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1 Introduction

Let C denote the complex numbers, N denote the positive integers, Z denote the integers,
and Z, denote the non-negative integers.

Twisted multiloop algebras associated to complex simple finite-dimensional Lie al-
gebras and their representations have been extensively studied, [I} [7, 10]. Nonetheless,
straightening identities in the universal enveloping algebras of these algebras are still
unknown.

Straightening identities allow products in non-commutative algebras to be reordered
so that the basis elements appear in a selected order. They can be useful in studying the
representation theory of the algebra. The famous Poincaré-Birkhoff-Witt Theorem tells
us that straightening is always possible, but because it is an existence theorem, it does
not tell us how to straighten any particular product.

Straightening identities in the universal enveloping algebra of a simple complex finite-
dimensional Lie algebra, g, were done by B. Kostant in [6]. Some straightening identities
in the universal enveloping algebras of the untwisted loop algebras g ® C[t,¢~!] were done
by H. Garland in [5]. This was then extended to the untwisted map algebras g® A, where
A is any commutative associative algebra with unity by the first author in [4].

The first twisted straightening identities were done by D. Mitzman for the twisted
Kac-Moody algebras in [8]. The next step for twisted straightening identities was done
by A. Bianchi and the first author in [2] where they gave straightening identities in the
universal enveloping algebra of the Onsager algebra. This work is the first step in the
direction of straightening identities in the universal enveloping algebras of the twisted
multiloop algebras. In this case, g = sl; and the twisting automorphism is the Chevalley
involution.
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2 Preliminaries
We recall the definition of a complex Lie algebra given in [3].

Definition 2.1 A vector space, L, over C, with an operation |[.,.] (called the Lie bracket),
is a complex Lie Algebra if the following axioms are satisfied for all x,y,z € L and all
ceC:

[cx + vy, 2] clx, 2] + [y, 2]
[z, ey +2] = clz,y] + [z, 7]
[ZE,{E] =
]

=0
0

The first two axioms imply that the bracket is bilinear and the last is called the Jacobi
identity.

Let C(m) := Clt;,t;",.. . tm,t;!] be the set of complex Laurent polynomials in m
variables.

Definition 2.2 Given a complex Lie algebra L, the multiloop algebra of L is the Lie
algebra L{m) := L @ C(m) with Lie bracket given by bilinearly extending the bracket

@ fiy®gl=I[r,y]® fg
where x,y € L and f,g € C(m).

We now define the Chevalley involution as in Example 3.9 in [9].

Definition 2.3 Let g be a simple complex finite dimensional Lie algebra and {e;, f;, h;}
be a set of Chevalley generators for g. Define a Chevalley involution o on g by

o(ej) =—f;, olfy)=—e; o(h;)=—h;.

o also acts on C{(m) by o(f(t1,...,tm)) = f(=ti,ta,... tm). Then we can extend the
action of o to the multiloop algebra g @ C(m) by defining o(x ® g) = o(z) ® o(g) for
all x € g and g € C(m). We define the twisted multiloop algebra of g, Tm(g), to be the
subalgebra of the multiloop algebra fized by this action of o.

2.1 The Twisted Multiloop Algebra of sl

Let sly be the Lie algebra of the 4 x 4 matrices with complex entries where the sum of
the diagonal elements is 0 with the commutator Lie bracket ([A, B] = AB — BA). Let
ejr be the 4 x 4 matrix with 1 in the jth row and kth column and zeros elsewhere.
The set {e;x, €11 — €141 | 1 <j#k <4, 1 €{1,2,3}} is a basis for sl;. The Chevalley
involution acts on this basis as o (ej,) = —ey; and o (e;; — €4111) = — (€11 — €141,041)
for 1 < j#k<4and ! € {1,2,3}. The action on this basis is not sufficiently nice for
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our purposes. So we change the basis to one on which the Chevalley involution acts by

the scalars 1 and —1.
For j € {1,2}, define x?’i, hg as follows, where i = /—1 € C.

