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Abstract - Around the year 2007, one of the authors, Tsai, accidentally discovered a
property of the number 198 he saw on the license plate of a car. Namely, if we take 198 and
its reversal 891, which have prime factorizations 198 = 2-32-11 and 891 = 3*-11 respectively,
and sum the numbers appearing in each factorization getting 2 + 3 + 2 + 11 = 18 and
3+ 4+ 11 = 18, both sums are 18. Such numbers were later named v-palindromes because
they can be viewed as an analogy to the usual palindromes. In this article, we introduce the
concept of a v-palindrome in base b and prove their existence for infinitely many bases. We
also exhibit infinite families of v-palindromes in bases p + 1 and p? + 1, for each odd prime
p. Finally, we collect some conjectures and problems involving v-palindromes.
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1 Introduction

If T (D. Tsai) recall correctly, it was in the year 2007 when I was 15 years old. My mother
and younger brother were in a video rental shop near our home in Taipei and my father
and I were waiting outside the shop, standing beside our parked car. I was a bit bored
and glanced at the license plate of our car, which was 0198-QB. For no clear reason, I
took the number 198 and did the following. I factorized 198 = 2 - 32 - 11, reversed the
digits of 198, and factorized 891 = 3%-11. Then, I summed the numbers appearing in each
factorization: 24+ 34+ 2+ 11 = 18 and 3 + 4 4+ 11 = 18, respectively. Surprisingly to me,
they are equal! We also illustrate this pictorially in Figure (). Afterwards I spent some

198 = 2-32-11 —— 2+(3+2)+11
T |
digit reversal 18
XS |
891 = 311 ——  (34+4)+11

Figure 1: 198 is a v-palindrome in base 10

*This work was supported in part by the 2022 Polymath Jr REU program.
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time trying to prove there are infinitely many such numbers (we define them rigorously
in Subsection , but could not show it.

In October 2018, I published a one-and-a-half page note [23] in the Stgaku Seminar
magazine, which is sort of like the American Mathematical Monthly of Japan, defining
v-palindromes and showing their infinitude. However, I recall knowing how to show their
infinitude as early as the summer of 2015.

In March, 2021, I published the paper [24], first calling such numbers v-palindromes.
I proved a general theorem [24], Theorem 1] describing a periodic phenomenon pertaining
to v-palindromes. Then, in August of 2022, I published [20] (formerly [2I] on arxiv), in
which more in-depth investigations were done. I also wrote the manuscripts [22, 25| 26]
([26] is a former version of this manuscript) which are, at time of writing, preprints.

In Subsection [I.1 we define v-palindromes in a general base, briefly discuss prime v-
palindromes, and explain why the v-palindromes can be considered an analogue to the
usual palindromes. In Subsection [1.2] we give an outline of the rest of the paper. In
Subsection [1.3], we review other related work.

1.1 ov-Palindromes

Recall the base b representation of a natural number where b > 2 is the base. For every
natural number n, there exist unique integers L > 1 and 0 < ag,aq,...,ar_1 < b with
ar_1 # 0 such that

n = agh“V +a bV 4y (1)

We also denote this as n = (ag_1, -+ ,a1,a9),. Thus L is the number of base b digits of
n. We define the digit reversal in base b of n to be

rb(n) =ap_1+ar_ob+---+ aobL_l.

For instance, 110(18) = 81, r10(2) = 719(200) = 2, and r2(2) = r2((1,0)2) = 1. Next we
define a function v(n) to denote “summing the numbers appearing in the factorization”.

Definition 1.1 Suppose that the prime factorization of the natural number n is

n=pipia g (2)
where s,t > 0 and &1, ...,es > 2 are integers and py,...,ps,q1,--.,q are distinct primes.
Then we set .

v(n) =Y (pite)+ Y a4
i=1 Jj=1

Notice that v(n) is an additive function, i.e., v(mn) = v(m) + v(n) whenever m and n
are relatively prime natural numbers. The values of v(n) have been created as sequence
A338038 in the On-Line Encyclopedia of Integer Sequences [13]. We can now make the
following definition.
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Definition 1.2 (v-palindrome) Let b > 2 be an integer. A natural number n is a v-
palindrome in base b if

(i) btn,
(ii) n # rp(n), and
(iii) v(n) = v(ry(n)).

The set of v-palindromes in base b is denoted by V.

