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Abstract - A sequence of prime numbers
{
p, 2p + 1, 4p + 3, ..., 2n−1(p + 1)− 1

}
is called a

Cunningham chain. These are finite sequences of prime numbers, for which each element is
a Sophie Germain prime. It is conjectured that there are arbitrarily large such Cunningham
chains, and these chains form an essential part of the study of Sophie Germain primes. In
this paper, we aim to significantly improve existing bounds for the length of Cunningham
chains by considering their behaviour in the framework of what we will define as rogueness.
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Introduction

If p is prime, a sequence of prime numbers {p, 2p+ 1, 4p+ 3, ..., 2n−1(p+ 1)− 1} (resp.
{p, 2p− 1, 4p− 3, ..., 2n−1(p− 1) + 1}) is called a Cunningham chain of the first (resp.
second) kind. The congruence class of the base prime modulo n, where n is prime, directly
impacts the length of the subsequent Cunningham chain. This is particularly important
when considering a potential strategy for finding arbitrarily long chains. Suppose n = 5,
and we wish to generate a Cunningham chain of the first kind {an}. Then if a1 ≡ 1
mod 5, we have

a2 ≡ 3 mod 5 =⇒ a3 ≡ 2 mod 5 =⇒ a4 ≡ 0 mod 5,

where =⇒ denotes ‘implies that’, which forces the chain to terminate at a3. In fact,
this demonstrates that any chain with length higher than 3 must have a1 ≡ 4 mod 5.
It follows similarly that any Cunningham chain of the second kind of length higher than
3 must have a1 ≡ 1 mod 5. The ability to place such a unique restriction allows us
to bound chains for most initial elements. In addition, if we were able to find similar
restrictions for other values of n, we could apply the Chinese Remainder Theorem on the
base prime to significantly reduce the possibilities for chains of arbitrarily long length.
Moreover, for all n, a Cunningham chain of the first kind will never reach 0 modulo n
if a1 ≡ n − 1 mod n ≡ −1 mod n. This follows as a2 ≡ 2 × −1 + 1 ≡ −1 mod n,
with ak = −1 mod n by induction. A similar result holds for a Cunningham chain of the
second kind when a1 ≡ 1 mod n.
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In the spirit of the p = 5 case, for a given prime p, we want to determine congruence
classes in Z/pZ for which a starting element from such a congruence class would generate a
chain (now thought of as being canonically embedded in Z/pZ) that would eventually hit
0 mod p. As before, for a chain of the first (resp. second) kind, we ignore the equivalence
class −1 (resp. 1), and aim for every other equivalence class to fit our desired restriction.
However, we observe that this is not possible for n = 7 by noting

a1 ≡ 2 mod 7 =⇒ a2 ≡ 5 mod 7 =⇒ a3 ≡ 4 mod 7 =⇒ a4 ≡ 2 ≡ a1 mod 7,

leading to a repetition that will always be non-zero. This undesired loop for n = 7 does
not allow us to enforce a unique restriction on a general starting element due to the
behaviour when a1 ∈ {2, 4, 5} mod 7. This leads us to label 7 as a rogue prime.

In this paper, we will devote the first two sections to the construction of the idea of
rogueness. The next sections apply these ideas to improve bounds on the length of a
Cunningham chain. The final two sections give further investigation into rogue loops, and
their relation to Cunningham chains. We also conjecture a logarithmic bound for these
chains, for which we give numerical evidence. Finally, we conjecture a result concerning
divisors of the extensions of Cunningham chains, which is closely related to our logarithmic
bound. Although this conjecture is simple to state, we find it far from obvious how to
approach it.

1 Basic Definitions

Throughout we let P denote the set of odd prime numbers. In this paper, we will focus
on sequences of prime numbers. The basic pattern of the sequences we will study is
motivated by the notion of a Sophie Germain prime.

Definition 1.1 (Sophie Germain prime) A Sophie Germain prime is a prime
number p, such that 2p+ 1 is also prime.

We remark that if for some odd prime q < p we have p ≡ q−1
2

mod q, then p is not a
Sophie Germain prime.

