1}(2n + 2 - 2)$
= $r_{n+1}(n + 1 + (n + 1 - 2))$
= $(n + 1 - 2) \cdot (n + 1) + 1$
= $(n + 1)^2 - 2(n + 1) + 1$
= $(n + 1 - 1)^2$
= n^2 .

Lemma 4.2 Let p be an odd prime. Then $v(2p) = v(p^2)$. Proof. We find that

$$
v(2p) = v(2) + v(p) = 2 + p = v(p^2).
$$

4.1 *v*-Palindromes in Base $p+1$

We have the following theorem.

Theorem 4.3 Let p be an odd prime. Then $2p \in V_{p+1}$.

Proof. We have $2p$ and by Lemma [4.1](#page-7-2) we obtain

$$
r_{p+1}(2p) = p^2. \t\t(6)
$$

It is clear from the base $p + 1$ representation of $2p$, namely $(1, p - 1)_{p+1}$, that we have $p + 1 \nmid 2p$ and $2p \neq r_{p+1}(2p)$. Finally, because p is an odd prime, using Equation [\(6\)](#page-8-1) and Lemma [4.2,](#page-8-2) we have

$$
v(2p) = 2 + p = v(p^{2}) = v(r_{p+1}(2p)).
$$

This shows that $2p \in V_{p+1}$.

Next we consider repeated concatenations of $2p$ in base $p+1$, where p is an odd prime. As in the proof of Theorem [4.3,](#page-8-3) both 2p and p^2 are two digits long in base $p + 1$. Using similar notation to [\[24\]](#page-19-1), we define

$$
\rho_{k,2} := \sum_{i=0}^{k-1} (p+1)^{2i} = 1 + \sum_{i=1}^{k-1} (p+1)^{2i},
$$

for integers $k \geq 1$. We find that $2 \mid p+1$ as p is odd, so $2 \mid \sum_{i=1}^{k-1} (p+1)^{2i}$, and hence $2 \nmid \rho_{k,2}$. We also want to know when p is coprime with $\rho_{k,2}$.

THE PUMP JOURNAL OF UNDERGRADUATE RESEARCH 7 (2024), 186–206 194

 \Box

 \Box

Note that

$$
\rho_{k,2} = \sum_{i=0}^{k-1} (p+1)^{2i} \equiv \sum_{i=0}^{k-1} 1^{2i} \equiv k \mod p. \tag{7}
$$

Thus, $p \mid \rho_{k,2}$ if and only if $p \mid k$. We use these two facts to prove the following theorem, recalling that $(2p)(k)_{p+1}$ and $(p^2)(k)_{p+1}$ denote repeated concatenations according to Definition [3.1.](#page-5-2)

Theorem 4.4 Let p be an odd prime and $k \in \mathbb{N}$. Then $(2p)(k)_{p+1} \in V_{p+1}$ if and only if $p \nmid k$.

Proof. Since $2p = (1, p-1)_{p+1}$, we have $r_{p+1}(2p) = (p-1, 1)_{p+1} = p^2$ and that

$$
(2p)(k)_{p+1} = 2p \cdot \rho_{k,2}, \quad r_{p+1}(2p \cdot \rho_{k,2}) = p^2 \cdot \rho_{k,2}.
$$
 (8)

Since $\rho_{k,2}$ is an odd number and from Equation [\(7\)](#page-9-0), given $p \nmid k$ we know p is coprime with $\rho_{k,2}$. Using the additive property of v, Lemma [4.2,](#page-8-2) and Equation [\(8\)](#page-9-1), we find,

$$
v(2p \cdot \rho_{k,2}) = v(2p) + v(\rho_{k,2})
$$

= $v(p^2) + v(\rho_{k,2})$
= $v(p^2 \cdot \rho_{k,2})$
= $v(r_{p+1}(2p \cdot \rho_{k,2}))$.

Since $2p \cdot \rho_{k,2} = (1, p-1, \ldots, 1, p-1)_{p+1}$, we know that $p+1 \nmid 2p \cdot \rho_{k,2}$. Lastly, we know that $2p \cdot \rho_{k,2} \neq r_{p+1} (2p \cdot \rho_{k,2}) = p^2 \cdot \rho_{k,2}$ as $2p \neq p^2$, therefore $(2p)(k)_{p+1} \in V_{p+1}$.