Condition (i) is included merely for the aesthetic look of n and r,(n) having the same
number of digits. Condition (ii) is included since if n = r,(n), then condition (iii) holds
trivially, and so nothing is surprising. The sequence of v-palindromes in base ten has been
created as sequence A338039 in [I3]. A generalization of Figure (1)), with the factorizing
step omitted, would be as follows:

n +—— v(n)

i I

digit reversal in base b same number

" I

ry(n) +——  v(rp(n))

Figure 2: wv-palindromes in base b

Only base ten is dealt with in [20, 22] 23], 24, 25], but most of the results and proofs
therein generalize straightforwardly to a general base.

It is conjectured in [23] (a)] that there are no prime v-palindromes in base ten. Re-
cently, Boran et al. [2] characterized prime v-palindromes in base ten and showed that
they are precisely the primes of the form 5 - 10™ — 1 such that 5 - 10™ — 3 is also prime.
Thus, prime v-palindromes in base ten, if any exist, must be twin primes.

When we consider an arbitrary base, however, we have been able to find several prime
v-palindromes. For example, 109 is a prime v-palindrome in base 16. We have that
v(109) = 109 since 109 is prime, and 716(109) = 76((6,13)16) = (13,6)16 = 214. Then
v(r16(109)) = v(214) = 107 + 2 = 109, so 109 is a v-palindrome in base 16. Notice that
109 happens to be a twin prime, but we can also find examples of prime v-palindromes
that are not twin primes. For example, 467 is a prime v-palindrome in base 276, yet 467
is not a twin prime. It remains an open problem to classify which bases are similar to
base 10 where any prime v-palindrome must necessarily be a twin prime.

We now explain how v-palindromes can be viewed as an analogy to usual palindromes.
Recall the following definition of the usual palindrome.

Definition 1.3 (palindrome) Let b > 2 be an integer. A natural number n is a palin-
drome in base b if n = ry(n).
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The definition of v-palindromes can be obtained from that of the usual palindromes by
applying v to the equality n = r,(n) and then including the conditions (i) and (ii) for
the reasons explained earlier. The mere application of v to the equality n = r,(n) causes
palindromes and v-palindromes to behave very differently. Although the function v is a
specific as function defined above, there is nothing special about it. It is equally conceiv-
able to use any other function f: N — C instead in condition (iii), calling the defined
kind of numbers f-palindromes.

1.2 Outline and Main Results of This Paper

In Section [2, we recall infinitely many more examples of v-palindromes in base ten from
the previous works [23], 24], 25]. In Section , we state analogous results in a general base
b of results in base ten from [20] 24], as well as prove that if there exists a v-palindrome
in a base b, then there exists infinitely many (Theorem [3.7). In Section 4 we exhibit
v-palindromes in bases p + 1 and p? + 1, for each odd prime p. In Section [5| we prove
that v-palindromes exist in every base b satisfying a certain congruence (Corollary .
Finally in Section [0, we discuss further problems pertaining to v-palindromes in a general
base.

1.3 Other Related Work

In this section, we give references to other works related to v-palindromes in various
ways. For results on the usual palindromes, we refer the reader to Goins [5], Hernandez
Herndndez and Luca [§], Pongsriiam [I5], Pongsriiam and Subwattanachai [16], and the
references therein, though there is much more literature available on palindromes.

Digit reversal has been studied in the past. In Hardy [7], it is mentioned that 4-2178 =
8712 and 9 - 1089 = 9801. Therefore the numbers 2178 and 1089 have the property that
their digit reversal is a multiple of (at least twice) themselves. Following Sutcliffe [19], in
general we are solving kn = r,(n) for integers k > 2, n > 1, and b > 2. If n has one base
b digit, then n = r,(n) and there is no solution. Hence n has at least two base b digits.
Then by the generalization of [2, Lemma 2.3] to a general base, n? has more base b digits
than n. Now, as r,(n) has no more base b digits than n, we have that n* has more base b
digits than 7(n). Consequently, kn = r(n) implies that kn = ry(n) < n?, and so k < n.
In [19], the case of n having less than four base b digits is addressed completely, whereas
the case of n having four base b digits is partially addressed. Klosinski and Smolarski
[9] also considered this problem, and mentioned that 4 - 219---978 = 879 ---912 for any
number of 9’s in between, generalizing the aforementioned 4 - 2178 = 8712 nicely.

