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Abstract - Consider how to cover the most area inside of a circular disc by using a fixed
finite number of triangles. Even when the number of triangles is small, it is not clear what
is the maximum area that can be covered. However, as the number of triangles tends to
infinity, under and over estimates can be given for the rate that the uncovered area goes to
zero.
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1 Introduction

The general question is “How much area can be covered by a finite number of triangles
inside of a region D in the plane?” If the region is a simple geometric one like a closed,
convex set, or more generally the closed region whose boundary is a simple closed curve,
triangulation is a standard method in geometry that covers the interior as best possible
with many small triangles overlapping only on their boundaries. Then, in the limit as the
number of triangles goes to infinity, the area covered by the triangles will give the planar
area of D.

But what can be said about the amount of area covered if the number N of triangles is
fixed? Specifically, what if N is not very large? Moreover, what is the shape and position
of the triangles that achieves the optimal covering? Finally, letting N get larger, what is
the fraction of the area, as a function of N , not covered by the triangles?

This article focuses on obtaining the answers to these questions in one of the simplest
possible cases, where D is a closed circular disc D. Take a finite number N of triangles
all contained in a circular disc of radius 1.

Question: What is the maximum value A(N) of area in D covered by N triangles
contained in D , and what are the shapes and arrangements of the triangles that achieve
this?

Remark 1.1 a) It can be shown, using a continuity argument, that the value A(N) is
uniquely determined. But it is not obvious what are the triangles and their arrangements
that achieve this, up to isometric rearrangement of the triangles.
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b) It is not clear if the optimal covering could have non-trivial overlap of the triangles.
This might seem reasonable, but without a proof of this it is an open issue. For this
reason, in this article all covering of area by triangles in D will be where the triangles
overlap only at most at their edges. □

When N is small, some examples are given in Section 2. But even when N is small, the
exact value of A(N) is unknown. Nonetheless, in Section 3, using various examples, some
computations, and some literature, estimates are found for the minimal error E(N), as N
goes to infinity. where E(N) is the area in the disc not covered by an optimal placement
of disjoint triangles. See Corollary 3.3 and Proposition 4.2 for the main results used for
getting upper and lower bounds on the minimal error. They show that there are universal
constants C1 and C2 such that

C1

N2
≥ E(N) ≥ C2

N2
.

This research fits into the general topic of optimal triangulations of surfaces. See
Section 5 at the end of this article for a short discussion of general problems related
to triangulations. Also, see for example the articles by Bronstein [1] and Heckbert and
Garland [3].

The work described here was done during the 2022 Spring Semester in an Illinois
Geometry Lab project at the University of Illinois in Urbana-Champaign. The group had
J. Rosenblatt as the faculty mentor and K. Ding as the graduate student mentor. The
undergraduate student scholars participating in the project were Z. Chen, Y. Huang, X.
Jia, Y. Su, and J. Xue.

2 Optimal Covering of Area by a Few Triangles in a Disc

Consider the closed unit disc in the plane D = {(x, y) : x2 + y2 ≤ 1}. Take a small
number N triangles whose interiors are disjoint and whose union is a subset of D. Allow
the shape and areas of these triangles to vary so that as much area A(N) as possible is
covered.

It is not clear what is the solution to the optimal area that is covered when N is
relatively small. However, when N = 1, it is easy to argue that the best solution is to
inscribe an equilateral triangle in the disc; this gives A(1) = 3

√
3

4
. But when N = 2,

more area can be covered. For example, to obtain a proxy for A(2), take a inscribed
quadrilateral consisting of two isosceles triangles, both with a common edge that is a
diameter of the disc, and with their third vertices on the boundary ofD. This arrangement
should give the maximum covered area of 2.

Now take the case that N = 3. Consider the following two scenarios A) and B).

A) A first natural configuration is where the triangles each have one vertex at the
center of the disc and the other vertices on the boundary ∂D of the disc D . Say
the angle at the vertices at the origin are all the same α. Then the total area is
T (α) = 3(2(1

2
cos(α/2) sin(α/2))) = 3

2
sin(α). This is a maximum when α/2 = π/4.
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So the maximum area is 3/2. Because α < 2π/3, there is room to rotate these triangles
and get different positions of the triangles with the some total area being covered.

In contrast to this, what happens if three different vertex angles αi, i = 1, 2, 3 are
allowed, with the constraint α1 + α2 + α3 ≤ 2π. Now the total area T (α1, α2, α3) =
3∑

i=1

cos(αi/2) sin(αi/2). But then the maximum is where each term has αi = π/2 and the

total area is 3/2 again.