If p is a Sophie Germain prime, it is natural to wonder whether 2p+ 1 is also a Sophie
Germain prime, and if we can continue this process to get more primes. Whilst we keep
hitting Sophie Germain primes, we can continue this process, and in doing so we construct
sequences of prime numbers, which are called Cunningham chains.

Definition 1.2 (Cunningham chain) Let p ∈ P. We define the Cunningham
chain of the first (resp. second) kind generated by p to be the finite sequence

a+n = 2n−1(p+ 1)− 1, for n : 1 6 n 6 k+

where k+ = min{m ∈ Z≥1 : a+m+1 6∈ P}, and resp.

a−n = 2n−1(p− 1) + 1, for n : 1 6 n 6 k−
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where k− = min{m ∈ Z≥1 : a−m+1 6∈ P}. Here, k+ (resp. k−) depends on p and + (resp.
−) and the sequence is characterised by the recursion

a+n+1 = 2a+n + 1 resp. a−n+1 = 2a−n − 1

We use this notation for k+ (resp. k−) throughout. The prime p is sometimes referred to
as the base prime.

For example, taking p = 2, the set of elements in the Cunningham chain of the first
(resp. second) kind would be {2, 5, 11, 23, 47} (resp. {2, 3, 5}). It is believed that there
exist infinitely many Cunningham chains, with the Bateman-Horn conjecture producing
an asymptotic density estimate ([3]). In fact, this would additionally imply that there exist
arbitrarily long chains, but as of August 2020, the longest known Cunningham chain is of
length 19, discovered by Raanan Chermoni and Jaroslaw Wroblewski. A bi-twin chain
is generated from a pair of twin primes (n− 1, n+ 1), as opposed to a single base prime.
It takes the form (n− 1, n+ 1, 2n− 1, 2n+ 1, ...) consisting of solely prime elements and
can be considered as the intertwining of a Cunningham chain of the first kind with base
prime n− 1 and a Cunningham chain of the second kind with base prime n+ 1.

It is useful to refer to the set of elements that form these Cunningham chains.

Definition 1.3 (Cunningham set) Let p ∈ P. Given the sequence a+n (resp. a−n ) we
define the Cunningham set of the first (resp. second) kind to be the set of elements
in the respective Cunningham sequence and we denote these sets by C+[p] (resp. C−[p]).
That is,

C+[p] =
{
a+n | 1 ≤ n ≤ k+

}
resp. C−[p] =

{
a−n | 1 ≤ n ≤ k−

}
It is a simple consequence from group theory that if p ∈ P, then the set C±[p] has size at
most p− 1 > 1. Moreover, from [2] we can extract a better bound, namely for p > 7

|C±[p]| 6 p− 3

2
, (1)

for p ∈ P. In what follows, we will consider a new approach for finding bounds for
Cunningham chains, by considering their reductions modulo primes.

2 Rogue Primes

We now proceed to formalise the ideas mentioned in our introduction.

Definition 2.1 (Rogue set, rogue sequence) Let p be a prime. We define the
rogue set of the first (resp. second) kind by

A+
p = (Z/pZ)× \ {−1 mod p} , resp. A−p = (Z/pZ)× \ {1 mod p}

Let g+ ∈ A+
p , g

− ∈ A−p . Define the sequences

u+n =

{
g+, n = 1

2u+n−1 + 1, n > 1
and u−n =

{
g−, n = 1

2u−n−1 − 1, n > 1
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and set g±k = min {n ∈ N | u±n = 0}∪∞. We define the rogue sequence of g+ (resp. g−)
to be the sequence

〈g+〉+p =
{
u+n | 1 ≤ n < g+k

}
, resp. 〈g−〉−p =

{
u−n | 1 ≤ n < g−k

}
We use this notation for g+k (resp. g−k ) throughout. Note that if g+k (resp. g−k ) is finite,
then u+

g+k
(resp. u−

g−k
) is not in the rogue sequence of g+ (resp. g−).