Other functions similar to v(n) have been studied by many authors. Alladi and Erdos
[1] and Lal [10] studied the function

s t
An) = szfz‘ + Z 4>
i=1 j=1

following the same notation as Equation (2)). In [I], analytical and other aspects of
A(n) are studied. In [10], iterates of A(n) are investigated. Mullin [I12] and Gordon and

THE PUMP JOURNAL OF UNDERGRADUATE RESEARCH 7 (2024), 186206 189



Robertson [6] studied the function

Y(n) =]]pei- [
i=1 j=1

In [12], research problems on 1(n) were posed, and [6] proved two theorems on ¥ (n).
Similar equalities to the condition v(n) = v(ry(n)) from the definition of

v-palindromes, with another function in place of v, have been studied by several authors.
Following Spiegelhofer [17], we define Stern’s diatomic sequence s(n) by s(0) = 0, s(1) = 1,
and s(2n) = s(n) and s(2n+1) = s(n)+s(n+1) for all n > 1. In Dijkstra [3], a problem is
given asking to show s(n) = s(rq(n)) for all n > 1. Dijkstra also proved this equality in [4]
pp. 230-232]. Following [17] again, we define the function b(n) introduced by Northshield
as b(0) =0, b(1) =1, and

b(3n) = b(n),
b(3n41) = V2-b(n) + b(n + 1),
b(3n +2) = b(n) + V2 -b(n + 1),

for all n > 0. Then it is proved that b(n) = b(rs(n)) for all n > 1 [I7, Theorem 1]. [I7,
Theorem 2] gives a slightly intricate sufficient condition for a complex-valued function
f(n) and integer b > 2 to satisfy f(n) = f(ry(n)) for all n > 1, to which [I7, Theorem
1] is a corollary. Following Spiegelhofer [I§], we define an analogue of Stern’s diatomic
sequence, the Stern polynomials s,(x,y), by si(z,y) = 1 and sy, (x,y) = s,(x,y) and
Son+1(2,y) = x5,(x,y) + Yspi1(z,y) for n > 1. It was proved that s,(z,y) = sp,m) (2, y)
for allm > 1 [I8, Theorem 1]. We introduce a final equality of this type from Morgenbesser
and Spiegelhofer [I1]. Let o}, be the sum-of-digits function in base b > 2. For @ € R and
integers n > 1, define

v(a,n) = lim 1 Ze%ia(ab(k+n)wb(k))_

r—00 I
k<x

Then it is proved that v(a,n) = y(«, rp(n)) for all n > 1 [11, Theorem 1].

2 More v-Palindromes in Base Ten

We illustrated in Figure that 198 is a wv-palindrome in base ten. That there are
infinitely many v-palindromes in base ten is shown in [23] by specifically showing that all

numbers
18,198,1998, ..., (3)

with any number of nines in the middle are v-palindromes in base ten. Also, [23] mentions
that all numbers of the form
18,1818, 181818, ..., (4)
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with any number of 18s concatenated, are v-palindromes in base ten. In fact, the main
theorem of [24] is inspired by Equation (4]). Both Equations (3] and (4)) seem to be derived
from the number 18. They are subsets of the following more general family.

Theorem 2.1 ([[25], Theorem 3]) If p is a palindrome in base ten consisting entirely
of the digits 0 and 1, then 18p is a v-palindrome in base ten.

This theorem relates the usual palindromes with the v-palindromes. If we take p to be
a repunit, then we get Equation . If we take p to have alternating digits of 0 and 1,
then we get Equation . If we take p to have only the first and last digits being 1 and
at least one 0 in between, then we deduce the family of v-palindromes in base ten

1818, 18018, 180018, . . .,

with any number of 0’s in between two 18’s.
Thus the infinitude of v-palindromes in base ten is well-established.

3 Past Results for a General Base

In this section we state some past results from [20, 24], which were just for base ten, for a
general base. The base ten proofs generalize straightforwardly to a general base. Finally
we show that if there exists a v-palindrome in a base b, then there exists infinitely many
(Theorem |3.7]).

3.1 A Periodic Phenomenon

We state the main theorem of [24], which describes a periodic phenomenon involving v-
palindromes and repeated concatenations in base ten, for a general base. The proof in
[24] is only for base ten, but is easily adapted for a general base. Before that, we provide
notation for repeated concatenations.