Conversely, assume $(2p)(k)_{p+1} \in V_{p+1}$. Suppose $p \mid k$. According to Equation [\(8\)](#page-9-1), $(2p)(k)_{p+1} = 2p \cdot \rho_{k,2}$ and $r_{p+1}((2p)(k)_{p+1}) = p^2 \cdot \rho_{k,2}$. Equation [\(7\)](#page-9-0) tells us that $\rho_{k,2} \equiv k$ mod p. Since $p \mid k$ we have

$$
\rho_{k,2} \equiv 0 \mod p,
$$

so $p \mid \rho_{k,2}$. Hence we can rewrite $\rho_{k,2}$ as $\rho_{k,2} = p^a \cdot n$, where $a, n \in \mathbb{N}$ and $p \nmid n$. Note that $\rho_{k,2}$ is odd so $2 \nmid n$. Applying v to $(2p)(k)_{p+1}$ we find

$$
v((2p)(k)_{p+1}) = v(2p \cdot \rho_{k,2}) = v(2 \cdot p^{a+1} \cdot n) = 2 + p + a + 1 + v(n)
$$

and

$$
v(r_{p+1}((2p)(k)_{p+1})) = v(p^2 \cdot \rho_{k,2}) = v(p^{a+2} \cdot n) = p + a + 2 + v(n),
$$

which contradicts the fact that $(2p)(k)_{p+1} \in V_{p+1}$. Hence if $(2p)(k)_{p+1} \in V_{p+1}$, then $p \nmid k$. \Box

For our last pattern of v-palindromes in these bases, we require the following lemma.

Lemma 4.5 Let $n, k \in \mathbb{N}$ with $n \geq 2$ and $b = n + 1$. Then

1.
$$
(1, \underbrace{n, \ldots, n}_{k}, n-1)_{n+1} = 2n \cdot 1(k+1)_b, \text{ and}
$$

2.
$$
(n-1, \underbrace{n, \ldots, n}_{k}, 1)_{n+1} = n^2 \cdot 1(k+1)_b.
$$

Proof. Note that $2n = (1, n - 1)_{n+1}$ and $n^2 = (n - 1, 1)_{n+1}$. Using this, we find

1.

$$
2n \cdot 1(k+1)_b = (1, n-1)_{n+1} \cdot \underbrace{(1, \dots, 1)}_{k+1})_{n+1}
$$

= $(1, \underbrace{n-1+1, n-1+1, \dots, n-1+1}_{k}, n-1)_{n+1}$
= $(1, \underbrace{n, \dots, n}_{k}, n-1)_{n+1},$

2.

$$
n^{2} \cdot 1(k+1)_{b} = (n-1, 1)_{n+1} \cdot \underbrace{(1, \cdots, 1)}_{k+1}
$$

$$
= (n-1, \underbrace{1+n-1, \dots, 1+n-1}_{k}, 1)_{n+1}
$$

$$
= (n-1, \underbrace{n, \dots, n}_{k}, 1)_{n+1}.
$$

We use this to prove the following theorem.

Theorem 4.6 Let p be an odd prime, $k \in \mathbb{N}$, $p \nmid k+1$, and $b = p+1$. Then $2p \cdot 1(k+1)_b \in \mathbb{N}$ \mathbb{V}_{p+1} .

Proof. We find that

$$
(1, p, \ldots, p, p-1)_{p+1} \neq (p-1, p, \ldots, p, 1)_{p+1}
$$

= $r_{p+1}((1, p, \ldots, p, p-1)_{p+1})$

(this also shows $r_{p+1}(2p \cdot 1(k+1)_{p+1}) = p^2 \cdot 1(k+1)_{p+1}$). We have

$$
1(k+1)_b = \sum_{i=0}^k (p+1)^i.
$$

From this, we find

$$
1(k+1)b \equiv \sum_{i=0}^{k} (p+1)^{i} \equiv \sum_{i=0}^{k} (1)^{i} \equiv k+1 \mod p.
$$

THE PUMP JOURNAL OF UNDERGRADUATE RESEARCH 7 (2024), 186–206 196

 \Box

Since $p \nmid k+1$ we know $p \nmid 1(k+1)_b$. Additionally, we know $2 \nmid 1(k+1)_b$. Further, we find $p+1$ $\{2\cdot 1(k+1)_b \text{ so } p+1$ $\{2p\cdot 1(k+1)_b\}$. Finally we show the numbers are *v*-palindromes by using the additivity of v , Lemma [4.2,](#page-8-2) and Equation (8) . We find that

$$
v((1, \underbrace{p, \ldots, p}_{k}, p-1)_{p+1}) = v(2p \cdot 1(k+1)_{b})
$$

= $v(2p) + v(1(k+1)_{b})$
= $v(p^{2}) + v(1(k+1)_{b})$
= $v(p^{2} \cdot 1(k+1)_{b})$
= $v((p-1, \underbrace{p, \ldots, p}_{k}, 1)_{p+1}).$

This shows that $2p \cdot 1(k+1)_b \in \mathbb{V}_{p+1}$.

