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1 Introduction

1.1 Hyperplane Arrangements

Real hyperplane arrangements have a rich history, with [1] serving as a standard reference.
In recent years, a variation in the form of toric hyperplane arrangements has been studied
more prominently, from combinatorial, algebraic, and topological point of views; see [2, 3]
for examples. Some applications of the theory of toric hyperplane arrangements to toric
varieties have been presented in [4, 5].

In this paper, we study toric hyperplane arrangements, predominantly from a com-
binatorial perspective. The motivation of this paper is to enumerate toric arrangements
of hyperplanes with fixed normal vectors subject to an equivalence relation. A natural
invariant to study are the k-dimensional faces arising from a toric hyperplane arrange-
ment A. The enumerative information of k-dimensional faces, shortly k-faces, can be
encoded in an f -vector, denoted by f(A). That is, for a toric hyperplane arrangement
A on the n-dimensional torus Tn, f(A) is an n + 1-dimensional vector whose k-th entry
is the number of k-faces in A. Specifically, we choose to consider a special class of toric
hyperplane arrangement which we will call spanning and in general position (Definition
2.9 and Definition 2.8, respectively). We prove the following relation between the faces of
spanning toric hyperplane arrangements in general position.

∗This work was partially supported by Simons Investigator Award No. 929034 provided by Nick
Sheridan.
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Theorem A (Theorem 4.8) For a spanning toric hyperplane arrangement (A,Tn) in
general position, the f -vector f(A) is symmetric.

In other words, the number of k-faces in this special class toric hyperplane arrangement
A is equal to the number of (n− k)-faces of A.

We also present a few applications of Theorem A. We say that two toric hyperplane
arrangements A1 and A2 are equivalent, A1 ∼ A2, if we can continuously translate a
subset of hyperplanes in A1 to those of A2 without ever creating a triple intersection.

Theorem B (Theorem 6.9, Corollary 5.1) Let A = {H1, H2, . . . , Hm} be a set of
toric hyperplanes on T2. Let M denote the space of all arrangements (A,T2). Then
we are able to construct a toric hyperplane arrangement (M′,Tm−2), which contains the
space M/ ∼ parametrizing the translation of hyperplanes in A. The (m− 2)-faces of the
parameter spaceM′ then correspond to equivalence classes of arrangements of the m lines
in general position under ∼.

1.2 Outline

The paper is structured as follows. After the introduction, we establish the background
for toric hyperplane arrangements in Section 2. We exhibit the main results of this
paper on an example of toric hyperplane arrangements on T2 in Section 3. Next, in
Section 4, we also generalise the deletion-restriction relation for n-dimensional tori and
k-dimensional faces for arrangements in general position in Lemma 4.6. The generalised
deletion-restriction then allows us to prove Theorem 4.8, which states that the number
of k-faces is equal to the number of (n − k)-faces on arrangements on Tn, for which we
list a few applications. One of the applications of the theorem is to count the connected
components of the complement of a toric hyperplane arrangement as shown in Section 5.
We end the paper with Section 6, where we focus on classifying toric hyperplane arrange-
ments on T2 under the equivalence relation. We show a few examples of constructing
geometric spaces classifying toric hyperplane arrangements and give an upper bound for
the number of arrangements for a set of hyperplanes with fixed normal vectors.

2 Background

Definition 2.1 We define an n-torus Tn to be the topological group Rn/Zn.

There are plenty of ways we can think about tori, and we will use them interchangeably
throughout the paper. For example, the n-dimensional torus Tn can be represented by
an n-dimensional hypercube with the opposing faces identified. We also have

Tn = S1 × S1 × . . .× S1︸ ︷︷ ︸
n

.

Another way to look at Tn is to consider the quotient map

π : Rn → Rn�≈ ∼= Tn,
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where for x̃, ỹ ∈ Rn, we have x̃ ≈ ỹ if and only if for all i ∈ {1, 2, . . . , n} we have
x̃i − ỹi ∈ Z.

As Tn is a quotient of Rn, many structures in the affine space Rn have analogues in the
torus Tn. We will denote points in Tn as x, and their lifts in Rn as x̃; therefore π(x̃) = x.

We now adapt the classical definition of a real hyperplane to Tn. Fix a basis of Rn.
Then any surjective continuous group homomorphism θ : Tn → S1 can be lifted as a map
θ̃ : Rn → R given by

x̃ 7→ 〈a1, a2, . . . , an〉 · x̃ = a1x̃1 + a2x̃2 + . . .+ anx̃n,

where a1, a2, . . . , an are integer scalars and at least one ai is non-zero. A toric hyper-
plane H is then given by a set of all vectors x̃ ∈ Rn such that

a1x̃1 + a2x̃2 + . . .+ anx̃n = b mod Z

for a fixed arbitrary constant b ∈ R and their integer scalar multiples. Hence, we can char-
acterise hyperplanes by their normal vector 〈a1, a2, . . . , an〉 = a ∈ Zn and their intercept
b.

Definition 2.2 Let θ : Tn → S1 be a non-zero surjective group homomorphism. Then
the preimage θ−1(b) of a point b ∈ S1 defines an affine toric hyperplane H on Tn. We
call the point b the intercept of H.

We will refer to affine toric hyperplanes as hyperplanes. Note that the definition of
an affine toric hyperplane does not pose any restrictions on the map θ, so, unlike the case
of real hyperplane arrangements, it is possible that some hyperplanes may appear with
multiplicities if the normal vector entries have gcd(a1, a2, . . . , an) > 1.

Example 2.3 Let (A,T1) be an arrangement of one hyperplane H given by the normal
vector a = 〈5〉, as shown in Fig. 1. The normal vector a can also be expressed as 5 · 〈1〉
and as a set A consists of 5 equally spaced points on T1.

Figure 1: An example of an arrangement on T1 containing a non-simple hyperplane.

This is unlike real hyperplane arrangements for which non-primitive normal vectors
just scale the hyperplane without disconnecting it.

Definition 2.4 Let H be a hyperplane on Tn defined by a normal vector 〈a1, a2, . . . , an〉.
Then we say that H is a simple hyperplane if and only if gcd(a1, a2, . . . , an) = 1.

Due to the following proposition, with a standard proof provided in [10], we will
assume all hyperplanes to be simple unless otherwise stated. We supply our own proof
for completeness.
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Proposition 2.5 Let H denote a hyperplane on Tn. Then H is connected if and only if
H is simple.

Proof. Suppose H is not simple, so we assume gcd(a1, a2, . . . , an) = m with m > 1. The
hyperplane H is defined as the kernel of the map θ : Tn → S1; x 7→ a1x1+a2x2+. . .+anxn.
We may rewrite the image of x under θ as m(b1x1 + b2x2 + . . . + bnxn). Therefore we
can consider maps θ′ : Tn → S1 given by x 7→ b1x1 + b2x2 + . . . + bnxn, and a map
θm : S1 → S1, multiplication by m, sending x to mx. We factor θ as in the following
commutative diagram.

Tn S1

S1

θ

θ′ θm

Then H = θ′−1(θ−1m (c)), for an intercept c ∈ S1. Since θ−1m (c) is disconnected, it follows
that H is disconnected as well.

Conversely, suppose H is simple where H is given by the kernel of the map

θ : Tn → S1; x 7→ 〈a1, a2, . . . , an〉 · x

where gcd(a1, a2, . . . , an) = 1. Let v ∈ H be a vector such that 〈a1, a2, . . . , an〉 · v = 1,
which exists by the Bézout identity. We may take two points of H, say

x = (x1, x2, . . . , xn), and y = (y1, y2, . . . , yn).