Definition 3.1 Suppose that n = (ap_1,...,a1,a9)y is a base b representation and k > 1
is an integer, then we denote the repeated concatenation of the base b digits of n consisting
of k copies of n by n(k),. That is,

n(k)y = (ap—1,---,01,00,a1 1,.-.,01,00, .. JAL 1y, Q1,00)p
~ TV
k copies of ar,_1,...,a1,a9
1 _bLk
:n(1+bL++b(k_1)L):n1 bL'

For instance, 18(3)19 = 181818 and 201(4);o = 201201201201. Now we can state the main
theorem of [24] for a general base as follows.
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Theorem 3.2 ([[24], Theorem 1] for a general base) Let b > 2 be an integer. For
every natural number n with bt n and n # ry(n), there exists an integer w > 1 such that
for all integers k > 1,

n(k), € Vy, if and only if n(k +w), € V.
Based on this theorem, we can make the following definitions.

Definition 3.3 The smallest possible w in the above theorem is denoted by wo(n)y. If the
base b digits of n can be repeatedly concatenated to form a v-palindrome in base b, i.e.,
if there exists an integer k > 1 such that n(k), € Vy, then the smallest k is denoted by
c(k)p; otherwise we set c¢(n), = co.

The sequence of numbers n such that ¢(n)19 < oo has been created as sequence A338371
in the On-Line Encyclopedia of Integer Sequences [I3]. Hence there remains the problem
of finding wy(n), and ¢(n),. [20] solves this problem for b = 10 by associating to each n a
periodic function Z — {0, 1} which we describe in the next subsection.

3.2 Associated Periodic Function

Fix a base b > 2 and a natural number n with b t n and n # ry(n) throughout this
subsection. To have a clearer picture of the periodic phenomenon illustrated in Theorem
3.2] we define the function I}': N — {0, 1} by setting

n o 0 if n(k)b ¢ Vb,
Iy (k) = {1 if n(k), € V,.

Then by Theorem [3.2] 1" is a periodic function. It therefore has a unique periodic extension
I': Z — {0, 1} which we give the same notation. By [20, Theorem 11], I;* can be expressed
as a linear combination when b = 10, and the same holds for a general base. We first give
notation for certain functions used to form the linear combination.

Definition 3.4 For a natural number a, denote by I,: 7Z — {0,1} the function defined
by

0 4 k

1 ifalk.
That is, 1, is the indicator function of aZ in 7.

We can now state the linear combination as follows.

Theorem 3.5 ([[20], Theorem 11] for a general base) The function I}’ can be ex-
pressed in the form

IP = My, + Xoloy + -+ Al ()

where the u >0, 1 <ay < ag < -+ < ay, and A\, g, ..., A\, # 0 are integers.
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Having expressed the function I’ in the form of Equation , we use the following result
to find wo(n), and c¢(n)s.

Theorem 3.6 ([[20], Corollaries 4 and 5] for a general base) The smallest period
wo(n)p and c(n)y can be found from the expression by

wo(n)py = lem{ay, ag, . .., ay},

c(n)y = inf{ay, as,...,a,} = {

oo ifu=0
a1 ifu>1.

This infimum is thought of as that in the extended real number system.

We did not say how to express ;' in the form of Equation . A definite procedure
for doing this, for b = 10, is described in [20], and is easily adapted for a general base.
3.3 One Implies Infinitely Many

We show that if there exists a v-palindrome in base b, then there exist infinitely many.

Theorem 3.7 Let b > 2 be an integer. If there exists a v-palindrome in base b, then there
exist infinitely many v-palindromes in base b.

Proof. Suppose that n is a v-palindrome in base b. We have the associated function
I' from the previous subsection. If n is a v-palindrome in base b that means IJ'(1) = 1.
Since I} is periodic, say with period w, we see that

M) =M1 4w) =1+ 2w) =

Consequently,
n(1)p, n(1 4+ w)p, n(1 4 2w)y, . ..

are all v-palindromes in base b. 0

4 v-Palindromes in Bases p+ 1 and p?> + 1

In this section we give more examples of v-palindromes in bases other than ten. In
Subsection .1} we give examples of v-palindromes in bases p + 1, for each odd prime p.
In Subsection , we give examples of v-palindromes in bases p? + 1, for each odd prime
p. We first prove the following lemmas.

Lemma 4.1 Let n € N. Then r,1(2n) = n%.