To avoid having too much notation, when it will be clear, we will often denote the elements
of a rogue sequence by u+n or u−n (depending on the appropriate case), and we will simply
write u±n when considering elements that can be of a rogue sequence of either kind. We
give a few examples of rogue sets and sequences to illustrate the above definition.

Example 2.2 For p ∈ P, the rogue sets of the first and second kind are the sets (where
here we make the abuse of notation by writing x for x mod p)

A+
p = {1, 2, 3, ..., p− 2} , A−p = {2, 3, ..., p− 2, p− 1} .

Furthermore, for p = 5 we have
〈1〉+5 = {1, 3, 2}

whilst for p = 7
〈2〉+7 = {2, 5, 4, 2, ...} , 〈2〉−7 = {2, 3, 5, 2, ...} .

We thus have examples of both finite and infinite rogue sequences.

We now give a formal definition for the primes that lack restriction on our Cunningham
chains. To do so, we will first need to introduce terminology for these loops, whose
structure will generalise that of the rogue sequences 〈2〉+7 and 〈2〉−7 , seen in Example 2.2.

Definition 2.3 (Rogue loop, rogue prime of the first and second kind) Let p
be an odd prime. We call a periodic rogue sequence a rogue loop. We define p to be
rogue of the first (resp. second) kind if A+

p (resp. A−p ) contains a rogue loop. A prime
which is not rogue is said to be a non-rogue prime.

Remark 2.4 It is worth noting that in the case of a rogue loops of the first (resp. second)
kind, we have that g+k (resp. g−k ) =∞.

It follows immediately by applying Fermat’s little theorem on the closed form expressions
of the sequences 〈1〉+p and 〈−1〉−p that these always terminate, and hence are not rogue
loops. Remark that for p ∈ P, if we were to allow −1 to be in A+

p (resp. 1 to be in A−p ),
we would then have as rogue sequences:

〈−1〉+p = {−1,−1,−1, ...} , resp.〈1〉−p = {1, 1, 1, ...}

and hence we would always have a rogue loop, and all primes would be rogue. This
motivates our choice of the sets A+

p and A−p , which are more suitable for this study.
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Going back to Example 2.2, we see that 〈1〉+5 does not form a rogue loop in A+
5 , whilst

〈2〉+7 and 〈2〉−7 do form rogue loops in A+
7 and A−7 respectively. It follows that 7 is a rogue

prime of both the first and second kind, whilst for p = 5 we have

〈1〉+5 = {1, 3, 2} , 〈2〉+5 = {2} , 〈3〉+5 = {3, 2} , (2)

and hence 5 is non-rogue of the first kind.

Remark 2.5 Definition 2.3 is closely related to our motivational examples. If p is non-
rogue of the first (resp. second) kind, then the only criteria on a Cunningham generator
a1, of the first (resp. second) kind is

a1 ≡ −1 mod p, resp. a1 ≡ 1 mod p.

In what follows, we will want to refer to the sets of rogue primes of the two kinds.

Definition 2.6 (Set of rogue primes of first and second kind) We define the
set of rogue primes of the first (resp. second) kind to be

Rog(P)+ = {p ∈ P | p is rogue of the first kind} ,
resp. Rog(P)− = {p ∈ P | p is rogue of the second kind}

If we consider the rogue sets A+
5 and A−5 , we have

〈1〉+5 = {1, 3, 2} 〈−1〉−5 = {4, 2, 3} ,

and hence every element of A+
5 is contained in the sequence 〈1〉+5 , and every element of A−5

is contained in 〈−1〉−5 . This leads to the idea of a rogue sequence being able to generate
a rogue set.

Definition 2.7 (Generated rogue set, pth rogue generator) Let p ∈ N be odd. We
say A+

p (resp. A−p ) is a generated rogue set of the first (resp. second) kind if ∃g+ ∈ A+
p

(resp. g− ∈ A−p ) such that

A+
p =

{
u+n ∈ 〈g+〉+p

}
, resp. A−p =

{
u−n ∈ 〈g−〉−p

}
Note that here we ignore the ordering of the sequence, and it only matters that the elements
of A+

p (resp. A−p ) are the same as those in 〈g+〉+p (resp. 〈g−〉−p ). We call g+ (resp. g−) a
pth rogue generator of the first (resp. second) kind.