4.2 v-Palindromes in Base $p^2 + 1$

Recall [\[25,](#page-19-5) Theorem 3], which applies to a base $b = 3^2 + 1$. We begin by generalizing this Theorem to all bases one greater then an odd prime squared. We set base $b = p^2 + 1$ as our base, keeping p as an odd prime for the remainder of this section.

Theorem 4.7 Let p be an odd prime. If ρ is a palindrome in base $b = p^2 + 1$ consisting entirely of the digits 0 and 1, then $2p^2 \rho \in V_{p^2+1}$.

Proof. We begin by noting that $b \nmid \rho$, since if ρ has a last digit of 0 then it has a leading digit of 0, however this means ρ is not a palindrome as any leading digits of 0 are ignored making ρ of the form 1, ..., 0. Thus we know the last digit of ρ is 1. Further, since we know p is odd, $p^2 + 1$ is even thus any number with last digit 1 is odd, so we know $2 \nmid \rho$.

When read from left to right, ρ must be formed by a_1 ones, followed by a_2 zeros, followed by a_3 ones, and so on until lastly, a_{2r-1} ones, where $r, a_1, a_2, \ldots, a_{2r-1} \in \mathbb{N}$ such that $a_i = a_{2r-i}$ for integers $i \in [1, 2r-1]$. Writing out ρ we get

$$
\rho = (\underbrace{1,\ldots,1}_{a_1},\underbrace{0,\ldots,0}_{a_3},\underbrace{1,\ldots1}_{a_3},\ldots\underbrace{1,\ldots1}_{a_3},\underbrace{0,\ldots0}_{a_1},\underbrace{1,\ldots1}_{a_1})_{p^2+1}.
$$

Using the equalities $2p^2 = (1, p^2 - 1)_{p^2+1}$ and $p^4 = (p^2 - 1, 1)_{p^2+1}$ we find

 $2p^2\rho =$

$$
(1, \underbrace{p^2, \dots, p^2}_{a_1-1}, q, \underbrace{0, \dots, 0}_{a_3-1}, 1, \underbrace{p^2, \dots, p^2}_{a_3-1}, q, \dots, 1, \underbrace{p^2, \dots, p^2}_{a_3-1}, q, \underbrace{0, \dots, 0}_{a_1-1}, 1, \underbrace{p^2, \dots, p^2}_{a_1-1}, q)_{p^2+1}
$$

and

 $p^4 \rho =$

$$
(q, \underbrace{p^2, \dots, p^2}_{a_1-1}, 1, \underbrace{0, \dots, 0}_{a_3-1}, q, \underbrace{p^2, \dots, p^2}_{a_3-1}, 1, \dots, q, \underbrace{p^2, \dots, p^2}_{a_3-1}, 1, \underbrace{0, \dots, 0}_{a_1-1}, q, \underbrace{p^2, \dots, p^2}_{a_1-1}, 1)_{p^2+1}
$$

where $q = p^2 - 1$ has been substituted to save space. From this we clearly see that $p^2 + 1 \nmid 2p^2 \rho$ and that $p^4 \rho = r_{p^2+1}(2p^2 \rho) \neq 2p^2 \rho$. Let $\alpha \geq 0$ and $n \geq 1$ be integers such that $\rho = p^{\alpha} n$ and $(p, n) = 1$. Then

$$
v(2p2 \rho) = v(2p2 \cdot p\alpha n)
$$

= $v(2p^{2+\alpha}n)$
= $2 + p + 2 + \alpha + v(n)$
= $v(p^{4+\alpha}n)$
= $v(p4 \cdot p\alpha n)$
= $v(r_{p2+1}(2p2 \rho)).$

This shows that $2p^2 \rho \in V_{p^2+1}$.

Next we prove three Corollaries to Theorem [4.7](#page-11-1) that mirror the three theorems proved in Subsection [4.1.](#page-8-0)

Corollary 4.8 Let p be an odd prime. Then $2p^2 \in \mathbb{V}_{p^2+1}$.

Proof. Note that $2p^2 = 2p^2 \cdot 1$. Since 1 is a palindrome consisting only of the digit 1, by Theorem [4.7,](#page-11-1) we have $2p^2 \in V_p$ $2+1$.

Corollary 4.9 Let p be an odd prime and $k \in \mathbb{N}$. Then $(2p^2)(k)_{p^2+1} \in \mathbb{V}_{p^2+1}$.