Proof. We have
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Fea(20) = (2041 1))

= rpp1(2n+2—2)

= rpun+l4+n+1-2))
m+1-2)-(n+1)+1
= n+1)P2—-2n+1)+1

= (n+1-1)
= n’
O
Lemma 4.2 Let p be an odd prime. Then v(2p) = v(p?).
Proof. We find that
v(2p) = v(2)+u(p) = 2+p = V().
U
4.1 ov-Palindromes in Base p + 1
We have the following theorem.
Theorem 4.3 Let p be an odd prime. Then 2p € V, ;.
Proof. We have 2p and by Lemma [4.1] we obtain
rp(2p) = P (6)

It is clear from the base p 4+ 1 representation of 2p, namely (1,p — 1),41, that we have
p+112p and 2p # rp1(2p). Finally, because p is an odd prime, using Equation (6) and
Lemma (4.2 we have

v(2p) =2+ p =v(p*) = v(rp+1(2p))-

This shows that 2p € V.. O

Next we consider repeated concatenations of 2p in base p+ 1, where p is an odd prime.
As in the proof of Theorem both 2p and p? are two digits long in base p + 1. Using
similar notation to [24], we define

k—1 k-1
pra = Y P+ 1D¥ = 1+) (p+1)%
=0 =1

for integers k > 1. We find that 2 | p+ 1 as p is odd, so 2 | 3257 (p + 1)%, and hence

24 pro. We also want to know when p is coprime with py o.
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Note that

k-1 k-1
Pr2 = Z(p~|—1)2Z = Zlm = k mod p. (7)
i=0 i=0

Thus, p | preo if and only if p | k. We use these two facts to prove the following theo-

rem, recalling that (2p)(k),+1 and (p*)(k),s1 denote repeated concatenations according
to Definition [3.1]

Theorem 4.4 Let p be an odd prime and k € N. Then (2p)(k)p+1 € Vi1 if and only if
prk.

Proof. Since 2p = (1,p — 1),+1, we have r,1(2p) = (p — 1,1),41 = p? and that

2p)(K)ps1 = 2D pra, o1 (20 pr2) = P proa. (8)

Since pg 2 is an odd number and from Equation , given p { k we know p is coprime
with pg 2. Using the additive property of v, Lemma , and Equation , we find,

v(2p - pr2) = v(2p) +v(pk2)
= v (p?) + v(pnz)
= v(p* pr2)

= V(11 (20 pr2)) -

Since 2p - pro = (Lp—1,...,1,p — 1)p+1, we know that p+ 11 2p - pro. Lastly, we
) =

know that 2p - pra # rp+1 (2p Pr2) =P pra as 2p # p?, therefore (2p)(k)pi1 € Vpia.
Conversely, assume (2p)(k),+1 € V,11. Suppose p | k. According to Equation (g),
(k

(2p)(K)ps1 = 2p - pr2 and 741 ((2p)(k)pi1) = p* - pr.2. Equation tells us that pyo =k
mod p. Since p | k we have

pra = 0 mod p,
S0 D | pr2. Hence we can rewrite pg 2 as pgo2 = p® - n, where a,n € N and p { n. Note that

P2 is odd so 2 { n. Applying v to (2p)(k),+1 we find

v((2p)(k)pi1) = v(2p- pra) = v(2-p*"-n) = 24+ p+a+1+o(n)
and
V(1 ((20)(K)pi1)) = v(0® - pr2) = v -n) = p+a+2+v(n),

which contradicts the fact that (2p)(k)y+1 € Vpi1. Hence if (2p)(k)pt1 € Vi1, then p 1 k.
0

For our last pattern of v-palindromes in these bases, we require the following lemma.

Lemma 4.5 Let n,k € N withn >2 andb=n+ 1. Then

1. (l,n,...,n,n—l)nH = in(k+1)b; and
k
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2. (n—1,n,....,n, 1)1 = n?-1(k+1).
k

Proof. Note that 2n = (1,n — 1), and n*> = (n — 1,1),,1. Using this, we find

1.
2n-1(k+1)y, = (L,n—1)par - (1, , 1)paq
———
k+1
= (In=—141n—-141,....,n—-14+1,n—1),1
&
= (I,n,...,n,n— 1)1,
k
2.
n21<k+l)b = (n_171>n+1'(17"' 71)7L+1
———
k+1
= (n—-1L14n—-1,...;14+n—1,1),1
b
= (n—1,n,...,n,1)pq1.
———

k

O

We use this to prove the following theorem.