Remark 2.1 It is interesting that the solution in this case is not to take α = 2π/3, which
would cover the central region of the disc entirely. Note that in this case the three triangles
together give an inscribed equilateral triangle whose area A(α) = 3

2
sin(2π/3) = 3

√
3

4
which

is approximately 1.299 < 3/2. Also, this value of A(α) equals A(1). So it is not surprising
that this is not the optimal solution with three triangles becauseA(N) is strictly increasing
as N increases. Hence, we know thatA(1) < A(2) < A(3) without doing any computation
at all. □

B) The results in A) are not as good as can be derived with another arrangement of
three triangles. Indeed, the optimal value may perhaps only be achieved when all of the
vertices of the triangles are on the boundary ∂D of D. This is not the case with the
arrangements considered above when N = 3.

Here is an example of how to cover more area than the above with the triangles having
all of their vertices on ∂D. Place an isosceles triangle T (x) in the disc with vertices on ∂D.
Say one bottom vertex is at (0,−1) and the other two top vertices are at (cos(x), sin(x))
and (− cos(x), sin(x)). Then this is an equilateral triangle if x = π

6
.

Now let the equal length lower edges be E1 and E2. Then on each Ei, one places
an isosceles triangle with its vertices on ∂D and one edge the same as Ei. Call this
arrangement a 3D.

Next vary the top right vertex position of T , that is vary x, to maximize the total area
of the corresponding 3D. Actually, the solution is not with T being an equilateral triangle.
Indeed, after looking at the critical points of the total area of the 3D with respect to x, it
can be seen that the solution for maximum total area is with x = 3

10
π > π

6
. One is giving

up some area in the central triangle to get more area in the two side isosceles triangles,
and in this way getting a larger total area. The total area in this case is 5

2
sin(2π/5),

which is approximately 2.37764 and is significantly larger than the 3/2 area above. Note:
if this 3D is to give A(3), then we expect it to have a larger than A(2), which it likely to
be 2 as noted above.

Remark 2.2 An interesting point is that in fact the union of the triangles on any 3D
is a pentagon P(3) inscribed in D. Also, the optimal area 3D is where P(3) is a regular
pentagon. Note: when P(3) is a regular pentagon, it corresponds to the union of the
triangles in what is called a 5-array in Section 3. So the area for the optimal 3D is
5 cos(π/5) sin(π/5), which is the value obtained above. □

Question: Is the value of A(3) the area 5 cos(π/5) sin(π/5) obtained above?
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Remark 2.3 As a final remark here, ask what happens if a third isosceles triangle is
placed on the unoccupied edge of T with its vertices on ∂D and its longer edge the edge
of T . If one calculates the maximum area covered for this configuration of 4 triangles, the
solution has T being an equilateral triangle. □

3 Covering Area by More Triangles in a Disc

Now consider what happens as N gets larger, and in the end goes to infinity. It may not
be obvious what is the actual value A(N). But there is still hope for getting an estimate
of the asymptotic value of the minimal error, the area that is not covered by the triangles.
Let us denote the minimal error π −A(N) by E(N).

Let us first see what can be given by a standard arrangement, even though it may
not be optimal. Take the triangles to be congruent isosceles triangles with vertices at the
origin, and the angle at that vertex being 2π/N for each of the triangles. Assume that
the other vertices of these triangles are on the boundary of D. Call this the N-array.
Take the meaning of an N -array to be the set of triangles themselves and also their union,
unless it causes clarity issues.

Proposition 3.1 The area A(N) covered by the triangles in the N-array satisfies A(N) =
Nsin(2π/N)/2. The error E(N) = π − A(N) ∼ 2π3

3N2 . as N → ∞.

Proof. The vertex angle in the component isosceles triangles in theN -array is α = 2π/N .
So the area of each of these triangles is sin(α)/2. This makes A(N) = N sin(2π/N)/2.
The error value then follows from the Taylor polynomial approximation of sin(2π/N). So
A(N) = N(2π/N − 1

6
(2π/N)3)/2 + O(1/N4) = π − 8

12
(π3/N2) + O(1/N4). So E(N) =

π − A(N) ∼ 2
3
(π3/N2) as N goes to infinity. □

We should check one aspect of N -arrays. Say a general N -array is like the standard
N -array but the vertex angles at center of D are allowed to be different.

Proposition 3.2 The maximum area for a general N-array is given by the standard N-
array.