To facilitate notation, we introduce the following convention.

Notation 2.8 For α ∈ {+,−}, we write α = + (resp. α = −) to mean that we denote
by α the symbol + (resp. −). We denote by α1

α1 :=

{
1, α = +

−1, α = −

and continue to abuse notation by thinking of elements of Z in the groups Z/pZ.
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In (2), we found that the rogue sequence 〈1〉+5 is an extension of the rogue sequence 〈3〉+5 ,
which itself was an extension of 〈2〉+5 . It is trivial that for any terminating rogue sequence
of 〈g+〉+p (resp. 〈g−〉−p ), the last element must be of the form

ug+k −1
≡ p− 1

2
mod p resp. ug−k −1

≡ p+ 1

2
mod p (3)

where it is useful to recall that if g+k (resp. g−k ) is finite, then u+
g+k

(resp. u−
g−k

) is not in the

rogue sequence of g+ (resp. g−). We can thus ask ourselves how far back this sequence
may be extended? In other words, which elements in A+

p (resp. A−p ) can only ever be the
first element of a rogue sequence? Clearly, for p ∈ P and α ∈ {+,−}, we have⋃

g∈Aαp

〈g〉αp = Aαp .

We can further ask ourselves, what is the smallest subset Gα ⊂ Aαp such that⊔
g∈Gα
〈g〉αp = Aαp , (4)

and if any such proper subsets of Aαp exist? Going back to Example 2.2, in A+
7 and A−7

we have

〈2〉+7 = {2, 5, 4, 2, ...} , 〈1〉+7 = {1, 3} , 〈2〉−7 = {2, 3, 5, 2, ...} , 〈6〉−7 = {6, 4} ,

and hence
A+

7 =
⊔

g∈{1,2}

〈g〉+7 , A−7 =
⊔

g∈{2,6}

〈g〉−7 .

For now, we first consider this with (3), and the following result becomes very imme-
diate.

Lemma 2.9 Let p ∈ P and let α ∈ {+,−}. Then

Aαp is generated ⇐⇒ the pth rogue generator is given by gα ≡ α1 mod p.

Proof. (=⇒) Suppose Aαp is generated. Then ∃ g ∈ Aαp such that 〈g〉αp = Aαp . Consider
A+
p and suppose that g 6= 1. Then 1 ∈ 〈g〉+p \ {g}, and thus ∃ q ∈ N such that

2q + 1 ≡ 1 mod p.

Thus
2q ≡ 0 mod p =⇒ q ≡ 0 mod p.

This is a contradiction since 0 6∈ A+
p . The proof is analogous for A−p . The converse follows

by the definition of a rogue generator. �
Let p ∈ P and suppose that p 6∈ Rog(P)+ (resp. p 6∈ Rog(P)−). It then follows that there
are no rogue loops in A+

p (resp. A−p ), and hence we can find a terminating sequence. In
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the same way as our motivation for Lemma 2.9, we can extend such a sequence to get a
generating sequence, and hence this raises the question as to which elements in (Z/pZ)×

can be expressed as powers of 2? This leads to the following remarkable result (below by
⇐⇒ we mean if and only if).

Theorem 2.10 Let p ∈ P and let α ∈ {+,−}. Then

p ∈ Rog(P)α ⇐⇒ 2 is not a primitive root modulo p.

Proof. (=⇒) Suppose p ∈ Rog(P)+. Then there exists a rogue loop 〈g〉+p , given by

〈g〉+p =
{

2n−1(g + 1)− 1 | n ∈ N
}
.

By definition, ∀n ∈ N we have

2n−1(g + 1) 6≡ 1 mod p,

and hence 2 cannot be a primitive root modulo p. A similar process gives the same result
for p ∈ Rog(P)−.