Proof. We note that $(2p^2)(k)_{p^2+1} = 2p^2 \cdot \rho_k$, where

$$
\rho_k := (\underbrace{1,0,1,0,\ldots,0,1,0,1}_{2k-1})_{p^2+1};
$$

 ρ_k is a palindrome consisting entirely of the digits 0 and 1. Thus, by Theorem [4.7](#page-11-1) we know $(2p^2)(k)_{p^2+1} \in V_p$ $^{2}+1$

Corollary 4.10 Let p be an odd prime, $k \in \mathbb{N}$ and $b = p^2 + 1$. Then $2p^2 \cdot 1(k+1)_b \in \mathbb{V}_{p^2+1}$.

Proof. As $1(k+1)_b$ consists only of the digit 1, we know it is a palindrome. Therefore, by Theorem [4.7](#page-11-1) we know $2p^2 \cdot 1(k+1)_{p^2+1} \in \mathbb{V}_{p^2+1}$.

 \Box

5 Existence of v-Palindromes for Infinitely Many Bases

In this section we show the existence of v-palindromes (and therefore infinitely many v palindromes by Theorem [3.7\)](#page-7-0) for infinitely many bases. Everything is based on the simple fact that $v(5) = v(6)$. Since $v(n)$ is an additive function, for every integer $t \ge 1$ with $(t, 30) = 1$, we have $v(5t) = v(6t)$.

Imagine that we have a base $b \geq 2$ for which we would like to show that a v-palindrome exists. The first attempt would be to look at two-digit numbers. That is, numbers

THE PUMP JOURNAL OF UNDERGRADUATE RESEARCH 7 (2024), 186–206 198

 \Box

 $(a, c)_b = ab + c$, where $1 \le a < c < b$ are integers. By definition, $(a, c)_b$ is a v-palindrome in base b if and only if $v((a, c)_b) = v((c, a)_b)$, or equivalently,

$$
v(ab + c) = v(cb + a).
$$

This would hold if for some integer $t \ge 1$ with $(t, 30) = 1$,

$$
\begin{cases} ab + c = 5t, \\ cb + a = 6t, \end{cases}
$$
 (9)

simply by the observation in the previous paragraph. To summarize, we have shown the following.

Lemma 5.1 Let $b \geq 2$ be an integer. If there exists an ordered triple (a, c, t) of positive integers such that $a < c < b$, $(t, 30) = 1$, and Equation [\(9\)](#page-13-0) holds, then the two-digit number $(a, c)_b$ is a v-palindrome in base b. Hence, there exists a v-palindrome in base b.

Definition 5.2 We call a triple (a, c, t) in the premise of the above lemma a permissible triple for b.

Our strategy is to try to find permissible triples. The system [\(9\)](#page-13-0) can be written in matrix from as

$$
\begin{pmatrix} b & 1 \\ 1 & b \end{pmatrix} \begin{pmatrix} a \\ c \end{pmatrix} = t \begin{pmatrix} 5 \\ 6 \end{pmatrix}.
$$

Solving this we have

$$
\begin{pmatrix} a \\ c \end{pmatrix} = t \begin{pmatrix} b & 1 \\ 1 & b \end{pmatrix}^{-1} \begin{pmatrix} 5 \\ 6 \end{pmatrix} = \frac{t}{b^2 - 1} \begin{pmatrix} b & -1 \\ -1 & b \end{pmatrix} \begin{pmatrix} 5 \\ 6 \end{pmatrix}
$$

$$
= \frac{t}{b^2 - 1} \begin{pmatrix} 5b - 6 \\ -5 + 6b \end{pmatrix} = \begin{pmatrix} \frac{t(5b - 6)}{b^2 - 1} \\ \frac{t(-5 + 6b)}{b^2 - 1} \end{pmatrix}.
$$

We write this separately as

$$
a = \frac{t(5b - 6)}{b^2 - 1}, \quad c = \frac{t(6b - 5)}{b^2 - 1}, \tag{10}
$$

from which we also see that $0 < a < c$. Hence we have the following lemma.

Lemma 5.3 Let $b \geq 2$ be an integer. For every integer $t \geq 1$, there exist unique rational numbers $a, c \in \mathbb{Q}$ such that Equation [\(9\)](#page-13-0) holds, and they are given by Equation [\(10\)](#page-13-1). Moreover, $0 < a < c$.