Theorem 4.6 Let p be an odd prime, k € N, pt k+1, andb = p+1. Then2p-1(k+1), €
Vi1

Proof. We find that

(Lpa Y Y 2 1)p+1 7& (p - 17p7 - D, 1)p+1
Hk,_/ T/

- rp+1((]-7p7 R 2% L ]‘)IH-I)
k

this also shows 7,1 (2p - 1(k +1),11) = p? - 1(k + 1),41). We have
P p P

k
Lk+1) = > (p+1).
i=0
From this, we find
k k
1k+1), = ) (p+1) = Y (1)) = k+1 modp.
i=0 i=0
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Since p { k+ 1 we know p 1 1(k+1),. Additionally, we know 2 1 1(k+1),. Further, we find
p+112-1(k+1),s0p+112p-1(k+1)p. Finally we show the numbers are v-palindromes
by using the additivity of v, Lemma and Equation . We find that

v((L,p, .. ospp—1)pi1) = v(2p- Lk + 1))
———

2p) +v(1(k + 1))

p*) +v(L(k + 1))

= v(p”- 1(k+ 1))

=ov((p—1p...,p,1)pt1).
——

This shows that 2p - 1(k + 1), € V,44. O

4.2 ov-Palindromes in Base p? + 1

Recall [25, Theorem 3], which applies to a base b = 3% 4+ 1. We begin by generalizing this
Theorem to all bases one greater then an odd prime squared. We set base b = p? + 1 as
our base, keeping p as an odd prime for the remainder of this section.

Theorem 4.7 Let p be an odd prime. If p is a palindrome in base b = p* + 1 consisting
entirely of the digits 0 and 1, then 2p*p € V244

Proof. We begin by noting that bt p, since if p has a last digit of 0 then it has a leading
digit of 0, however this means p is not a palindrome as any leading digits of 0 are ignored
making p of the form 1,...,0. Thus we know the last digit of p is 1. Further, since we
know p is odd, p? + 1 is even thus any number with last digit 1 is odd, so we know 2 { p.

When read from left to right, p must be formed by a; ones, followed by ay zeros,
followed by az ones, and so on until lastly, as._1 ones, where r,a,as,...,as._1 € N such
that a; = ag,_; for integers i € [1,2r — 1]. Writing out p we get

Using the equalities 2p* = (1,p? — 1),24; and p* = (p* — 1,1),2,; we find

2p°p =
a2—1 az—l
(17p27"'7p27q?07"'?071)p2)"'7p27q7'")17p27'")p2)q703"'70317p27"'?p27q)p2+1
—— —— —— ——
alfl agfl a371 alfl
and
4
pp=
agfl azfl
(q7p27 R 7p27 1707 .- '707qap27‘ .. Jp27 17‘ .. 7q7p27’ .. 7p271707 R 707q7p27 oo 7.7727 1)p2+1
—— —— —— N——
alfl agfl agfl alfl
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where ¢ = p? — 1 has been substituted to save space. From this we clearly see that
p* + 11 2p°p and that p*p = r,2,1(2pp) # 2p®p. Let a > 0 and n > 1 be integers such
that p = p®n and (p,n) = 1. Then

v(2p%p) = v(2p® - pn)
= v(2p***n)
= 24+p+2+a+v(n)
= v(p*t*n)
= wv(p'-p™n)
= v(rp(20%p)).

This shows that 2p*p € V,2,4.
0

Next we prove three Corollaries to Theorem [4.7] that mirror the three theorems proved
in Subsection [4.1]

Corollary 4.8 Let p be an odd prime. Then 2p* € V,244.

Proof. Note that 2p? = 2p? - 1. Since 1 is a palindrome consisting only of the digit 1,
by Theorem we have 2p* € V2 4. O

Corollary 4.9 Let p be an odd prime and k € N. Then (2p*)(k)y241 € Vo u1.
Proof. We note that (2p?)(k),211 = 2p* - pi, where

pr = (1,0,1,0,...,0,1,0,1),2,1;

~~
2k—1

pr is a palindrome consisting entirely of the digits 0 and 1. Thus, by Theorem we
know (2p*)(k)p241 € Vy2iq O

Corollary 4.10 Letp be an odd prime, k € N and b = p*+1. Then 2p*-1(k+1), € V,24;.