(⇐=) Suppose p 6∈ Rog(P)+. Then ∀g ∈ A+
p , the rogue sequence 〈g〉+p is finite. Hence,

for such g there exists a Kg ∈ N such that

2Kg−1(g + 1)− 1 ≡ 0 mod p,

giving
2Kg−1 ≡ (g + 1)−1 mod p.

Since g was arbitrary, writing 〈2〉 := {2k mod p | k ∈ N} we get

〈2〉 ⊇
{

(g + 1)−1 | g ∈ A+
p

}
=
{
g−1 | g ∈ (Z/pZ)× \ {1}

}
= (Z/pZ)× \ {1}

and it follows that 2 is a primitive root modulo p. The proof is analogous for the Rog(P)−
case. �
This leads to the following satisfying result, which will allow us to talk more freely about
rogue primes.

Corollary 2.11 Let p ∈ P. Then p is a rogue prime of the first kind if and only if p is a
rogue prime of the second kind.

Proof. This follows immediately from Theorem 2.10, since the right hand side is inde-
pendent of α. �

Definition 2.12 (Rogue prime, set of rogue primes) Let p ∈ P. Then p is said to
be a rogue prime if p is a rogue prime of the first and/or second kind. We define the
set of rogue primes to be

Rog(P) = {p ∈ P | p is rogue} .
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In other words, the rogue primes are simply the primes which do not have 2 as a primitive
root. Here is a list of the first 15 of these:

Rog(P) = {7, 17, 23, 31, 41, 43, 47, 71, 73, 79, 89, 97, 103, 109, 113, ...} .

Let α ∈ {+,−} and suppose that AαP is generated. Then any rogue sequence fits in as a
subsequence of 〈α1〉αp , and hence cannot be a rogue loop. However, if p 6∈ Rog(P), then
every rogue sequence must terminate. The question remains: by how much can we extend
these terminating sequences? We answer this with the following result.

Lemma 2.13 Let p ∈ P and let α ∈ {+,−}. Then

1. Aαp is generated ⇐⇒ p 6∈ Rog(P),

2. A+
p is generated ⇐⇒ A−p is generated.

Proof.

1. (=⇒) Let p ∈ Rog(P) and α ∈ {+,−}. Suppose Aαp is generated. Let kα ∈ Aαp .
Then ∃nα ∈ N such that

kα = α1 · (2nα − 1) =⇒ 2nα = α1 · kα + 1 = α1 · (kα + α1).

where the above equalities hold in the group Z/pZ. Furthermore, since p ∈ Rog(P),
it follows by Lemma 2.10 that 2 is not a primitive root modulo p, and hence 2 has
order at most p−1

2
in (Z/pZ)×. In other words,

| {2n mod p | n ∈ N} | 6 p− 1

2
.

Since 2 is a primitive root modulo 3, we can assume p > 3. However

|
{
k + α1 | k ∈ Aαp

}
| = |(Z/pZ)× \ {α1} | = p− 2 >

p− 1

2
,

and we have a contradiction.

(⇐=) Suppose p 6∈ Rog(P). Consider the rogue sequence

〈1〉+p = {2n − 1 mod p | n ∈ N} .

Then, if k ∈ A+
p , it follows that k + 1 ∈ (Z/pZ)×, and thus ∃N ∈ N such that

2N = k + 1 =⇒ k = 2N − 1,

from which it follows that A+
p is generated. An analogous argument using the rogue

sequence 〈−1〉−p shows that A−p must also be generated.

2. Follows from (1) immediately.
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Remark 2.14 We can thus partially answer the question raised in (4). When p 6∈ Rog(P),
we have that both A+

p and A−p are generated, and by Lemma 2.9, the generator is given
by 1 and −1 respectively. Hence, in this case, it follows that for α ∈ {+,−}, we can take
Gα to be the sets Gα = {α1}, and we are done. The case for when p ∈ Rog(P) is more
complex.

Having now worked through several results concerning rogue primes, rogue sets, and rogue
sequences, we have built an intuition for the subject. We finish this section by noting that
from Theorem 2.10, it follows that Artin’s Conjecture ([4]) for n = 2 implies the existence
of infinitely many rogue primes. This motivates further investigation of this notion of
rogueness.