Hence the only possible permissible triples for b are

$$
\left(\frac{t(5b-6)}{b^2-1}, \frac{t(-5+6b)}{b^2-1}, t\right),\right
$$

for an integer $t \geq 1$ with $(t, 30) = 1$. The only missing conditions to fulfill are

$$
\frac{t(5b-6)}{b^2-1}, \frac{t(-5+6b)}{b^2-1} \in \mathbb{Z},\tag{11}
$$

and
$$
\frac{t(-5+6b)}{b^2-1} < b. \tag{12}
$$

We write

$$
\frac{t(5b-6)}{b^2-1} = \frac{t(5b-6)/(5b-6, b^2-1)}{(b^2-1)/(5b-6, b^2-1)},
$$

$$
\frac{t(-5+6b)}{b^2-1} = \frac{t(-5+6b)/(-5+6b, b^2-1)}{(b^2-1)/(-5+6b, b^2-1)}.
$$

Hence we see that Equation (11) holds if and only if t is a multiple of

$$
f(b) = \left[\frac{b^2 - 1}{(5b - 6, b^2 - 1)}, \frac{b^2 - 1}{(-5 + 6b, b^2 - 1)}\right];
$$

here we also defined the function $f(b)$ for integers $b \geq 2$. Hence we have shown the following lemma.

Lemma 5.4 Let $b \geq 2$ be an integer. Then the permissible triples of b are precisely the triples

$$
\left(\frac{t(5b-6)}{b^2-1}, \frac{t(-5+6b)}{b^2-1}, t\right),\right
$$

where

$$
t \in S(b) = \left\{ t \in \mathbb{N} \colon (t,30) = 1, \, f(b) \mid t, \, t < \frac{b(b^2 - 1)}{-5 + 6b} \right\};
$$

where we also defined the set-valued function $S(b)$ for integers $b \geq 2$.

While the above lemma does not guarantee that permissible triples exist, i.e., $S(b) \neq \emptyset$, we can derive the following sufficient condition.

Lemma 5.5 Let $b \geq 2$ be an integer. If

$$
(f(b), 30) = 1
$$
, $f(b) < \frac{b(b^2 - 1)}{-5 + 6b}$,

then $f(b) \in S(b)$, and consequently there is a permissible triple for b.

Since $f(b) | b^2 - 1$, if $(b^2 - 1, 30) = 1$ then $(f(b), 30) = 1$. Hence the above lemma can be weakened to the following.

Lemma 5.6 Let $b \geq 2$ be an integer. If

$$
(b2 - 1, 30) = 1, \quad f(b) < \frac{b(b2 - 1)}{-5 + 6b},
$$
\n(13)

then $f(b) \in S(b)$, and consequently there is a permissible triple for b.

The pump journal of undergraduate research 7 (2024), 186–206 200

We now consider the condition $(b^2 - 1, 30) = 1$. It is easily shown that this is equivalent to having both $b \equiv 0 \pmod{6}$ and $b \equiv 0, 2, 3 \pmod{5}$. In particular, $b \equiv 0 \pmod{30}$ is a sufficient condition. Suppose that $k \geq 1$ is an integer, then

$$
f(30k) = \left[\frac{(30k)^2 - 1}{(5(30k) - 6, (30k)^2 - 1)}, \frac{(30k)^2 - 1}{(-5 + 6(30k), (30k)^2 - 1)} \right]
$$

=
$$
\left[\frac{(30k)^2 - 1}{(6k - 2, 11)}, \frac{(30k)^2 - 1}{(5k + 2, 11)} \right],
$$

where for the second equality we used a property of the greatest common divisor function to simplify. Because of the right inequality in Equation [\(13\)](#page-14-1), we want $f(30k)$ to be small. Thus it might be good if we have $(6k - 2, 11) = (5k + 2, 11) = 11$, which is easily shown to be equivalent to $k \equiv 4 \pmod{11}$. If we assume that $k \equiv 4 \pmod{11}$, then

$$
f(30k) = \frac{(30k)^2 - 1}{11}.
$$

On the other hand, the right-hand-side of the right inequality [\(13\)](#page-14-1) becomes

$$
\frac{(30k)((30k)^2-1)}{-5+6(30k)}.
$$

That $f(30k)$ is strictly less than the above quantity is equivalent to

$$
-5 + 6(30k) < 11(30k)
$$

which always holds. Hence the above lemma can be further weakened to the following.

Theorem 5.7 Let $k \equiv 4 \pmod{11}$ be a positive integer, then

$$
\left(\frac{-6+150k}{11}, \frac{-5+180k}{11}, \frac{-1+900k^2}{11}\right)
$$

is a permissible triple for the base 30k. In particular, the two-digit number

$$
\left(\frac{-6+150k}{11}, \frac{-5+180k}{11}\right)_{30k}
$$

is a v-palindrome in base 30k.