1 . .
lL"(f’+ 5 ((61,2 - 62,1) - (63,4 - 64,3) —1 (61,3 - e3,1) —1 (62,4 - 64,2))
h(f 1 ((62,3 - 63,2) - (61,4 - 64,1))
- 1 . .
Ty 5 (— (61,2 - 62,1) + (63,4 - 64,3) —1 (61,3 - 63,1) —1 (62,4 - 64,2))
1 . .
x§’+ 5 ((61,2 - 62,1) + (63,4 - 64,3) + (61,3 - 63,1) —1 (62,4 - 64,2))
hg —i((e23 —e32) + (614 —€41))
o 1 . .
Ty 5 (— (61,2 - 62,1) - (63,4 - 64,3) +1 (61,3 - 63,1) —1 (62,4 - 64,2))
Notice that o fixes all of the elements above, because o (e;, — €x,;) = —e€x; + €. In

fact, the elements above serve as a basis for the subalgebra of sl; which is fixed by o
(denoted sl7), because they are six linearly independent vectors in a space of dimension
6. So we can write sl] = sly X sly.

For the rest of the basis, define the following elements of sly:

o 1 1 )
% " 2 ((er12 +e21) + (€344 es3) —i(ers +es1) +i(e2s+ es2))
o 1 ) )
Y5 ) ((e12+e€21) — (34 +ea3) +i(e13+€s31) +ile2a+e€42))
o 1 . .
yl’ 5 ((61’2 + 62’1) + (6374 + 6473) +1 (61,3 + 63,1> —1 (6274 + 64,2))
o 1 . .
Yo 3 ((e12+€21) — (e3a +e€43) —i(ers+es1) —i(e2q+eq2))
o 1 .
ys ™ 2 (i (e14 +ean) + (€11 — €22) + (€22 —e33) + (€33 — €4.4))
g,— 1 o
Y3’ 5 (—i(era+eqr) + (61,1 —e22) + (€22 —e€33) + (€33 — €44))
Yyt i(e23 + e32) — (€22 — €33)
Y;’Jr Z'(€2,3 + 6372) + (62,2 - e3,3)
2% (€11 — €22) — (33 — €44)
Notice that for each of the elements, x, above o(z) = —z, because o (e;; +e;;) =
—eji—eij and o (epr — epr1pt1) = — (€pp — ept1p1), for 1 <i# j <4dandk € {1,2,3}.

Notice also that it is straightforward to show that the elements listed are linearly indepen-
dent. Therefore, they form a basis for sly, because there are 15 of them in a 15-dimensional

space.

Notice that, span {x?’i, hg } = span {y;’i, hg} = sly, for j € {1,2}.
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We can now formulate a basis for 7,,(sly) as follows. Given r € Z™ let r; be the jth
coordinate of r and define t* := ¢]' ...t/ € C(m). Given r,s € Z™ with r even and s;
odd, j € {1,2} and k € {1, 2,3}, define wfr,yis, hiw, Yii, 25 € Trn(sly) by a:jfr = x?’i@)tr,
y,fs = y,‘:’i 1%, hyje = h] @1, Y5 = Y;-U’+ ® %, and zF = 20T @ 5.

It is straightforward to see that the set

{250 Vs hin: Yoz |7 €{1,2}, ke {1,2,3}, r,s € Z™, 2| ry, 2151}

2r 35,8778

is a basis for Ty, (sly).
For all j € {1, 2},

span {z7,, hj, | T € Z™,2 | r1} = span {yjijs,hjvr |r,s € Z™, 2| 1,21 81} = sly(m)

]71‘7

and
span {ygfs, 2(hiy + hoy) |T,8 €Z™,2 | 11,21 51} = sly(m)

where the isomorphism is given by yJ= — %yg’i. Also,
span {Y:rs, 1/24;5, —2 (er — h27r) | r,sc Zm, 2 | r, 2 Jf 81} = 5[2<m)

where the isomorphism is given by Y7 — —1¥"" and Yy — 1Y7" So the straight-
ening identities for these elements have been done in [4].
Given a Lie algebra, L, let U(L) be its universal enveloping algebra.

Definition 2.4 Given u € U(L) and k € 7Z, define the kth divided power by u®) = 0 if
k<0 and

u® = L e U(L)
if k> 0.