Proof. Take the general N -array with vertex anges α1, . . . , αN . Compute the area in
the usual fashion, and apply a Lagrange multiplier computation with the αk as variables

and the constraint being
N∑
k=1

αk = 2π. This will show that the maximum area is when the

αk are all equal to 2π/N , and so the maximum area for a general N -array is given by the
standard N -array. □

This result on N -arrays gives us an upper bound on the minimal error.

Corollary 3.3 The minimal error E(N) is bounded above by 2π3

3N2 .

Let us consider a technique for adding new triangles to the N -array arrangement
that we already have, which seems to be a fairly good choice for being close to the
optimal choice. As above, for four triangles in Remark 2.3, a good arrangement to cover
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area consists of a central equilateral triangle T1 with vertices on ∂D, and three isosceles
triangles T2, T3, T4 on the edges of T1 with one edge of each of them coincident with the
corresponding edge of T1 and the vertices of the isosceles on ∂D again. So then one has

for the union
4⋃

i=1

Ti is a 6-array A1. Now inductively add new isosceles triangles as in the

first step on each edge of this 6-array to get a 12-array A2, and so on generating arrays
Ak, k ≥ 1. The numbers of edges on the array Ak then can be seen to be Nk = 3(2k). So
this is giving us an area covered inside of the disc consisting of Nk isosceles triangles with
one vertex at the origin. But it is actually also covering area using Mk = 1 + 3(2k − 1)
triangles consisting of a central equilateral triangle and isosceles triangles attached on
the outside in the inductive fashion described above. So Nk = Mk + 2. This gives the
following.

Proposition 3.4 For k, there is a covering of area in the disc with Mk = 1 + 3(2k − 1)
triangles that covers an area Ak < π with an error Ek = π − Ak ∼ 2π3

3(Mk+2)2
.

Proof. Use the discussion above and Proposition 3.1. □
Continuing to look closely at N -arrays, there is a worthwhile observation that might

give insights into what is the optimal covering with triangles. Take an N -array A with
total area A(N). Then along K ≤ N exterior edges E1, . . . , EK add an isosceles triangle
with the same edge Ei and all its vertices on ∂D. This gives a set of N + K triangles
B(N,K) which covers an area B(N,K). Now modify the shape of the triangles in B(N,K)
so that their union is the same as an N +K-array C with area C(N,K). This is similar
to the process observed in B), Remark 2.3, where N = 3 and K = 2, except that now
more isosceles triangles are being added.

This set up gives the following proposition. Since this is not used directly in this
paper, for brevity’s sake the details will be left to the reader. But at least observe that
the formula for the areas can be derived using the formulas in Proposition 3.1.

Proposition 3.5 The area B(N,K) = (N − K) sin(2π/N)
2

+ 2K sin(2π/2N)
2

and the area

C(N,K) = (N +K) sin(2π/(N+K))
2

. Moreover C(N,K) > B(N,K).

Remark 3.6 Keeping all the triangles in B(N,K) in their relative positions, with their
vertices on ∂D, then the maximum area case could be, as in the case where N = 3 and
K = 2, when the union of the triangles is an N +K array. This suggests, but certainly
does not prove, that N -arrays hold the key for what is the optimal choice of triangles to
cover area in a disc. □

3.1 The Gauss Circle Theorem

Before ending this section, it is worth comparing this results of the placement of congruent
isosceles triangles in the disc, that have been considered above, with the error obtained
from the asymptotics of the Gauss circle problem. See Lax and Phillips [4] for background
on the Gauss circle problem.
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The Gauss circle problem is to count the number of lattice points in Z2 inside a disc
of radius R, centered at the origin. Each square can be divided by a diagonal into two
isosceles triangles. So the number of these triangles is asymptotically 2πR2. Now rescale.
This means pack NR congruent isosceles triangles into D with NR ∼ 2πR2. Each of these
triangles have an area 1/2R2.

Now the error in the Gauss circle problem is still not known precisely, but the literature
shows that it is near to R1/2. The current thinking is that it is O(R1/2+ϵ) for all ϵ > 0. It
is known that one cannot decrease the exponent 1/2. Now R1/2+ϵ/R2 = 1/R3/2−ϵ.

But R ∼ CN
1/2
R for some constant C. So this gives an error for the covering of area

in D with the NR congruent isosceles triangles that is on the order of C

N
1/2(3/2−ϵ)
R

for some

constant C. That is the error is 1/R3/4−ϵ, perhaps for all ϵ > 0. But note that the basic
exponent here is then 3/4, which is good but not as good as the exponent 2 that is given
in Proposition 3.3.