Hence we have proved the existence of *v*-palindromes for infinitely many bases, summarized as follows.

Corollary 5.8 If $b \equiv 120 \pmod{330}$ is a positive integer, then there exists a v-palindrome in base b.

In particular there is a positive density of bases $b \geq 2$ for which a v-palindrome exists.

6 Further Problems

In this section we describe some directions for further investigation.

6.1 Three Conjectures

In the short note [\[23\]](#page-19-0), three conjectures on v -palindromes in base ten have been proposed by commentators and we restate them as follows.

Conjecture 6.1 ($\lceil 23 \rceil$, (a)]) There does not exist a prime v-palindrome in base ten.

Conjecture 6.2 ([[\[23\]](#page-19-0), (b)]) There are infinitely many v-palindromes n in base ten such that both *n* and $r_{10}(n)$ are square-free.

Conjecture 6.3 ([[\[23\]](#page-19-0), (c)]) The only positive integer n such that $n \neq r_{10}(n)$ and $n =$ $v(r(n))$ is 49.

As mentioned in Subsection [1.1,](#page-1-0) the prime v-palindromes in base ten are characterized in [\[2\]](#page-18-1). This result, however, does not prove nor disprove Conjecture [6.1.](#page-16-1) Also noted in Subsection [1.1](#page-1-0) is that there are prime v-palindromes in bases 16 and 276. Hence we may consider the following problem.

Problem 6.4 Let $b \geq 2$ be an integer. When does there exist a prime v-palindrome in base b?

We may also consider Conjectures [6.2](#page-16-2) and [6.3](#page-16-3) for a general base.

6.2 Two Problems

While [\[16\]](#page-18-5) provides an exact formula for the number of palindromes up to a given positive integer, the same can be considered for v -palindromes, namely the following.

Problem 6.5 Let $b \ge 2$ be an integer. Is there a formula for the number of v-palindromes in base b up to a given positive integer? If not, how can it be approximated?

From 199 until 575 are 377 consecutive positive integers which are not v-palindromes in base ten. Just as sequences of consecutive composite numbers can be arbitrarily long, we may consider the following problem.

Problem 6.6 Let $b \geq 2$ be an integer. Can a sequence of consecutive positive integers each not a *v*-palindrome in base *b* be arbitrarily long?

6.3 Existence of v-Palindromes in an Arbitrary Base

Section [4](#page-7-1)

showed that v-palindromes exist in bases $p+1$ and p^2+1 for any odd prime p. Section [5](#page-12-0) showed that v-palindromes exist in all bases $b \equiv 120 \pmod{330}$. However we are still left with the problem of determining, for an arbitrary integer $b \geq 2$, whether a *v*-palindrome in base b exists.

The proof in the previous section is based on the equality $v(5) = v(6)$. It is conceivable that the same method basing on other common values of v will find other bases b for which a v-palindrome exists. For instance, we have

$$
v(5) = v(6) = v(8) = v(9),
$$

$$
v(7) = v(10) = v(12) = v(18).
$$

We give the following table of the smallest v-palindrome, i.e., $min(\mathbb{V}_b)$, for the first few bases, calculated using PARI/GP [\[14\]](#page-18-17).

\boldsymbol{b}	$\min(\mathbb{V}_b)$ written in base 10	$\min(\mathbb{V}_b)$ written in base b
$\sqrt{2}$	175	1, 0, 1, 0, 1, 1, 1, 1
$\boldsymbol{3}$	1280	1, 2, 0, 2, 1, 0, 2
$\overline{4}$	6	1, 2
5	288	2, 1, 2, 3
6	10	1,4
7	731	2, 0, 6, 3
8	14	1,6
$\boldsymbol{9}$	93	1, 1, 3
10	18	1,8
11	135	1, 1, 3
12	22	1, 10
13	63	4, 11
14	26	1, 12
15	291	1, 4, 6
16	109	6, 13
17	581	2, 0, 3
18	34	1,16
19	144	7,11

Table 1: The smallest v-palindrome for bases $b < 19$.

Acknowledgments

This work was supported in part by the 2022 Polymath Jr REU program.