By definition of H, we have θ(x) = 0 and θ(y) = 0. Denote by π the covering space
π : Rn → Tn and let π−1(x), π−1(y) ∈ Rn be the lifts of x and y respectively.

Rn R

Tn S1θ

θ̃

π π′

The diagram above commutes. Fix specific points x̃ ∈ π−1(x), ỹ ∈ π−1(y). To show that
H is path-connected, and therefore connected, we will show that there exists a choice of
a translation to ỹ ∈ π−1(y) and a path γ from x̃ to ỹ such that γ ⊆ π−1(H), where
π−1(H) is a collection of affine hyperplanes in Rn. Let H̃ be a hyperplane in Rn so that
π(H̃) = H, and we fix points x̃ and ỹ0. We will call H̃ a representative of π−1(H). We
try a path given by

γk(t) : [0, 1]→ Rn; t 7→ (1− t)x̃ + t(ỹ0 + kv), for some k ∈ Z.

We want to find a choice of an integer k so that

θ̃(ỹ0 + kv)− θ̃(x̃) = 0
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which will subsequently imply that γk ⊆ H̃. By assumption, we have θ̃(v) = 1, so by
linearity, θ̃(ỹ0+kv) hits every connected component of π−1(H), one of which must satisfy
the relation θ̃(ỹ0 + kv) − θ̃(x̃) = 0. Therefore, we have found a unique representative
ỹ = ỹ0+kv in π−1(y). Now suppose that our choice of k satisfies θ̃(x̃)− θ̃(ỹ0+kv) = 0. It
is left to check that π(γk) ⊆ H. Because π−1(H) can be thought of as the union of integer
translates of H̃ in Rn, we have that θ̃(γk(t)) = θ̃(x̃) ∈ Z. So, π′(θ̃(γk)) = π′(Z) = 0. This
is equivalent to θ(π(γk)) = 0, which implies π(γk) ∈ ker(θ), hence π(γk) ⊆ H. �

We illustrate the idea in the proof above for R2 in Fig. 2.

x̃

ỹ0

v

ỹ0 + v

ỹ0 + 2v

ỹ0 + 3v

γ3

Figure 2: The lift of a hyperplane H of T2 into R2.

Remark 2.6 It is possible to view a non-simple hyperplane H in Tn as a collection of
simple hyperplanes instead. Supposing that H is given by a normal vector 〈a1, a2, . . . , an〉
with gcd(a1, a2, . . . , an) = m and an intercept b, the data of a collection of m hyperplanes
H1, H2, . . . , Hm with intercepts b, b+ 1

m
, . . . , b+ m−1

m
, respectively, and all with the same

normal vector 1
m
〈a1, a2, . . . , an〉 is equivalent.

In the setting of Rn, we define a real hyperplane arrangement (A,Rn) to be a finite
set of hyperplanes A in the ambient space Rn. In complete analogy, we now define a toric
hyperplane arrangement.

Definition 2.7 A toric hyperplane arrangement (A,Tn) is a finite set A of affine toric
hyperplanes in the ambient space Tn. Denote the number of hyperplanes in A by |A|.

For the rest of the paper, we will refer to toric hyperplane arrangements as hyperplane
arrangements or just arrangements. By a standard abuse of notation, we often omit the
ambient space Tn and denote arrangements as A whenever the dimension of the ambient
space is clear.

Let an arrangement (A,Tn) consist of hyperplanes given by maps θ1, θ2, . . . , θm and
intercepts b1, b2 . . . , bm. After fixing a basis, denote by Θ the system of hyperplanes of
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A which we define to be a matrix in Matm×n(Z). We can encode the information about
hyperplanes in A using a pair of matrices,

(Θ,b) =



← a1 →
← a2 →

...
← am →

 ,


b1
b2
...
bm


 .

Definition 2.8 ([8]) Let A = {H1, H2, . . . , Hm} be a set of hyperplanes. An arrangement
(A,Tn) is in general position if

• {H1, H2, . . . , Hk} ⊆ A, k ≤ n : dim(H1 ∩H2 ∩ . . . ∩Hk) ≤ n− k,
• {H1, H2, . . . , Hk} ⊆ A, k > n : H1 ∩H2 ∩ . . . ∩Hk = ∅.

In the case of arrangements on T2, an arrangement in general position means arrange-
ments without triple intersections. Unless otherwise stated, every arrangement will be
assumed to be in a general position. We also wish to exclude the arrangements where all
hyperplanes parallel to each other.

Definition 2.9 Let (A,Tn) be an arrangement for which |A| ≥ n. We say that A is
spanning if there exists a subset I ⊆ A of size n such that

⋂
i∈I Hi 6= ∅.

Equivalently, after fixing a basis, we call an arrangement A spanning if there exists a
subset of hyperplanes whose normal vectors span Rn.

Example 2.10 We may define an arrangement (I,Tn) where I = {H1, H2, . . . , Hn} and
each hyperplane Hi = ker(θi), which is equivalent to the intercept being 0, is defined by
the map

θi : Tn → S1; θ(x) = ei · x.
We call this arrangement the standard arrangement I since each hyperplane Hi is given
by a standard basis vector. The standard arrangement is clearly spanning and in general
position, since the n hyperplanes intersect in a single point.

Definition 2.11 A partially ordered set (or a poset) is a set P and a relation ≤ satisfying
the following axioms: for all x, y, z ∈ P

1. (reflexivity) x ≤ x,

2. (anti-symmetry) if x ≤ y and y ≤ x, then x = y,

3. (transitivity) if x ≤ y and y ≤ z, then x ≤ z.

Definition 2.12 ([8]) Let (A,Tn) be an arrangement, and let L(A) be the set of con-
nected components of non-empty intersections of hyperplanes in A, including Tn itself as
the intersection over the empty set. Define x ≤ y in L(A) if x ⊇ y. We call L(A) the
intersection poset of A.
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Example 2.13 Let (A,T2) be an arrangement of two hyperplanes H1 and H2 given by
vectors 〈1, 2〉, and, 〈1,−2〉 respectively, as shown in Fig. 5. The arrangement A is in
general position, since dim(H1 ∩H2) = 0 = dim(T2)− |A|. Fig. 3 shows the intersection
poset L(A) of the arrangement A. Note that the maximum element ∅, the intersection
over the empty set, is usually omitted from L(A).

V1 V2 V3 V4

H1 H2

Tn

Figure 3: An arrangement (A,T2) and its intersection poset L(A).

Definition 2.14 Let I be the indexing set for hyperplanes in an arrangement A. The
complement Tn \

⋃
i∈I Hi consists of a disjoint union of finitely many connected open

regions called regions of an arrangement A, where the arrangement is not necessarily
spanning or in general position. We will denote the set of such connected components
R(A). Set r(A) := |R(A)|.

Unlike real hyperplane arrangements, where every region is simply connected, we have
seen examples of arrangements having regions with an infinite cyclic fundamental group,
namely any non-spanning arrangements. However, the following lemma asserts that when
we assume arrangements to be in general position and spanning, the regions are always
simply connected in spanning arrangements in general position.

Lemma 2.15 Suppose (A,Tn) is a spanning arrangement in general position with |A| ≥
n. Then every element of R(A) is simply connected.