In order to formulate straightening identities in the universal enveloping algebra we
need to order the basis. The order we chose is given by

(™) (w27) (w5) (a77) (237) RTRS27T (977) (v2™) (v57) (V) (¥2) (1) (237)

3 Straightening Identities

Our straightening identities have two different types. We will first state all of the identities
of the first type and then prove one in detail. The remaining identities of this type have
similar proofs and so the proofs are omitted.
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3.1 Type 1 Identities

Theorem 3.1 Let r,s € N, j,1 € {1,2} distinct, and r,s € Z™ with 2 | r; and 2 1 s,
then

min{r,s}

(@) 6 = > ) ) () W
k=0

min{r,s}

()" () = 30 0 ) () ™ (7) )

min{r,s}

(@) )" = 3 0 ) V) () ®
k=0

min{r,s}

)" ) = 3 0 ) ) (055" o

k=0

Proof. We prove (1) by double induction on r and s. The other proofs are similar. In
the case that s =1 (1) becomes

(#10)” 0a) = () (o)™ + () () 5)

We will first prove by induction on r:
Base Case: For r = s =1,

(27%) (92s) = (v2) (210) + [210 02
= (v2s) (272) + (Y3ss)

Induction Step for : Assume for some r € N. Observe that,

(af0) " (45) = v i o (z7,)"™" (y4,) by Definition 2.4
T’! (r)
R (1x) ((xfr) (y2s))
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Therefore, holds for all » € N by induction. We will now prove (1) for any r € N by

induction on s. The base case s =1 is ().

Induction Step for (1): Assume for all » € N and some s € N that (1) holds. Observe

that,

(s+1) (ﬂffr)m (?JZS)(SH) ((jj__ 1)) (xfr)(r) (y s )HS by Definition 2.4

1)!
L (ot (y;s> (1,)’

s‘<
((y2s r (ySr-i-s $1r >
= (52) (1) () ™) + () (s

min{r,s}

=) D 05 (Wees) ()"
k=0

min{r—1,s}

T es) D (5 () (@)
k=0

by the induction hypothesis

min{r,s}

= > 1R () () (@)
k=0

min{r—1 S}
+ Z (5 k) (y;r+s>(k+l) (I‘ir) (r—1-k)

min{r, s}

= > (1R (55) " (e (1)
k=0
min{r,s+1}

+ Z (k) (y30) "7 (o)™ ()Y

=(s+ 1>( ) ()"

min{r,s}

3 1=k () () (o)
mln{'r‘s-i—l} . . &

+ Z S+ : (3/3 r+s)( ) (xfr)(r_ )

THE PUMP JOURNAL OF UNDERGRADUATE RESEARCH 6 (2023), 334-345

339



min{r, s+1}

—(s+1) (y;s)(sﬂ) ( )( r) i Z s+ 1— 278)(s+1—k) <y§r+s)(k) (Iir)(rfk)
min{r, S-‘rl} - *) ()
+ Z S+ : (yS r+5) (mir) .
=(s +1) (ya,s)(sm (ffr)(r)
min{r,s+1} - . A
FUS Gt kB () ) ()
) min{r,s+1} - .
=(s+1) (55) " (@) H s+ D) Y W)Y () (o

k=1

min{r,s+1}
= (s+1) < (y ; )(s+1) ( )( r) + Z (y;s)(ﬁkk) (y;:r—i-s)(k) (ﬂffr)(rk))

min{r,s+1}

=+ > (@) () (@)

k=0
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3.2 Type 2 Identities

Theorem 3.2 Letr,s € N and a,r,s € Z™ with 2 | r1, 241 a; and 21 s;.

y2a

’

5]

5)
r)
r)
r)

(
(
(

, )
o) (1)
()" (@) = D02 (@) ()™ () T (Vo) ™
(V0 (210) 7 = D=2 (aree) ™ (Wizese) ™ (22) T (i) T
(230) 7 (30) " = D=2 (s ™ (30) T (W) ™ ()T
(23.) 7 (Vi0) 7 = D7 (=20t ese) ™ (~9ifrea) ™ (Yl*)(s O ()
,r S ,r-s r—-s S r
i) () =325 (450 77 (1200 ™ () T (Vs
(YQJ,FS)(S) (yfa) " = Z (yia) ) ( 32a+5>(k2) ( >(S bt ( 2z ;raJrs
()™ (1) = D ()" () T (i) (205
() 1) = D2 (41 (Vi2ars)
()™ (030) " = D (30) T 22raa) ™ () T (Vo)™
Vi)™ () = 302 () T (aae) ™ (V)T ()™
)=
)=

(

2

(¥2)
> (2,
T3y) (

D =3 (“20ea) ™ () T ()™ ()T
Vi)™ =302 (4 )™ (aes) ™ ()T ()

B S L TR L ha

(
x?,r)(riklimm) (_2yi~:r+s)(kl) (y3,5>(s 1) ( Yv1+2r+s

(
(
(
(
(
)" (30) ™ ()T 15
(
(
(
(
(

2Wirrs) ) (“Wamra) " ()T (15 TR

)(kl)

a+s) (kl)

)(kz)

Where all of the sums are over all ky,ky € Z such that ky 4+ 2ky < r and ki + ky < s.