References

- [1] K. Alladi, P. Erdös, On an additive arithmetic function, *Pacific J.* Math., 71 (1977), 275–294. Available online at the URL: [https://](https://projecteuclid.org/journals/pacific-journal-of-mathematics/volume-71/issue-2/On-an-additive-arithmetic-function/pjm/1102811427.full) [projecteuclid.org/journals/pacific-journal-of-mathematics/volume-71/issue-2/](https://projecteuclid.org/journals/pacific-journal-of-mathematics/volume-71/issue-2/On-an-additive-arithmetic-function/pjm/1102811427.full) [On-an-additive-arithmetic-function/pjm/1102811427.full](https://projecteuclid.org/journals/pacific-journal-of-mathematics/volume-71/issue-2/On-an-additive-arithmetic-function/pjm/1102811427.full).
- [2] M. Boran, G. Choi, S. J. Miller, J. Purice, D. Tsai, A characterization of prime v-palindromes, preprint, 2023. Available online at the URL: <https://arxiv.org/abs/2307.00770>.
- [3] E.W. Dijkstra, Problem 563, Nieuw Arch. Wisk., 27 (1980), 115.
- [4] E.W. Dijkstra, Selected Writings on Computing: A Personal Perspective, Texts and Monographs in Computer Science, Springer-Verlag, New York, 1982. Available at the URL: [https://link.](https://link.springer.com/book/10.1007/978-1-4612-5695-3) [springer.com/book/10.1007/978-1-4612-5695-3](https://link.springer.com/book/10.1007/978-1-4612-5695-3).
- [5] E.H. Goins, Palindromes in different bases: A conjecture of J. Ernest Wilkins, Integers, 9 (2009), Paper No. A55. Available online at the URL: <http://math.colgate.edu/~integers/j55/j55.pdf>.
- [6] B. Gordon, M.M. Robertson, Two theorems on mosaics, Canad. J. Math., 17 (1965), 1010–1014. Available online at the URL: [https://www.cambridge.org/core/](https://www.cambridge.org/core/journals/canadian-journal-of-mathematics/article/two-theorems-on-mosaics/8B3ECBB3B19A038EDC0074B92E2524A5) [journals/canadian-journal-of-mathematics/article/two-theorems-on-mosaics/](https://www.cambridge.org/core/journals/canadian-journal-of-mathematics/article/two-theorems-on-mosaics/8B3ECBB3B19A038EDC0074B92E2524A5) [8B3ECBB3B19A038EDC0074B92E2524A5](https://www.cambridge.org/core/journals/canadian-journal-of-mathematics/article/two-theorems-on-mosaics/8B3ECBB3B19A038EDC0074B92E2524A5).
- [7] G.H. Hardy, A mathematician's apology, Canto, Cambridge University Press, Cambridge, 1992. Available online at the URL: [https://www.cambridge.org/core/books/](https://www.cambridge.org/core/books/mathematicians-apology/A344F9D097F5AFF45BDA21B57B54BDCA) [mathematicians-apology/A344F9D097F5AFF45BDA21B57B54BDCA](https://www.cambridge.org/core/books/mathematicians-apology/A344F9D097F5AFF45BDA21B57B54BDCA).
- [8] S. Hernández Hernández, F. Luca, Palindromic powers, Rev. Colombiana Mat., 40 (2006), 81–86.
- [9] L.F. Klosinski, D.C. Smolarski, On the reversing of digits, Math. Mag., 42 (1969), 208–210. Available online at the URL: <https://www.jstor.org/stable/2688542>.
- [10] M. Lal, Iterates of a number-theoretic function, *Math. Comp.*, **23** (1969), 181–183. Available online at the URL: <https://www.ams.org/journals/mcom/1969-23-105/S0025-5718-1969-0242765-9>.
- [11] J.F. Morgenbesser, L. Spiegelhofer, A reverse order property of correlation measures of the sum-ofdigits function, *Integers*, 12 (2012), Paper No. A47. Available online at the URL: [http://math.](http://math.colgate.edu/~integers/m47/m47.pdf) [colgate.edu/~integers/m47/m47.pdf](http://math.colgate.edu/~integers/m47/m47.pdf).
- [12] A.A. Mullin, Some related number-theoretic functions, Research Problem 4, Bull. Amer. Math. Soc., 69 (1963), 446–447. Available online at the URL: [https://www.ams.org/journals/bull/](https://www.ams.org/journals/bull/1963-69-04/S0002-9904-1963-10961-1) [1963-69-04/S0002-9904-1963-10961-1](https://www.ams.org/journals/bull/1963-69-04/S0002-9904-1963-10961-1).
- [13] OEIS Foundation Inc. (2023), The On-Line Encyclopedia of Integer Sequences, Published electronically at <http://oeis.org>.
- [14] The PARI Group, PARI/GP version 2.13.0, Univ. Bordeaux, 2020, [http://pari.math.](http://pari.math.u-bordeaux.fr/) [u-bordeaux.fr/](http://pari.math.u-bordeaux.fr/).
- [15] P. Pongsriiam, Longest arithmetic progressions of palindromes, J. Number Theory, 222 (2021), 362–375. Available online at the URL: [https://www.sciencedirect.com/science/article/pii/](https://www.sciencedirect.com/science/article/pii/S0022314X20303577) [S0022314X20303577](https://www.sciencedirect.com/science/article/pii/S0022314X20303577).
- [16] P. Pongsriiam, K. Subwattanachai, Exact formulas for the number of palindromes up to a given positive integer, Int. J. Math. Comput. Sci., 14 (2019), 27-46. Available online at the URL: [http:](http://ijmcs.future-in-tech.net/14.1/R-Pongsriiam.pdf) [//ijmcs.future-in-tech.net/14.1/R-Pongsriiam.pdf](http://ijmcs.future-in-tech.net/14.1/R-Pongsriiam.pdf).
- [17] L. Spiegelhofer, A digit reversal property for an analogue of Stern's sequence, J. Integer Seq., 20 (2017), Art. 17.10.8. Available online at the URL: [https://cs.uwaterloo.ca/journals/JIS/](https://cs.uwaterloo.ca/journals/JIS/VOL20/Spiegelhofer/spieg2) [VOL20/Spiegelhofer/spieg2](https://cs.uwaterloo.ca/journals/JIS/VOL20/Spiegelhofer/spieg2).
- [18] L. Spiegelhofer, A digit reversal property for Stern polynomials, Integers, 17 (2017), Paper No. A53. Available online at the URL: <http://math.colgate.edu/~integers/r53/r53.pdf>.