Proof. Suppose a spanning subset of hyperplanes H1, H2, . . . , Hn is given by maps
θ1, θ2, . . . , θn respectively. Since we assume |A| ≥ n, the set of hyperplanes must span the
torus Tn. In other words,

Θ : Tn (θ1, θ2, ... , θn)−−−−−−−−→ (S1)n

is a covering space because, by assumption, the spanning set of hyperplanes in Tn is
locally homeomorphic to (S1)n. Then Θ induces maps

Θ∗ : Tn \
⋃
i≤n

Hi
(θ1, θ2, ... , θn)−−−−−−−−→ (S1 \

⋃
i≤n

bi)
n,

which is also a covering space. Furthermore, (S1 \
⋃
i≤n bi)

n ∼= In where I is the unit
interval, so the connected components of Tn\

⋃
i∈I Hi are convex polytopes, since π1(I

n) ∼=
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{e}. The proof is complete after noting that removing more than n hyperplanes leaves
the regions convex. �

Therefore, we can get away with considering simply connected polytopes which arise
in A.

Definition 2.16 Let (A,Tn) be an arrangement. If B ⊆ A is a subset, then (B,Tn) is
called a subarrangement. For X ∈ L(A) define a subarrangement AX of A by

AX = {H ∈ A : X ⊆ H}.

Define an arrangement (AX , X) in X by

AX = {X ∩H : H ∈ A \ AX and X ∩H 6= ∅}.

We call AX the restriction of A to X.

Choose a hyperplane H0 ∈ A. Let A′ = A \ {H0} be the deletion of H0 and we
call A′′ = AH0 to be the restriction to H0. The deletion A′ and the restriction A′′ are
also toric arrangements. We call (A,A′,A′′) a triple of arrangements with distinguished
hyperplane H0. See an example of such a triple on T2 in Fig. 6.

Example 2.17 Suppose we have a line arrangement (A,T2), with |A| ≥ n. We want to
describe the sets of vertices, edges, and faces using intersections of hyperplanes. Firstly,
we have from Definition 2.14 the 2-dimensional objects which we will call 2-faces. So we
define Σ2(A) to be the set

π0

(
T2 \

⋃
i∈I

Hi

)
,

where π0(X) denotes the connected components of a topological space X. Similarly, we
can also describe the 0-dimensional objects which we will call 0-faces,

Σ0(A) =
⋃
i,j∈I

π0(Hi ∩Hj),

because a 0-faces arise as intersections of 2 hyperplanes in A. Finally, the 1-dimensional
objects of A must be subsets of the hyperplanes themselves. Moreover, we want them to
be the edges which we get from the intersections of hyperplanes. Therefore, we write

Σ1(A) =
⋃
i∈I

π0(Hi \ Σ0(A)).

Definition 2.18 Let (A,Tn) be an arrangement, I its indexing set, and L(A) its inter-
section poset. We define an n-face of A to be an element of the set

Σn(A) = π0

(
Tn \

⋃
i∈I

Hi

)
.
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For 0 ≤ k < n, let a k-face be an element of the set

Σk(A) = π0

 ⋃
X∈L(A)
dim(X)=k

Σk(AX)

 .

Let us denote the number of k-faces |Σk| of an arrangement A by fk(A).

We take R(A) to mean the same objects as the n-faces Σn when A is spanning and in
general position by Lemma 2.15. Since this paper concerns mostly spanning arrangements
in general position, we will frequently use the following corollary.

Corollary 2.19 Suppose (A,Tn) is a spanning arrangement in general position. Then
every k-face in A is simply-connected.

Proof. Any k-face σk can be considered as a region of the restriction on Tk which is
given by the intersection of hyperplanes containing σk. Hence it suffices to show that the
restriction of A to A|σk|, where |σk| is the affine linear span of σk, is spanning whenever A
is spanning in order to apply Lemma 2.15. By definition, A is a collection of hyperplanes
(Hi)i∈I given by maps θi : Tn → S1. Each map θi lifts to a map θ̃i : Rn → R. Note that θ̃i
is an element of the dual space (Rn)∗. Since (θ̃i)i∈I span Rn, we can construct a spanning
set {θ̃j}j∈I for (Rn)∗ which satisfies θ̃j(θ̃i) = δji . Then, A|σk| is essentially an arrangement
on Tn, which gives rise to an inclusion map ι : Tk ↪→ Tn and its lift ι̃ : Rk ↪→ Rn. By
taking the dual, we have a surjective map ι̃∗ : (Rn)∗ � (Rk)∗. Moreover, the lifts of
the hyperplanes in the arrangement (Aσk ,Tk) are given by maps ι̃∗(θ̃i). But since the
collection (θ̃i)i∈I spans Rn and ι̃∗ is surjective, ι̃∗(θ̃i) spans Rk. �

We will also use the convention that there are no (−1)-faces when considering any
arrangement (A,Tn), in other words f−1(A) = 0.1

Definition 2.20 Let (A,Tn) be an arrangement. The f -vector f(A) of an arrangement
A is defined as

f(A) = (f0(A), f1(A), . . . , fn(A)).

We have previously defined an intersection poset L(A) for an arrangement (A,Tn).
Since faces arise as intersections of hyperplanes, we define the face poset L(A).

Definition 2.21 ([1]) The face poset L(A) of the arrangement A is the poset of faces of
A ordered by reverse boundary inclusion, that is, τ l− σ if τ ⊆ σ.

The face poset is a sharper invariant than the intersection poset. We may define a
map ζ : L(A)→ L(A) by P 7→ |P |, where |P | is the support (i.e. the affine linear span)
of P . The map ζ is order-preserving and surjective. It is true that if two arrangements
A1,A2 have the same face poset, then L(A1) = L(A2). The converse does not hold in
general.

1Note that the convention, such as in [6], is to consider the empty set as a (−1)-face ofA, so f−1(A) = 1.
Our adjustment is justified by the fact that the empty set is not simply-connected.
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Example 2.22 We continue the example of a line arrangement A with H1 = 〈1, 2〉 and
H2 = 〈1,−2〉. The faces of the arrangement are vertices, edges and faces which we will
label V,E, and F respectively. Ordering the faces by reverse boundary inclusion, we get
the face poset in Fig. 4. In this example, we leave out the maximal element ∅.

V1 V2 V3 V4

E1 E2 E3 E4 E5 E6 E7 E8

F1 F2 F3 F4

Figure 4: An example of a face poset L(A).

3 The Two-Dimensional Case

To concretely present the results of this paper, we begin by looking at the case of T2

which provides intuition for the general case. We sometimes refer to hyperplanes as lines
when working on T2. We will provide proofs to general results later.

3.1 Symmetry of f-Vectors

Example 3.1 Consider the arrangement (A,T2) of hyperplanes H1 and H2 given by the
normal vectors 〈1, 2〉 and 〈1,−2〉, respectively, shown in Fig. 5. Then, A is in general
position and it is spanning. The arrangement A comes with vertices, edges and regions.
Denote the number of vertices by f0, the number of edges by f1, and the number of regions
by f2. Then the f -vector f(A) for A is the vector with the i-th entry being fi. In our
example, we have f(A) = (4, 8, 4), in particular, f0 = f2 for the arrangement A.

H1

H2

V1

V2

V3

V4

Figure 5: A toric arrangement on T2 given by hyperplanes H1 = 〈1, 2〉 and H2 = 〈1,−2〉.
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In fact, for a line arrangement in general position, A on T2, the number of regions f2
is equal to the number of vertices f0. The claim can be proven using basic graph theory.
For any arrangement of lines A, let f0(A) be the number of vertices in A and f1(A) be
the number of edges in A. By a standard graph-theoretic result,

n∑
i=1

deg(vi) = 2f1(A).