Proof. As 1(k+ 1), consists only of the digit 1, we know it is a palindrome. Therefore,
by Theorem [4.7| we know 2p* - 1(k + 1),241 € V,244.
[

5 Existence of v-Palindromes for Infinitely Many Bases

In this section we show the existence of v-palindromes (and therefore infinitely many v-
palindromes by Theorem for infinitely many bases. Everything is based on the simple
fact that v(5) = v(6). Since v(n) is an additive function, for every integer ¢ > 1 with
(t,30) = 1, we have v(5t) = v(6t).

Imagine that we have a base b > 2 for which we would like to show that a v-palindrome
exists. The first attempt would be to look at two-digit numbers. That is, numbers
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(a,c)p = ab+ ¢, where 1 < a < ¢ < b are integers. By definition, (a, ¢), is a v-palindrome
in base b if and only if v((a, c),) = v((c,a),), or equivalently,

v(ab+ c) = v(cb+ a).

This would hold if for some integer ¢t > 1 with (¢,30) = 1,

{ab+c = bt, (9)

cb + a = 6t,

simply by the observation in the previous paragraph. To summarize, we have shown the
following.

Lemma 5.1 Let b > 2 be an integer. If there exists an ordered triple (a,c,t) of positive
integers such that a < ¢ < b, (t,30) = 1, and Equation @D holds, then the two-digit
number (a,c)y is a v-palindrome in base b. Hence, there exists a v-palindrome in base b.

Definition 5.2 We call a triple (a,c,t) in the premise of the above lemma a permissible
triple for b.

Our strategy is to try to find permissible triples. The system @ can be written in matrix

from as
b 1 a\ ; 5
1 ) \c) “\6)°
Solving this we have

a\ _, (b N\t (b -1\ /5
¢c) " "\1 b 6/ »2—-1\-1 b ) \6
t(5b—6
= o < 5b_6> = (t((ﬁi)—&-lﬁl)))) .
b2 _—1\—5+6b ot

We write this separately as

o= 100 =6) - U6b—5)
b2 —1

21 (10)

from which we also see that 0 < a < c¢. Hence we have the following lemma.

Lemma 5.3 Let b > 2 be an integer. For every integer t > 1, there exist unique rational
numbers a,c € Q such that Equation @ holds, and they are given by Equation .
Moreover, 0 < a < c.

Hence the only possible permissible triples for b are

<t(5b —6) t(—5+6b) 7 t> |

-1~ -1
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for an integer ¢ > 1 with (¢,30) = 1. The only missing conditions to fulfill are
t(bb—6) t(—5+ 6b)

Po1 0 o1 S (11)
t(—5 + 6b)
We write
t(5b—6)  t(5b—6)/(5b—6,b° — 1)
-1  (®-1)/(5b—6,02—1)"
t(=5+6b)  t(—5+6b)/(—5+6b,b* —1)
-1 (12— 1)/(=5+6bb2—1) °
Hence we see that Equation holds if and only if ¢ is a multiple of

-1 -1
J(b) = [(56—6,1)2—1)’ (—5+6b,62—1)};

here we also defined the function f(b) for integers b > 2. Hence we have shown the
following lemma.

Lemma 5.4 Let b > 2 be an integer. Then the permissible triples of b are precisely the

triples
t(bb —6) t(—5+ 6b) ;
-1~ -1 ")

where

teS(b):{teN:(t,BO)zl, f(@ltK%};

where we also defined the set-valued function S(b) for integers b > 2.

While the above lemma does not guarantee that permissible triples exist, i.e., S(b) # &,
we can derive the following sufficient condition.

Lemma 5.5 Let b > 2 be an integer. If

b(b* — 1)
—5+46b’

then f(b) € S(b), and consequently there is a permissible triple for b.

Since f(b) | b* — 1, if (b — 1,30) = 1 then (f(b),30) = 1. Hence the above lemma can be
weakened to the following.

(f(b),30) =1, f(b) <

Lemma 5.6 Let b > 2 be an integer. If

b(b? —1)
—5+46b’

then f(b) € S(b), and consequently there is a permissible triple for b.