4 Under Estimates for the Minimal Error

While it is not evident what A(N) and E(N) are, there is an upper bound for E(N) from
Corollary 3.3. However, the optimal covering could potentially give a minimal error that
is much less than this bound. In this section, an argument is given that this is not the
case, as far as the order of magnitude of the error goes.

Given a triangle T with two vertices V1 and V2 on ∂D, the cap determined by T is the
set in D bounded by ∂D and the edge between the two vertices V1 and V2. If in fact the
three vertices of T are all on ∂D then there are three caps determined by T .

Lemma 4.1 Suppose there are N disjoint triangles in D and some subset of them have
vertices on ∂D with caps covering ∂D. Assume the caps themselves do not contain any
subsets of the other triangles. Then the area A(N) covered by the N triangles has an error
E(N) = π − A(N) ≥ C/N2 for some universal constant C.

Proof. The number of caps here is no more than M ≤ 3N . In this case, M = 3N
because all the vertices of all the Ti are on ∂D, and the vertices are all distinct points as
i varies. Associate to the caps an array of triangles Si with a vertex at the origin, and
two vertices at the ends of the caps, which is not necessarily an N -array, but rather one
in which the angles at the origin might be different values αi. The assumptions about

the caps imply that
M∑
i=1

αi = 2π, and the error of the original triangles E(N) ≥ π−
M∑
i=1

Ai

where Ai is the area of Si. As above, the area Ai = sin(αi/2) cos(αi/2) =
1
2
sin(αi). In

minimizing this underestimate, without loss of generality it can be assumed that all the
angles αi < π/2.

Use Lagrange multipliers to minimize π−
M∑
i=1

1
2
sin(αi) =

1
2

M∑
i=1

αi−
M∑
i=1

1
2
sin(αi) subject

to the constraint
M∑
i=1

αi = 2π. That is, find the critical points of L(α1, . . . , αM , λ) =
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π −
M∑
i=1

1
2
sin(αi) + λ(

M∑
i=1

αi − 2π). The immediate result is that for all i, ∂L
∂αi

= 0 gives

1
2
(1− cos(αi) + λ = 0. Hence, all of the αi are equal to a fixed value α, since 0 ≤ αi < π

for all i, with Mα = 2π. Now one can check that this solution is giving the minimum,
which can be done using standard second order derivative methods.

This calculation tells us that the error can be bounded below by the error E(M) for
a standard M -array. What now follows is that E(N) ≥ E(M) ≥ 2π3/3M2 ≥ 2π3/3(9N2)
□

The error for the N -array has been found above. Lemma 4.1 shows that for certain
types of covering by N triangles, a lower bound for the minimal error can be directly
computed, and it is the same order as the upper bound for the minimal error given by
the N -array. In order to extend this, use the ideas in Lemma 4.1 to get a lower bound on
the error E(N) in general.

Proposition 4.2 Suppose there are N disjoint triangles in D. Then the maximum area
A(N) covered by the N triangles has an error E(N) = π−A(N) ≥ C/N2 with C = 1

9
(2
3
π3).

Proof. Let ai1, ai2, ai3 be respectively the nearest points on ∂D to the vertices vi1,vi2,vi3

of Ti. Obtain aij by extending a ray from the origin through vij for j = 1, 2, 3. By a small
change in the triangles Ti, it may be assumed without loss of generality that the points
aij, for i = 1, . . . , N and j = 1, 2, 3, are distinct. Now label all the aij in counterclockwise
fashion from (1, 0) as pk, k = 1, . . . , 3N . For each pair pk,pk+1, take a cap Ck. In this
fashion these boundary points determine 3N caps C1 . . . , C3N .

For large N and any choice of the triangles that makes the error small, the caps that
are formed will all have small maximum width along rays to the origin. That is, there is a
low value of N to consider. Indeed, with one triangle contained in the disc but to one side
of a diameter, then there would be two smaller caps and one very large cap corresponding
to it. But this configuration gets avoided as N gets larger and the error is smaller.