Since A is in general position, any vertex is an intersection of exactly two lines, so the
degree of any vertex is 4. Thus, we have 4f0(A) = 2f1(A), implying 2f0(A) = f1(A).
Since the Euler characteristic of T2 is given by f0(A)−f1(A)+f2(A) = 0, substituting our
previous result yields f0(A) = f2(A) as required. However, such reasoning explicitly relies
on the Euler characteristic, which is only applicable to arrangements with contractible
faces. Hence, this reasoning is not applicable to cases with non-simply connected regions,
like arrangements with all lines parallel. We also need to assume, for this argument, that
not all hyperplanes are parallel and there are no triple intersections in our arrangements.

3.2 Counting Regions of Arrangements

The symmetry of f -vectors can be utilised to count the number of regions of an arrange-
ment A from the normal vectors of hyperplanes. Let ai denote the normal vector of a
line Hi. A standard result in algebraic topology ([9], or Corollary 4.3 for the general
result) states that the number of intersections arising between two lines H1 and H2 is the
absolute value of the determinant

f0(A) = | det(a1|a2) | .

Generalising to m > n lines, and assuming the arrangement is still in general position,
we have that the number of intersections is given by

f0(A) =
∑

Hi,Hj∈A

| det(ai|aj)|.

When our arrangement is in general position, we use the symmetry f0(A) = f2(A), so
we only need to count the number of line intersections. Using the topological fact that
f0(A)− f1(A) + f2(A) = 0, we also obtain f1(A) = 2f0(A). Therefore, we have reduced
the problem of counting the regions f2(A) of toric arrangements to counting intersections
between the hyperplanes.

3.3 Counting Arrangements Under Equivalence

We take two line arrangements to be equivalent if and only if we can continuously translate
a subset of lines in one arrangement to get the other arrangement without creating a triple
intersection at any point. Denote an equivalence of two arrangements by ∼. The question
is: how many distinct line arrangements are there given a set of lines with fixed slope?
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Suppose that we have an arrangement A′ on T2 such that |A′| = 2. There is only one
such arrangement, as there is no possibility of a triple intersection when translating either
of the hyperplanes.

We give an intuitive way of counting the maximum number of distinct arrangements
of 3 lines. We consider adding a new hyperplane H3 to A′. Since we want to enumerate
distinct arrangements subject to ∼, we look for arrangements containing triple intersec-
tions. We are able to give an upper bound for the possible triple intersections by looking
at complete (i.e. double) intersections of the original arrangement A′. Through each
complete intersection, we place the new hyperplane H3, therefore we can have at most
f0(A) possible ways of creating a triple intersection via the addition of H3. Note that H3

may pass through more than one complete intersection, which disregards the symmetry
of T2, hence we only get an upper bound. However, to obtain a better bound, we need
to consider this process with every hyperplane in A. Using the global translation of the
torus, we may fix an intersection of a pair of hyperplanes Hi and Hj at the origin. Let
AHi

denote the deletion of a line Hi from A, symbolically AHi
= A \Hi. Therefore, we

find that the number of distinct toric arrangements of the three hyperplanes is at most

min
Hi∈A

(f0(A′Hi
)).

Thus, we have established an upper bound for the number of distinct toric arrangements
of three lines with fixed normal vectors on T2. However, we will later see that there is
only one arrangement of three lines so that A is in general position, once we factor in the
symmetries of T2. Hence, the bound is not the tightest, but we address this in the last
section.

4 Deletion-Restriction Relations

In this section, we discuss the toric analogue of the deletion-restriction relations ([8]) and
its application to proving the symmetry between the number of k-faces and the number of
(n−k)-faces of an arrangement (A,Tn). As will be shown, it is possible to enumerate the
faces of spanning arrangements in general position and thus determining their f -vector.
Before doing so, we prove the following lemma.

Lemma 4.1 Consider the covering π : Rn → Tn and let ϕ̂ be a map ϕ̂ : Rn → Rn that
sends v ∈ Zn to ϕ̂(v) ∈ Zn. Then there exists a map ϕ : Tn → Tn such that the following
diagram commutes.

Rn Rn

Tn Tn

ϕ̃

ϕ

π π

Proof. It suffices to check that the maps are well-defined, that is, the action of GLn(Z) is
well-defined. Let A ∈ GLn(Z) be an n×n invertible matrix with integer entries, and define
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ϕ : v 7→ Av. Let [v] ⊂ Tn be an equivalence class of matrices. Consider two distinct
representatives v1,v2 ∈ [v], so v1 − v2 ∈ Zn. Then [ϕ (v1)] = [ϕ (v2)] is equivalent to
Av1 −Av2 = A(v1 − v2). Hence, we have v1 − v2 ∈ Zn by definition and multiplying by
A will result with a vector with integer entries. �

For the proof of the following lemma, we make use of the Smith normal form. The
Smith normal form takes an arbitrary matrix A ∈ Matn×m(Z) and factorises it as A =
NDM where N ∈ GLn(Z), M ∈ GLm(Z), and D is a diagonal rectangular matrix. We
state without a proof that any square matrix with entries from a principal integral domain
admits a Smith normal form. Lemma 4.1 says, in essence, that it is legal to apply Smith
normal form.

Lemma 4.2 Let (A,Tn) be an arrangement such that A = {H1, H2, . . . , Hn} where each
hyperplane is defined by its normal vector. Then we have

fk(A) = | det(Θ)|
(
n

k

)
,

where Θ is the system of hyperplanes of A.

Proof. First, we check the lemma for the standard arrangement (I,Tn), so we define
each hyperplane Hi by the kernel of the map

θi : Tn → S1; x 7→ ei · x.

Every k-face in I is uniquely determined by choosing n − k hyperplanes because any
subset of hyperplanes in A intersect uniquely. Hence,

fk(A) =

(
n

n− k

)
=

(
n

k

)
.

In case the hyperplanes are not given by coordinate vectors, fix a basis and consider the
system of hyperplanes Θ of A. Using Smith normal form, we can write Θ = NΘ′M . Then
the rows of Θ′ are the normal vectors of multiples of coordinate hyperplanes. This also
describes a covering map q : Tn → Tn given by (e1, e2, . . . , en) 7→ (m1e1,m2e2, . . . ,mnen),
where mi is the i-th diagonal entry of Θ′. The fibre q−1(0) has cardinality | det(Θ′)|,
therefore q is a covering of degree | det(Θ′)|, so

fk(A) = | det(Θ′)|
(
n

k

)
= | det(Θ)|

(
n

k

)
.

�

Corollary 4.3 Let (A,Tn) be an arrangement of n hyperplanes H1, H2, . . . , Hn defined
by their normal vector. Then the number of regions is given by the determinant of the
system of hyperplanes det(Θ).
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4.1 Generalised Deletion-Restriction and the Symmetry of f-Vectors

Recall the following relation in case of real hyperplane arrangements between the regions
of A,A′, and A′′.

Theorem 4.4 ([8]) Let (A,A′,A′′) be a triple of arrangements with distinguished hyper-
plane H0. Then

fn(A) = fn(A′) + fn−1(A′′).

The proof of Theorem 4.4 provided in [8] is adaptable to arrangements in general
position on Tn as well. However, instead of only studying the deletion-restriction relation
for regions of A, we would like to generalise the theorem for other dimensional faces as
well.