3 Cunningham Bounds

In this section, we will apply the ideas developed in the previous section to study bounds
for Cunningham chains; the main result of the section is Theorem 3.6 which gives a new
look at bounds for Cunningham chains, and (7) which gives a fast method of finding a
bound for Cunningham chains. To do so, we will need a few more definitions, and to
introduce terminology on the order of an element in a rogue sequence.

Definition 3.1 Let n ∈ N and let α ∈ {+,−}. We define Qα
n to be the set

Qα
n = {p ∈ P \ Rog(P) | p < n, n 6≡ −α1 mod p}

In other words, Qα
n is the set of non-rogue primes p less than n, such that n ∈ Aαp .

We can express the elements of a generated rogue set by a rogue sequence. In the context
of groups, the order of an element vaguely corresponds to how far away that element
is from the identity, in a multiplicative sense. We use this notion to give an analogous
definition of order in such a generated rogue sense. This will essentially be the number
of steps that element is from being divisible by the prime, upon which the rogue set is
defined.

Definition 3.2 (Order of an element in a generated rogue set) Let p be a
non-rogue prime and let α ∈ {+,−}. Let qα ∈ Aαp . Since 〈α1〉αp = Aαp , there exists
kqα 6 p− 2 such that

qα = ukqα

We define the order of qα in Aαp to be

ordAαp (qα) = p− 1− kqα (5)

Remark 3.3 It is worth noting that in the above definition, kqα is the discrete logarithm
base 2 of 1 + α1 · qα. This is strongly related to the result in Theorem 2.10.
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We give some examples to illustrate how the order of elements in generated rogue sets is
calculated.

Example 3.4 In A+
11 and A−11 we have

〈1〉+11 = {1, 3, 7, 4, 9, 8, 6, 2, 5} , 〈10〉−11 = {10, 8, 4, 7, 2, 3, 5, 9, 6} .

We thus have

ordA+
11

(7) = 7, , ordA+
11

(4) = 6, ordA−
11

(7) = 6, ordA−
11

(4) = 7.

Remark 3.5 In Example 3.4, we found that

ordA+
11

(7) = ordA−
11

(4) = ordA−
11

(−7).

In fact there is nothing special about the fact that we are in A±11, and it follows for
p 6∈ Rog(P), for all k ∈ A+

p \ {1} (resp. k ∈ A−p \ {−1}) we have from Definition 2.1, and
Lemma 2.9

ordA+
p

(k) = ordA−
p

(−k).

We can now state and prove our main result of this section that will give us an improved
bound for Cunningham chains.

Theorem 3.6 (Rogue bound for Cunningham chains) Let p ∈ P and α ∈ {+,−}.
If Qα

p is non-empty, we have

|Cα[p]| 6 min
{

ordAαq (p) | q ∈ Qα
p

}
. (6)

Moreover, in this case we have

min
{

ordAαq (p) | q ∈ Qα
p

}
< p− 1.

Remark 3.7 The question of when Qα
p is non-empty is difficult. In Section 5, we will de-

velop terminology which will explain how Conjecture 5.6 allows us to bypass this difficulty.
Furthermore, note that the conclusion of the above theorem is false when p = 2.

Proof. Fix α ∈ {+,−}. If q ∈ Qα
p , then we have q 6∈ Rog(P), and hence Aαq is generated.

Furthermore, q being in Qα
p implies that p ∈ Aαq , and hence ordAαq (p) is well defined.

Thus p ∈ 〈α1〉αq , and it follows that p = uαkα for some kα 6 q − 2. Furthermore, we have
that kα = q − 1 − ordAαq (p). Write (aαn) for the sequence of elements in Cα[p]. Then, we
have that the terms of the sequence (aαn) considered in Aαq are exactly 〈uαkα〉

α
q . This is an

equality of sequences. Since uαgαk ≡ 0 mod q, it follows

aαordAαq (p)
≡ 0 mod q,

and thus aαordAαq (p)
cannot be prime. Now, since Aαq is generated, it follows ∀k ∈ Aαq

ordAαq (k) 6 q − 1 < p− 1.