With this understood, none of the triangles Ti intersect any of the caps Ck . Indeed, if
one did, then there would be a boundary point aij between pk and pk+1, contrary to the
construction. So the construction of the caps Ck tells us that the error E(N) is larger than
the sum of the areas of the Ck. But as in Lemma 4.1, this sum of cap areas is bounded
below by 2π3/3(9N2) □

Remark 4.3 These results raise the possibility that there is actually a limit value for
N2E(N) as N → ∞. A suggestion that this might hold comes from the asymptotic results
in McClure and Vitale [6]. In particular, their Theorem 5 (ii) suggests what the constant
might be. In [6], if one takes the domain K to be D, a disc of radius 1, then one has
rK(θ) = 1 for all θ and so n2 inf{DA(Pn, K) : Pn ∈ Pn, Pn ⊂ K} → 1

12
(2π)3 = 2

3
π3 as

n → ∞. This is the limiting value for N2E(N) in the case of the N -array being used as a
proxy to calculate E(N). So perhaps the same result holds for covering area by triangles
inside D as it does for optimal area covered by polygons inscribed in D. □

Remark 4.4 Curiously enough, as opposed to finding the largest polygon inside of a disc,
the covering result in Theorem 1 in McClure and Vitale [6] has a different asymptotic
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constant in the case of K = D, namely 1
3
π3. Of course, this suggests that all of the work

above could be changed to finding the smallest area for a union U of N triangles such that
D ⊂ U . Now the miniml error would be the difference of the area of U and the smaller
area π of D. The minimal error, say it is denoted by EO(N) in this case, can be seen to
be O(1/N2) like with the error E(N) above. But it is not clear if lim

N→∞
N2EO(N) exists,

and it is not clear if in fact lim
N→∞

N2EO(N) = lim
N→∞

N2E(N). □

The bounds on E(N) have been obtained in this section in an elementary fashion.
Proposition 3.1 is a standard calculation and Proposition 4.2 has a reasonably short
proof, although it requires some discussion. But if one is willing to do more extensive and
difficult arguments, then the bounds can be improved. For example, the lower bound of
1
9
(2
3
π3) in Theorem 4.2 can be improved using McClure and Vitale [6].

Theorem 4.5 There is an underestimate:

lim inf
N→∞

N2E(N) ≥ 1

2
(
2

3
π3).

Proof. Take N large and disjoint triangles T1, . . . , TN in D. Let P be the convex hull of
N⋃

n=1

Tn. It is not hard to see that P has at most 2N edges. So Theorem 5 (ii) in McClure

and Vitale [6] gives the underestimate. □

Remark 4.6 It seems likely that with more complications the results in this section can
be extended from D to more general sets K in the plane. As part of this, McClure and
Vitale [6] would be used. One basic question will be whether or not the constant they
have in Theorem 5 (ii) is the same for covering an area with triangles in a general convex
region K. □

5 Optimal Triangulations of a Surface

The area covering problem studied in this article fits into a wide class of triangulation
problems. For example, a number of authors have sought to extend to higher dimensions
the optimal approximation of curves by polygons, as in Gleason [2]. In this article, we have
considered a very specialized version of this type of question where we are approximating
the area of a disc using inscribed triangles

For surfaces this type of optimization problem would start with a bounded surface S
in R3. Then consider the surface cl(S) consisting of S together with its boundary. Fix
N ≥ 1. Now consider a polygonal surface PN with N triangular faces whose vertices are
on cl(S). It is important to note that this would give only a triangulation of a subset
cl(S). But for simplicity, still refer to the choice of PN as an approximate triangulation.

The challenge is to describe the optimal approximate triangulations of surfaces with
a fixed number N of triangles. Optimality means having the area of the polyhedral
surface given by the approximate triangulation to be as close to the surface area as
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possible. Describing such a triangulation means (at best) determining explicitly where
the vertices are positioned. This can be difficult because all the vertices of the approximate
triangulation have to change position as N changes. So determining the distribution of
the vertices as N increases may be the best option for describing them. It might be
possible to carry this process out using the ideas and techniques in Rosenblatt [7].

Describing the optimal approximate triangulation of a surface with a finite number of
triangles is a difficult geometrical problem. But even in the case that the surface is flat
(i.e. lies in a plane), but it cannot be tiled by triangles, there are issues in identifying an
optimal approximate triangulation as we have seen in this article.

The results in Section 3 suggest that the error in an optimal approximate triangulation
of a surface with N triangles could be on the order of 1/N2. To know this in more
generality it probably would be necessary to have a uniform bound on the curvature of
the surface.

Even if this is the case, it leaves open at least two questions. First, what is the optimal
approximate triangulation? Second, what is the asymptotic distribution of the vertices of
its triangles as N goes to infinity? One can hope to get limiting distribution results such
as the ones in Rosenblatt [7].
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