Example 4.5 We continue with the arrangement from Example 3.1 to which we have
added a hyperplane H0 = 〈1, 0〉. We let H0 be a distinguished hyperplane and consider
A′,A′′, see Fig. 6. The objective is to count the number of 1-dimensional faces recursively
using A′ and A′′. We can rewrite the set of 1-faces Σ1(A) of A as

{σ ∈ Σ1(A) : σ ∩H0 = ∅} t {σ ∈ Σ1(A) : σ ∩H0 6= ∅, σ * H0} t {σ ∈ Σ1(A) : σ ⊆ H0},

that is, we distinguish the 1-faces of A which do not intersect H0, the 1-faces which
intersects H0 in codimension 1 and the 1-faces which are properly contained in H0.

A A′

A′′
b

a a b

Figure 6: The triple of arrangements (A,A′,A′′) with H0 = 〈1, 0〉 (green), H1 = 〈−1, 2〉
(blue), H2 = 〈1, 2〉 (orange).

Clearly, the 1-faces of A′′ form a subset of 1-faces of A as these faces are not contained
in A′. We can see that the other 1-faces of A arise as 1-faces of A′ which are either
preserved or cut up by H0. We can thus write the set of 1-faces of A′ as

Σ1(A′) = {σ ∈ Σ1(A′) : σ ∩H0 = ∅} t {σ ∈ Σ1(A′) : σ ∩H0 6= 0}.

The set of 1-faces of A′ which have an empty intersection with H0 are also 1-faces of A.
On the other hand, the 1-faces of A′ with a non-empty intersection with H0 are the faces
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of A′′ which get “cut up” by H0. Since a 1-face is homeomorphic to an (open) interval
I in R, we know that m points, corresponding to m intersections with H0, divide I into
m + 1 intervals. The intersection information is encoded as 0-faces of A′′ by definition.
Also, because we now have m+1 intervals, we can identify m intervals with a m subset of
0-faces of A′′ and the remaining interval is identified with the original 1-face of A′. This
holds for every face of A′ which has a non-empty intersection, so finally we identify

Σ1(A) ∼= Σ1(A′) t Σ1(A′′) t Σ0(A′′),

which implies
f1(A) = f1(A′) + f1(A′′) + f0(A′′).

Lemma 4.6 (Generalised deletion-restriction) Let (A,A′,A′′) a triple of spanning
arrangements in general position, such that every face is simply connected, with a distin-
guished hyperplane H0 and assume that |A| ≥ n+ 1. Then

fk(A) = fk(A′) + fk(A′′) + fk−1(A′′).

Proof. Let the distinguished hyperplane H0 be defined by the group homomorphism
θ : Tn → S1. Then we can decompose the k-faces of A, Σk(A), as a disjoint union,

Σk(A) =

(1)︷ ︸︸ ︷
{σ ∈ Σk(A) : σ ∩H0 = ∅}t (∗)

t

(2)︷ ︸︸ ︷
{σ ∈ Σk(A) : σ ∩H0 6= ∅, σ * H0}t

(3)︷ ︸︸ ︷
{σ ∈ Σk(A) : σ ⊆ H0},

where we keep track of the sets by numbering throughout the proof.
Since A is in general position, it follows that any k-face σ ∈ Σk(A) belongs to exactly

one of the sets listed in (∗).
We immediately have that a k-face properly contained in H0 must be a k-face of A′′

by definition, so
(3)︷ ︸︸ ︷

{σ ∈ Σk(A) : σ ⊆ H0} = Σk(A′′).
The k-faces of A which are not contained in A′′ must be contained in A′. So we

examine Σk(A′). By adding H0 to A′, a k-face of A′ is either preserved or gets cut up by
H0 into more k-faces. Thus, the set Σk(A′) can be written as a disjoint union

Σk(A′) =

(4)︷ ︸︸ ︷
{σ ∈ Σk(A′) : σ ∩H0 = ∅}t

(5)︷ ︸︸ ︷
{σ ∈ Σk(A′) : σ ∩H0 6= ∅} .

The set of k-faces of A′ with an empty intersection with H0 is in bijection with the set of
k-faces of A with an empty intersection with H0, therefore

(4)︷ ︸︸ ︷
{σ ∈ Σk(A′) : σ ∩H0 = ∅} =

(1)︷ ︸︸ ︷
{σ ∈ Σk(A) : σ ∩H0 = ∅} .
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Now, it is left to investigate the set (2), the k-faces of A which have a non-empty
intersection with H0 but are not properly contained in H0. We claim that such faces can
be labelled by either a k-face of A′ or a (k − 1)-face of A′′. To see this, let π : Tn → Rn
be a covering space and θ̃ : Rn → R be the lift of θ. For a k-face σ, we will let τ be its
boundary if σ l− τ in L(A) and dim(τ) = dim(σ)− 1. Define a boundary τ of a lift of a

face π−1(σ) in H0 to be positive if for all paths γ : [0, 1]→ Rn contained in π−1(σ) ending
at τ with γ′ = 0 we have (θ̃(γ))′ > 0.

Fix a face σ ∈ Σk(A) and suppose, for sake of contradiction, that its lift π−1(σ) has
two distinct positive boundaries, say τ1 and τ2. Since σ is convex by Lemma 2.15, π−1(σ)
is convex and there exists a positive linear path γ such that γ(0) ∈ τ1 and γ(1) ∈ τ2 which
is contained in π−1(σ). But then the opposite path γ′ such that γ′(0) ∈ τ2 and γ′(1) ∈ τ1
cannot be positive, so τ1 is not positive which is a contradiction. Thus, there is at most
one positive boundary of σ in H0.

Each k-face σ in {σ ∈ Σk(A′) : σ ∩ H0 6= ∅} can be written as a disjoint union of a
finite chain of k-faces σ1, σ2, . . . , σm ∈ Σk(A) so that σi ⊆ σ for every i ∈ {1, 2 . . . ,m}.
There exists a σ0 such that

θ̃(π−1(σi)) ≤ θ̃(π−1(σ0)),

for all i ∈ I. We claim that σ0 is the unique face contained in σ which is not positive.
As done previously, suppose there are two distinct k-faces σ0 and σ1 with non-positive
boundaries in H0 for contradiction. Then σ must have two distinct positive boundaries
in H0 which is a contradiction by the above.

Thus, for any k-face σ in the set {σ ∈ Σk(A′) : σ ∩H0 6= ∅} can be written as

σ =
⊔
i∈I

σi,

where σi ∈ Σk(A) and σi is not positive for exactly one index i ∈ I. The faces σi with a
positive boundary are in correspondence with the (k− 1)-faces of A′′ which are contained
in σ, while the σi without a positive boundary are in correspondence with σ. We conclude
that

(2) = (4) t Σk−1(A′′).

Therefore the k-faces of A can be written as

Σk(A) ∼= Σk(A′) t Σk(A′′) t Σk−1(A′′),

and enumerating the sets yields

fk(A) = fk(A′) + fk(A′′) + fk−1(A′′).

�
We conjecture the generalised deletion-restriction applies to arrangements contain-

ing non-simply connected regions as well, which we demonstrate in the following simple
example.
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Example 4.7 Suppose we have the standard arrangement I on T2 and we want to count
the number of edges using the generalised deletion-restriction. Then f1(I ′) = 0 because
there are no simply-connected faces in I ′. However, I ′′ is essentially an arrangement on
T1 of one hyperplane hence f1(I ′′) = f0(I ′′) = 1, so the relation rightly yields f1(I) = 2.

We make use of Lemma 4.6 to prove the main result of the paper.