Hence
|Cα[p]| 6 min

{
ordAαq (p) | q ∈ Qα

p

}
< p− 1,

and the result follows. �
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Example 3.8 Take p = 89, then

C+[89] = {89, 179, 359, 719, 1439, 2879} ,

and hence |C+[89]| = 6. Using the previously known Cunningham bound presented in
(1), the best estimate we could have had was

|C+[89]| 6 43.

We now consider our improved Cunningham bound with

Q+
89 = {11, 13, 19, 29, 37, 53, 59, 61, 67, 83} ,

Computing, we find that

ordA+
11

(89) = 9, ordA+
13

(89) = 6, ordA+
19

(89) = 11, ordA+
29

(89) = 23,

ordA+
37

(89) = 32, ordA+
53

(89) = 22, ordA+
59

(89) = 9, ordA+
61

(89) = 25,

ordA+
67

(89) = 38 ordA+
83

(89) = 74,

and hence by the improved Cunningham bound it follows that

|C+[89]| 6 6.

In fact, in this case |C+[89]| = 6, and hence our bound holds with equality. We will come
back to this later.

Remark 3.9 The bound given in Theorem 3.6, is quite a complicated one to conceptu-
alise. However, since it is a minimum of a set, using the same notation from the statement
of the theorem, we have that ∀q ∈ Qα

p

|Cα[p]| 6 ordAαq (p).

Hence, a more tangible upper bound would be

|Cα[p]| 6 ordAαβα (p), (7)

where βα = min
{
q ∈ Qα

p

}
. We thus only need to find the smallest non-rogue prime βα

such that p is not congruent to −α1 modulo βα, in order to find an upper bound for
Cα[p], that is better than p−1. For example, if p ∈ P such that p > 5, and p 6≡ 4 mod 5,
then 5 ∈ Q+

p , and hence |C1[p]| 6 4. Similarly, if p 6≡ 1 mod 5, then 5 ∈ Q−p , and hence
|C−[p]| 6 4. Moreover, we can even consider extreme cases, and find that this process is
extremely fast: if we take p = 1122659, then it follows that |C+[p]| = 7,

min
{
q ∈ Q+

p

}
= 11,

and ordA+
11

(p) = 7. We give a plot in Figures 1 and 2, illustrating the accuracy of this
more accessible bound. We refer the reader to A.1 and A.2 respectively, for the Python
code of these figures.
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Remark that the function log2(x + 1) + 1 is a bound for the error of both f1 and f2,
and hence we have

0 6 ordAαβα (x)− |Cα[x]| < log2(x+ 1) + 1,

giving the lower bound

|Cα[x]| > ordAαβα (x)− log2(x+ 1)− 1.

This bound however is only motivated from numerical calculations, and is more of an
interesting observation for now.

Figure 1: f1(x) = ordA+
β+

(x)− |C+[x]|
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Figure 2: f2(x) = ordA−
β−

(x)− |C−[x]|

4 Rogue Loops

In (4), we discussed the partition of A±p into disjoint rogue sequences. Whereas for p 6∈
Rog(P), we found that the partition is a single rogue sequence. The case for p ∈ Rog(P)
is more complicated, due to these rogue loops. We can thus ask ourselves; what length
can these loops have, and how many distinct loops can there be? We begin to tackle these
questions with a useful equivalence relation.

Proposition 4.1 Let p ∈ P and let α ∈ {+,−}. The relation

Rα
p =

{
(a, b) ∈ Aαp × Aαp | a ∈ 〈b〉αp or b ∈ 〈a〉αp

}
,

defines an equivalence relation on Aαp .

Proof. Fix α ∈ {+,−}. Clearly Rα
p is both symmetric and reflexive. It remains to prove

transitivity. Let a, b, c ∈ Aαp , such that (a, b), (b, c) ∈ Rα
p . Suppose p 6∈ Rog(P). Since{

y ∈ 〈1〉+p
}

= A+
p , and

{
y ∈ 〈−1〉−p

}
= A−p

there must exist k, l,m ∈ N satisfying

a = uαk , b = uαl , c = uαm.