Proof. We will prove (6) in detail by double induction on r and s. The other proofs are

similar. In the case s = 1, (6) becomes

(#50)" (03s) = (v3s) (@1)"” =2 (vss) (oF2) " = (¥ihesd) (o]

We will prove by induction on r.
Base Case: For (r,s) = (1,1), we have

(272) (y5s) = (¥5s) (1) + [270 y54]
(y3 s) (37 r) —2 (92 r+s)
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Induction Hypothesis: Assume for some r € N. Observe that,

1

(1) () = (1) ((@1)" (43)) by Definition 2.4
1

o 1) (08 1) =2 () ()

— (Yets) ($1|-7r)(7"—2)) by the induction hypothesis

1 \ - .
() 05 610" =201 (50) (01"

SCRICARIEREY

1 r — T
_ (u+4>@#)@;f+”—2@m%)@mf)

Cr41
—2r (y2_,r+5) (Ifr)(r) —2 (Yl—,i_2r+5) (xir)(r_l)

= 1) (V) () )

1

:7“ + 1 ((T * 1) (ygjs) (xfr)(r—i-l) - Q(T + 1) (yg,rJrs) (xir)(r)

- (T + 1) ()/1—,’_2r+s) ($fr)(r_1))

= () (@12) ™ =2 (aess) (212)"” = (Viess) (af2) "

Therefore, holds for all » € N.

We will proceed by induction on s to prove (6). Assume the formula for all » € N and
some s € N. Then

(s 1) (1) " (0) " = ()" (v5s) ()

= (Vi) (1)) (550)" by

= (3s) (#12)" (95)” =2 (2ess) (1) (450)"
= (Yilss) (@) (050)
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“ () Y (2™ (05 T (Vi) (0T
e
ki+ka<s
2(e) X (2™ (50) T (Vi) ()
N
ki+k2<s
= (Vhers) 2 (200 ™ (05) T (V) ()T
k 1ki 72'I€]€2 QGSZT‘JL 2
k1+ko<s
= 3 Gtk k) (200 () () (o)
ety
k1+ka<s
2 > 2Rk 1) () T () T T (i) ™ () T
M
k1+k2<s
S R ) () ) () Y (o)
k1k<|1>72k]<:22€§Z7”+72
k1+ko<s

k1,k2€Z
k14+2ka<r
ki1+ka<s+1

-9 Z (_2>k1—1k1 (y£r+s)(k1) (y

kl,k:g EZ+

3,8

k1+2k2<r
k1+ko<s+1

_ Z (_1)]@‘2*1]{;2 (—QZJ;,HS)(W (y

k1,ko€Z
k1+42ko<r
k1+ko <s+1

3.5

k1,k2€Z
k14+2ka<r
ki1+ko<s+1

+ Y k(=205 (v

k:l,k‘QEZ+
k1+2ka<r
k1+ko<s+1

+ Z ko <_2yir+s)(k1) (y

k1,k2€Z
k142ko<r
k1 +k2§s+1

3,8

3,s

> Hl—h—k) (205,00

> rl—h—k) (205,00

3,s

) (v ) (o

)R (1) (o

3,s

I AL

) (Vi)™ (o

) (s+1—k1—k2) (_}/1_3_21'4_5) (k2) (x?_,r) (r—k1—2k2)

+
1,r

+
1,r

) () (o

+

(r—k1—2k2)
l,r)

+

(r—k1—2k2)
1,1‘)
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=+ 1) 3 (2u) ™ () T ()™ ()T

ki,ko€Z
k1+2ka<r
ki+ko<s+1

Therefore (6) is proven by double induction on r and s. 0

4 Further Directions

The next steps are to formulate and prove straightening identities for the following prod-
wets: (21) " (), @5 ()™, (1) (w10) . and (5, (w50) "
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