Theorem 4.8 (Symmetry of f-vectors) Suppose we have a hyperplane arrangement
(A,Tn) such that |A| ≥ n. Then the f-vector associated to A is symmetric, that is,
fk(A) = fn−k(A).

Proof. We proceed by induction on the dimension of the ambient space first. For the
base case, consider any arrangement on T0 for which the statement holds trivially.

We do a second induction on the number of hyperplanes in A. Using the same notation
as the proof of Lemma 4.2, we have the case of n hyperplanes on Tn,

fn−k = | det(Θ′)|
(
n

k

)
= | det(Θ)|

(
n

k

)
= fk(A),

because Θ′ : Tn → Tn is a | det(Θ′)|-fold cover. We can thus assume that the statement
holds for arrangements (A,Tn) with |A| = n.

Now suppose the induction hypothesis holds for all arrangements |A| < m on Tl with
l ≤ n. Let (A,Tn) be an arrangement with |A| = m + 1. We investigate what happens
when we remove a hyperplane Hm+1 from A, so that |A′| = m. By Lemma 4.6, we write

fk(A) = fk(A′) + fk(A′′) + fk−1(A′′),
fn−k(A) = fn−k(A′) + fn−k(A′′) + fn−k−1(A′′).

Clearly, fk(A′) = fn−k(A′) because |A′| = m. Moreover, A′′ is an arrangement of not
necessarily simple hyperplanes on Tm−1 with |A′′| ≤ m − 1. Suppose that the induction
hypothesis also holds for all arrangements for which |A| < m on Tn and all arrangements
A on Tl with l < n. If we make use of Remark 2.6, by induction, we also have

fk(A′′) = fn−k−1(A′′) and fk−1(A′′) = fn−k(A′′),

and the relation holds. �
As a quick sanity check, we make sure that we have not broken any topological in-

variants of Tn, namely the Euler characteristic. Recall the Euler characteristic of an
arrangement (A,Tn) is defined as

n∑
i=0

(−1)ifi(A).

In particular, we must have
∑n

i=0(−1)ifi(A) = 0. For odd n, it is easy to see that having
fk(A) = fn−k(A) respects the alternating sum equalling 0.
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5 Regions of Toric Arrangements

5.1 Counting the Regions

Previously, we have defined regions to be the top dimensional objects of an arrangement
A. We have also seen that regions can only either be simply connected or have an infinite
cyclic fundamental group. In the case regions of an arrangement (A,Tn) of n hyperplanes
are simply connected, we have a definite answer in Lemma 4.2. We would like to describe
similar cases. From this point, we will always assume arrangements (A,Tn) are spanning
and in general position (unless otherwise stated).

We begin by providing geometric intuition of the idea in proof of Lemma 4.2. We
will use the symmetry of f -vectors, namely f0(A) = fn(A). In the toy example of T2,
we used the fact that a normal vector 〈a1, a2〉 of a hyperplane on T2 can be written as
a1〈1, 0〉+ a2〈0, 1〉, counted the number of line intercepts and then applied the symmetry.
Continuing the example on T2, let H1 = 〈a11, a12〉 and H2 = 〈a21, a22〉 be hyperplanes
given by their normal vectors, as usual. By the definition of a hyperplane, we have

H1 = ker

(
θ1 : T2 → S1;

(
x1
x2

)
7→ a11x1 + a12x2

)
,

H2 = ker

(
θ2 : T2 → S1;

(
x1
x2

)
7→ a21x1 + a22x2

)
,

Clearly the number of intersections, or 0-faces, is given by |H1 ∩H2| which is the same as
the cardinality of the kernel of the direct product of group homomorphisms θ1×θ2, that is

ker(T2 θ1,θ2−−→ S1×S1). Furthermore, | ker(θ1× θ2)| is given by the number of lattice point
in Z2 inside2 the parallelogram determined by the normal vectors of the hyperplanes.
Pick’s theorem then says that the number of lattice points is equal to the area, which is
precisely the determinant. Therefore, by applying Theorem 4.8, we have that the number
of regions of A is given by ∣∣∣ det

(
a11 a12
a21 a22

) ∣∣∣.
We want to employ a similar idea for a general case on Tn, in particular, we will use
Smith normal form to change bases of hyperplanes. For every i ≤ n, consider the set of
hyperplanes that are defined as kernels of group homomorphisms

Hi = ker

θi : Tn → S1;

x1...
xn

 7→ ai1x1 + . . .+ ainxn

 .

The direct product θN = θ1 × . . . × θn is a group homomorphism with ker(θN) =⋂n
i=1 ker(θi). In other words, we are looking for all vectors x̃ ∈ Rn such that

2Since we are working on T2, we count lattice points on the normal vectors and inside the parallelogram.
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a11 . . . a1n
...

. . .
...

an1 . . . ann


x̃1...
x̃n

 =

b1...
bn

 ,

where each bi ∈ Z as such vectors x will be elements of the kernel. Hence, finding the
number of elements in ker(θN) is equivalent to searching for the number of lattice points
inside the parallelepiped given rows of Θ = (H1| . . . |Hn)T . Since any matrix over Z has
a Smith normal form, we consider the Smith normal form of Θ which we will call Θ′. By
Lemma 4.1, the Smith normal form of Θ now represents a rectangular parallelepiped. The
problem is invariant under translation and rotation, so we may identify one vertex of the
rectangular parallelepiped to the origin and the row vectors of Θ′ with the axes. Note that
we are only interested in counting the lattice points inside the half-open parallelepiped.
We can thus associate to each unit of volume a point, which gives a bijection between the
number of lattice points and the volume of the parallelepiped, i.e. | det(Θ)|. The result
then follows as an application of Theorem 4.8.

Corollary 5.1 Let (A,Tn) be an arrangement of m hyperplanes such that m > n. To
each hyperplane Hi associate its normal vector ai. Then the number of n-dimensional
faces is given by the sum over all n-tuples of A,

fn(A) =
∑

S⊆{1,2,...,m}
|S|=n

| det(ai1 | ai2 | . . . | ain )|.

Proof. The arrangement A being in general position implies that the 0-faces of A do
not appear with multiplicities. If we take two subsets of n hyperplanes such that they
differ by at least one, their intersection points are disjoint. Therefore, we can enumerate
the number of 0-face of all hyperplane subsets of cardinality n which yields the number
of n-faces of A. �

Remark 5.2 The definition of regions R(A) does not exclude arrangements A which are
not spanning. Let A be an arrangement on Tn of m hyperplanes such that the hyperplanes
are pairwise parallel. Clearly, m points divide T1 = S1 into m segments. If we interpret
Tn = S1 × S1 × . . .× S1, then the hyperplanes are parallel, and we may regard them as
a subset of

S1 × S1 × . . .× S1︸ ︷︷ ︸
n−1

,

and they only intersect one of the S1 in the product. The single n-intersection of each
hyperplane then defines one region, therefore r(A) = m. However, since all hyperplanes
are parallel, all the regions have a non-trivial fundamental group, so by our definition of
faces, fi = 0 for i ∈ {0, 1, . . . , n}.
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5.2 Analogue of Zaslavky’s Theorem

Another possible way to count the regions of an arrangement (A,Tn) is to use the char-
acteristic polynomial of A. In the context of Rn, this was proven due to T. Zaslavsky in
1975.

Theorem 5.3 (Zaslavsky) Let (A,Rn) be a real hyperplane arrangement and let χA be
the characteristic polynomial (as in Definition 5.7). Then

r(A) = (−1)nχA(−1).