THE PUMP JOURNAL OF UNDERGRADUATE RESEARCH 7 (2024), 186–206 204

- [19] A. Sutcliffe, Integers that are multipled when their digits are reversed, Math. Mag., 39 (1966), 282– 287. Available online at the URL: [https://www.tandfonline.com/doi/abs/10.1080/0025570X.](https://www.tandfonline.com/doi/abs/10.1080/0025570X.1966.11975742) [1966.11975742](https://www.tandfonline.com/doi/abs/10.1080/0025570X.1966.11975742).
- [20] D. Tsai, On the computation of fundamental periods of v-palindromic numbers, Integers, 22 (2022), Paper No. A77. Available online at the URL: <http://math.colgate.edu/~integers/w77/w77.pdf>.
- [21] D. Tsai, The fundamental period of a periodic phenomenon pertaining to v-palindromes, preprint, 2021 (previous arxiv version of [\[20\]](#page-19-2)). Available online at the URL: [https://arxiv.org/abs/2103.](https://arxiv.org/abs/2103.00989) [00989](https://arxiv.org/abs/2103.00989).
- [22] D. Tsai, The invariance of the type of a v-palindrome, preprint, 2021. Available online at the URL: <https://arxiv.org/abs/2112.13376>.
- [23] D. Tsai, Natural numbers satisfying an unusual property, $Sūgaku Seminar$, **57** (2018), 35–36 (written in Japanese). Available online at the URL: <https://www.nippyo.co.jp/shop/magazine/7893>.
- [24] D. Tsai, A recurring pattern in natural numbers of a certain property, Integers, 21 (2021), Paper No. A32. Available online at the URL: <http://math.colgate.edu/~integers/v32/v32.pdf>.
- [25] D. Tsai, Repeated concatenations in residue classes, preprint, 2021. Available online at the URL: <https://arxiv.org/abs/2109.01798>.
- [26] D. Tsai, v-palindromes: an analogy to the palindromes, preprint, 2021. Available online at the URL: <https://arxiv.org/abs/2111.10211>.

Chris Bispels 1000 Hilltop Cir. University of Maryland, Baltimore County Baltimore, MD 21250 E-mail: cbispel1@umbc.edu

Muhammet Boran Yildiz Technical University 34220 Esenler Istanbul, Turkiye E-mail: muhammet.boran@std.yildiz.edu.tr

Steven J. Miller Williams College 880 Main St. Williamstown, MA 01267 E-mail: sjm1@williams.edu

Eliel Sosis University of Michigan 505 S State St. Ann Arbor, MI 48104 E-mail: esosis@umich.edu Daniel Tsai National Taiwan University, No. 1, Sec. 4 Roosevelt Rd. Taipei 10617, Taiwan (R.O.C) E-mail: tsaidaniel@ntu.edu.tw

Received: October 20, 2023 Accepted: September 7, 2024 Communicated by Bruce Landman