(b —1,30) =1, f(b)<
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We now consider the condition (b* — 1,30) = 1. It is easily shown that this is equivalent
to having both b =0 (mod 6) and b = 0, 2,3 (mod 5). In particular, b = 0 (mod 30) is a
sufficient condition. Suppose that £ > 1 is an integer, then

B (30k)? — 1 (30K)* — 1

F(30k) = [(5(30@ 6, (30k) — 1)’ (=5 + 6(30k), (30K)2 — 1)
_[(B0K)> =1 (30K)* — 1

N {(% —2,11)7 (5k+2,11) ]

where for the second equality we used a property of the greatest common divisor function
to simplify. Because of the right inequality in Equation , we want f(30k) to be small.
Thus it might be good if we have (6k — 2,11) = (5k + 2,11) = 11, which is easily shown
to be equivalent to kK = 4 (mod 11). If we assume that k¥ =4 (mod 11), then

(30k)% — 1

30k) =
On the other hand, the right-hand-side of the right inequality becomes

(30k)((30K)2 — 1)
—5 + 6(30k)

That f(30k) is strictly less than the above quantity is equivalent to
-5+ 6(30k) < 11(30k),
which always holds. Hence the above lemma can be further weakened to the following.

Theorem 5.7 Let k =4 (mod 11) be a positive integer, then

—6 + 150k —5+ 180k —1 + 900k>
11 ’ 11 ’ 11

15 a permissible triple for the base 30k. In particular, the two-digit number

(—6 + 150k 5+ 180k)
n 1 -

15 a v-palindrome in base 30k.

Hence we have proved the existence of v-palindromes for infinitely many bases, summa-
rized as follows.

Corollary 5.8 Ifb = 120 (mod 330) is a positive integer, then there exists a v-palindrome
in base b.

In particular there is a positive density of bases b > 2 for which a v-palindrome exists.
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6 Further Problems

In this section we describe some directions for further investigation.

6.1 Three Conjectures

In the short note [23], three conjectures on v-palindromes in base ten have been proposed
by commentators and we restate them as follows.

Conjecture 6.1 ([[23], (a)]) There does not exist a prime v-palindrome in base ten.

Conjecture 6.2 ([[23], (b)]) There are infinitely many v-palindromes n in base ten such
that both n and r9(n) are square-free.

Conjecture 6.3 ([[23], (c)]) The only positive integer n such that n # r4(n) and n =
v(r(n)) is 49.

As mentioned in Subsection the prime v-palindromes in base ten are characterized
in [2]. This result, however, does not prove nor disprove Conjecture . Also noted in
Subsection is that there are prime v-palindromes in bases 16 and 276. Hence we may
consider the following problem.

Problem 6.4 Let b > 2 be an integer. When does there exist a prime v-palindrome in
base b7

We may also consider Conjectures [6.2] and [6.3] for a general base.

6.2 Two Problems

While [16] provides an exact formula for the number of palindromes up to a given positive
integer, the same can be considered for v-palindromes, namely the following.

Problem 6.5 Let b > 2 be an integer. Is there a formula for the number of v-palindromes
in base b up to a given positive integer? If not, how can it be approximated?

From 199 until 575 are 377 consecutive positive integers which are not v-palindromes in
base ten. Just as sequences of consecutive composite numbers can be arbitrarily long, we
may consider the following problem.

Problem 6.6 Let b > 2 be an integer. Can a sequence of consecutive positive integers
each not a v-palindrome in base b be arbitrarily long?
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6.3 Existence of v-Palindromes in an Arbitrary Base

Section [4]
showed that v-palindromes exist in bases p + 1 and p? + 1 for any odd prime p. Section
showed that v-palindromes exist in all basesb = 120 (mod 330). However we are still left
with the problem of determining, for an arbitrary integer b > 2, whether a v-palindrome
in base b exists.

The proof in the previous section is based on the equality v(5) = v(6). It is conceivable
that the same method basing on other common values of v will find other bases b for which
a v-palindrome exists. For instance, we have

We give the following table of the smallest v-palindrome, i.e., min(V,), for the first
few bases, calculated using PARI/GP [14].

Table 1: The smallest v-palindrome for bases b < 19.

b min(V,) written in base 10 min(V;) written in base b
2 175 1,0,1,0,1,1,1,1
3 1280 1,2,0,2,1,0,2
46 1,2
5 288 2,1,2,3
6 10 1,4
7 731 2,0,6,3
8 14 1,6
9 93 1,1,3
10 18 1,8
11 135 1,1,3
12 22 1,10
13 63 4,11
14 26 1,12
15 291 1,4,6
16 109 6,13
17 581 2,0,3
18 34 1,16
19 144 7,11
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