There exists a toric analogue of Theorem 5.3 that has been proven; see Theorem 3.6 in
[2]. However, we provide another type of proof using the fact that on general arrangements
(A,Tn) we apply f0(A) = fn(A) given by Theorem 4.8. Of course, in our case, we still
assume that A is spanning and in general position.

Definition 5.4 Let P be a locally finite poset. Define a function µ = µP : Int(P ) → Z,
where Int(P ) is the set of all closed intervals of P , called the Möbius function of P by the
conditions:

µ(x, x) = 1, for all x ∈ P ,

µ(x, y) = −
∑
x≤z<y

µ(x, z), for all x < y in P .

If P has a minimum element 0̂, we write µ(x) = µ(0̂, x). We will also denote by Int(x)
the set of closed intervals [0̂, x].

Lemma 5.5 For x ∈ L(A), the restricted poset Int(x) ↪→ L(A) is a Boolean lattice.

Proof. Let L(A) be an intersection poset of an arrangement (A,Tn) where A =
{H1, H2, . . . , Hm}. Let S ⊆ {1, 2, . . . ,m} = m. By Proposition 2.3. in [8] the poset
L(A) is a meet-semilattice, i.e. for every pair of elements x, y ∈ L(A) there exists a meet
x ∧ y ∈ L(A). Since µ depends only on Int(x), we will only want to consider Int(x) for
any x ∈ L(A). But x is a maximal element for Int(x), so Int(x) must be a lattice.

Define
xS =

⋂
i∈S

Hi.

Then L(A) is a set of (non-empty) xS for all S ordered by reverse set-inclusion. Let
2m denote the Boolean poset that arises from the subsets of the set m and consider an
inclusion map Int(x) ↪→ 2m given by xS 7→ S. Note that x corresponds to a subset
{i1, i2, . . . , iv} ⊆ m. Then 2m

∣∣
Int(x)

is also Boolean, since it respects the relations given

in 2m. Hence, Int(x) is a Boolean lattice. �

Proposition 5.6 For an arrangement (A,Tn), we have µ(x) = (−1)codim(x).

the pump journal of undergraduate research 7 (2024), 96–123 115



Proof. We induct on the rank of an arbitrary element x ∈ L(A). As a base case, we take
the minimal element Tn for which trivially µ(Tn) = (−1)codim(Tn) = 1. For our induction
hypothesis, we will assume that µ(x) = (−1)codimx for any x ∈ L(A) with rank less than
k, for k ≤ n. 3 Suppose now that codim(x) = k. By definition,

µ(x) = −
∑
y≤x

µ(y) =
∑
j<k

(−1)j+1|{y ∈ Int(x) : codim(y) = j}|.

For each j, we have |{y ∈ Int(x) : codim(y) = j}| =
(
k
j

)
, as the set can be thought of as

a set of subsets with cardinality j. Hence

µ(x) =
∑
j<k

(−1)j+1

(
k

j

)
= −(−1)k+1 = (−1)k.

�

Definition 5.7 The characteristic polynomial χA(t) of the arrangement (A,Tn) is defined
by

χA(t) =
∑

x∈L(A)

µ(x) · tdim(x).

It is clear from the definitions above that the coefficient of tn−1 in χA(t) is the number
of hyperplanes of A. We now state the toric version of Zaslavky’s theorem.

Proposition 5.8 Let (A,Tn) be an arrangement of hyperplanes. Then

fn(A) = (−1)nχA(0).

Proof. By Proposition 5.6, for any element x ∈ L(A) with dim(x) = 0 we have
µ(x) = (−1)n. Therefore, the constant term in the characteristic polynomial χA(t) is
(−1)nf0. The result then follows by Theorem 4.8. �

6 Classification of Line Arrangements

In the last section, we look into classifying hyperplane arrangements following from work
in [7]. For the remainder of the paper, we focus on arrangements in T2. We consider two
arrangements to be combinatorially equivalent if one of them can be obtained from the
other by continuously translating lines without ever creating a triple intersection point.
Note that being combinatorially equivalent is a stronger condition than having the same
intersection poset.

Definition 6.1 Let (A1,T2) and (A2,T2) be two arrangements. If it is possible to con-
tinuously translate hyperplanes of A1 without creating a triple intersection to A2, then
A1 ∼ A2.

3Note that rank of an element x ∈ L(A) is equal to codim(x).
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Example 6.2 Let A be an arrangement on T2 consisting of lines given by the normal
vectors 〈1, 1〉, 〈−1, 1〉, and 〈1, 0〉, as shown in Fig. 7. We choose to fix 〈1, 1〉, 〈−1, 1〉 and
count by brute force the number of arrangements that arise by adding 〈1, 0〉. However,
there is a restriction: we do not allow 〈1, 0〉 passing through points A or B. This means
that there are two regions where the line can fall into, hence there are at most two
distinct arrangements in this case. However, we need to take the symmetry of T2 into
consideration. Once we allow a global translation of the torus, the two arrangements are
equivalent.

A

B

A

B

Figure 7: An example of two arrangements consisting of the same hyperplanes which are
equivalent under ∼.

Lemma 6.3 Let (A,T2) be an arrangement such that A = {H1, H2}. Then there is a
unique arrangement of hyperplanes H1 and H2.

Proof. It is not possible to have a triple intersection with only two lines. Therefore,
we can translate the two lines so that their intersection is at the origin using a global
translation of the torus. �

Lemma 6.4 Let (A,T2) be an arrangement of three hyperplanes H1, H2, and H3. Then
there is a unique arrangement of the hyperplanes up to equivalence.

Proof. Suppose that H1 and H2 intersect in j points. Then there is at most j ways to
create triple intersections only by translating H3. As depicted in Example 6.2, H3 must fall
in an interval defined by the intersections of H1 and H2, so that A is in general position.
However, accounting for the global symmetry of T2, all of the considered arrangements
are equivalent because we can translate any intersection of H1 and H2 to the origin. As
in Lemma 6.3, translating any vertex to the origin corresponds to a symmetry which fixes
the hyperplanes. �

6.1 An Upper Bound for the Number of Distinct Line Arrangements

In order to establish two arrangements are not equivalent, we make use of the intercept
information that appears when defining a hyperplane. Translating a hyperplane is the
same as changing the intercept. In consequence, we want to parametrise the intercept
and describe a new arrangement, as we demonstrate in the next example.
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Example 6.5 We continue Example 6.2. We write the hyperplanes in A as

θ1 : T2 → S1; θ(x) = x1 + x2

θ2 : T2 → S1; θ(x) = −x1 + x2

θ3 : T2 → S1; θ(x) = x1

Using the definition of hyperplanes, we describe the arrangement by

Θ : T2 (θ1, θ2, θ3)−−−−−−→ (S1)3 1 1
−1 1
1 0

 ,

b1b2
b3

 ,

for which we want to parameterise the intercepts b1, b2, and b3 corresponding to triple
intersections of the hyperplanes. Therefore, we identify each arrangement with a point in
(S1)3. Since the space of possible arrangements is going to be identified with T3, we look
at each column of the original system of hyperplanes as a hyperplane in T3. We will call
the first column a1 and the second column a2. We describe three arrangements in (S1)3

by taking the cross product of a1 and a2,

n =

 1
−1
1

×
1

1
0

 =

−1
1
2

 .

We claim that the hyperplane given by n corresponds to the intercepts b1, b2, and, b2 giving
a triple intersection. Observe that the i-th entry in n gives the number of equivalence
classes of arrangements we get by translating the i-th hyperplane, ignoring the symmetry
of T2 for now. That is to say, taking the cross product gives us a vector whose entries
are the solution to the restricted systems of linear equations. The i-th hyperplane is
parameterized while the other two are fixed, so solving for the other two gives us the
number of possible triple intersections when translating Hi. Since the i-th entry are
hyperplanes on S1 which correspond to line arrangements with a triple intersection, the
1-faces now represent an equivalence class of line arrangements under ∼, disregarding the
symmetry of T2. For instance, the last entry suggests there are two distinct hyperplane
arrangements under ∼, not taking the symmetry of T2 into consideration, which we have
already intuitively verified.

After the example, we go on to set the general construction. Considering an arrange-
ment (A,T2) of m lines, we put the normal vectors of hyperplanes into a system,

(Θ,b) =




a1 a2
a3 a4
a5 a6
...

...
a2m−1 a2m

 ,


b1
b2
b3
...
bm



 .
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Figure 8: The intercept b3 parametrised as an arrangement on S1. The hyperplane 〈2〉
gives two arrangements with a triple intersection obtained by translating H3.

Let B be a subarrangement of A consisting of three hyperplanes which are spanning (such
a subarrangement always exists because A is spanning) for which we writeai ai+1

aj aj+1

ak ak+1

(x1
x2

)
=

bibj
bk

 .

We want to parametrise the intercepts bi, bj, bk of the hyperplanes and inspect which inter-
cepts correspond to the subarrangement containing triple intersections. The arrangements
with a triple intersection must be such that the system above has a solution.

Lemma 6.6 Given a system of hyperplanes Θ and an intercept vector b, there exists a
vector x satisfying a11 a12

a21 a22
a31 a32

(x1
x2

)
=

b1b2
b3


if and only if

(a1 × a2) · b = 0,

where a1 and a2 stand for the first and second column of Θ respectively.

Proof. Suppose we have a vector x which satisfies Θx = b. We rewrite the relation,a11 a12 b1
a21 a22 b2
a31 a32 b3

x1
x2
−1

 = 0.
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Then, since there exists a non-zero vector in the kernel of (a1 | a2 | b), we have det(a1 |
a2 | b) = 0 which is equivalent to (a1 × a2) · b = 0 by Laplace expansion along the last
column.

�
Hence, n · b = (a1 × a2) · b is the triple intersection locus in (S1)3 and n defines a

hyperplane parametrised by the intercepts.

Definition 6.7 Let (A,T2) be an arrangement of m lines. Denote by nijk the primitive
cross product of column vectors of the system of hyperplanes for a spanning triple of
normal vectors ai, aj, ak. Let nijk be the extended vector of dimension m where the i-th,
j-th, and k-th coordinate are taken to be coordinates of nijk respectively and the rest of
the entries are zero.

We define a new arrangement on (S1)m of
(
m
3

)
hyperplanes defined by normal vectors

nijk which is the parameter space of arrangements and is given by the system

(Θ,0) =



← nI1 →
← nI2 →

...
← nI

(m
3)
→

 , 0

 ,

where the normal vectors of hyperplanes are indexed by unordered triples Ii ⊆ A.
We can further refine the method. It follows from Lemma 6.3 that we can always fix

the intercept of two lines at the origin in an arrangementA. Therefore, for an arrangement
of two hyperplanes H1 = 〈a1, a2〉 and H2 = 〈a3, a4〉 on T2, we can fix the intercepts b1
and b2 of the two hyperplanes at the origin, that is, two entries of the intercept vector b
can be replaced by zero.

Example 6.8 Suppose we have hyperplanesH1, H2, H3, H4 on T2 given by normal vectors

a1 = 〈1, 0〉, a2 = 〈0, 1〉, a3 = 〈1,−2〉, a4 = 〈1, 2〉

respectively. We fix the intercepts of H3 and H4 at the origin. Therefore,

(Θ,b) =




1 0
0 1
1 −2
1 2

 ,


b1
b2
0
0




is the system associated to the arrangement. We would like to construct a geometric
space, say M, where points are in correspondence with line arrangements and lines are
in correspondence with arrangements containing triple intersections. Using the method
above, we look at triples of spanning subarrangements of three hyperplanes. We start
with the subarrangement with system of hyperplanes given by1 0

0 1
1 −2

 ,

b1b2
0

 ,
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for which we compute the cross product of columns and then extend the normal vector,

n123 =

1
0
1

×
 0

1
−2

 =

−1
2
1

 , n123 =


−1
2
1
0

 .

We repeat the process to obtain the extended system of hyperplanes in terms of b,

(Θ,0) =



−1 2 1 0
−1 −2 0 1
2 0 −1 −1
0 4 1 −1

 ,0

 .

Fixing the intercepts b3 = b4 = 0, we can reduce the arrangement to get

(Θred,bred) =




1 −2
1 2
2 0
0 4

 ,0

 .

In addition, the intercepts of the hyperplanes are given by the fact that there is a unique
arrangement where all four hyperplanes intersect, so each hyperplane has to pass through
the origin. Since each hyperplane now corresponds to an arrangement containing a triple
intersection, the n-faces represent distinct arrangements in general position.

H3

H4

H1

H2 b2

b1A

A

Figure 9: An example of constructing the space of arrangements consisting of hyperplanes
M coming from vectors n123 (olive), n124 (pink), n134 (purple), and n234 (teal).

In fact, we can say more from the space of hyperplane arrangements. Since there
are four arrangements with a quadruple intersection, the four points must be the same
arrangement. Hence, the Fig. 9 suggests that the space of arrangements has a four-
fold symmetry as a result of the additional symmetries of the torus. It suffices to check
the fundamental domain of M to answer how many distinct hyperplane arrangements
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of H1, H2, H3, and H4 we have, in this case there are 4 distinct arrangements. Note
that if we fixed b1 = b2 = 0 instead, we would get an arrangement corresponding to the
fundamental domain of the parametrized arrangement. This follows from the fact that
fixing the hyperplanes with the least intersections gives us the least amount of additional
symmetries.

The parameter space of arrangement is often times not in general position, therefore
most of the results do not apply nicely to this arrangement. However, we can indicate an
upper bound in the next theorem.

Theorem 6.9 Let (A,T2) be a line arrangement of m lines with m > 3 given by normal
vectors a1, a2, . . . , am. Fix the intercept of two hyperplanes, given by ag and ah for which
the absolute value of the determinant det(ag | ah) is minimised, at the origin. We define
an arrangement on Tm−2 using the system

ρgh(Θ)b = 0,

where we get Θgh by omitting the g-th and h-th column of Θ̃. Then the upper bound for
the number of distinct arrangements of the m hyperplanes is the number of (m− 2)-faces
of the arrangement described by ρgh(Θ),

1

| det(ag | ah)|
∑

Ii⊂{1,2,...,m}
|I|=3

| det (ρgh(nI1 | nI2 | . . . | nIm)) |.

Proof. Extending the normal vectors nijk to nijk gives us a new arrangement on Tm
where each hyperplane is the locus of ijk-intersection locus. By omitting two columns of
the system of hyperplanes Θ, we remove some additional symmetry of the arrangement,
and ρgh(Θ) now represents a spanning arrangement on Tm−2. We can also definitely
remove the symmetry of the fixed hyperplanes, which is the | det(ag | ah)|-fold symmetry.
We count the (m− 2)-faces using Corollary 5.1, but note that the arrangement need not
be in general position, hence we only get an upper bound. �
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