Without loss of generality, suppose b ∈ 〈a〉αp , and c ∈ 〈b〉αp . Then, since

〈a〉αp = {uαn | n > k} , 〈b〉αp = {uαn | n > l} ,
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it follows that m ≥ l ≥ k, and hence c ∈ 〈a〉αp , giving (a, c) ∈ Rα
p . Suppose now that

p ∈ Rog(P). Note that by Definition 2.3, if 〈g〉αp is a rogue loop in Aαp , then ∀k ∈ 〈g〉αp ,
the sequence 〈k〉αp is a shift of 〈g〉αp . Thus, if (a, b) ∈ Rα

p , and either one of 〈a〉αp or 〈b〉αp is
a rogue loop, it follows that both rogue sequences are rogue loops. Hence if (a, b) ∈ Rα

p ,
then either both 〈a〉αp and 〈b〉αp are rogue loops, or both are terminating rogue sequences.
Using the same reasoning for (b, c) ∈ Rα

p , we have that 〈a〉αp and 〈c〉αp are either both
rogue loops or both terminating rogue sequences. If the former holds, then by our above
reasoning, it follows that (a, c) ∈ Rα

p . If the latter holds, then we can say without loss of
generality that a ∈ 〈b〉αp , and c ∈ 〈b〉αp . It then follows ∃m, k ∈ N such that

a = vαm, c = vαk ,

where 〈b〉αp = (vαn). Suppose k > m,, then

〈a〉αp = {vαn | n > m} 3 c

and hence (a, c) ∈ Rα
p . The other cases follow analogously. �

Remark 4.2 We can thus partition A±p into equivalence classes. It follows that the rogue
loops are precisely the equivalence classes, except for the equivalence class of 1 in A+

p and
−1 in A−p . Thus, for α ∈ {+,−}, it follows that Aαp can be written as the disjoint union
of the rogue loops together with the elements of 〈α〉αp (see (8) and (9) for examples that
illustrate this partition). Of course, by Lemma 2.9, we knew this for p 6∈ Rog(P), but we
have now covered all cases of p ∈ P.

We now study these rogue loops to get a better understanding of this partition.

Lemma 4.3 Let p ∈ Rog(P), and let α ∈ {+,−}. If g ∈ Aαp , then

〈g〉αp is a rogue loop ⇐⇒ g 6∈ 〈α1〉αp .

Proof. Fix α ∈ {+,−}. (=⇒) Consider the rogue sequence

〈α1〉αp = {uαk | k ∈ N, k < gαk } ,

and suppose g ∈ 〈α1〉αp . Then, ∃K ∈ N such that g = uαK , and hence

〈g〉αp = {uαn | K ≤ n < gαk } .

It follows that 〈g〉αp can not be periodic, and hence 〈g〉αp is not a rogue loop.
(⇐=) Suppose 〈g〉αp is not a rogue loop. If g = α1, the result is obvious. Suppose

g 6= α1. Then, if
〈g〉αp = {vαk | k < gαk } ,

where gαk = min {n ∈ N | vαn ≡ 0 mod p}, it follows by (3) that

vαgαk−1 =
p− α1

2
,
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and hence (g, p−α1
2

) ∈ Rα
p , where Rα

p is the equivalence relation on Aαp defined in Proposi-

tion 4.1. By a similar reasoning, (p−α1
2
, α1) ∈ Rα

p , and since Rα
p is an equivalence relation,

it follows that (g, α1) ∈ Rα
p . Hence, g ∈ 〈α1〉αp or α1 ∈ 〈g〉αp . Suppose the latter holds,

then ∃N ∈ N, such that N < gαk and

2vαN + α1 ≡ α1 mod p =⇒ vαN ≡ 0 mod p,

contradicting the minimality of gαk . Hence, g ∈ 〈α1〉αp , and the result follows. �

Remark 4.4 It follows from this result that any terminating rogue sequence in A+
p (resp.

A−p ) is a subsequence of the rogue sequence 〈1〉+p (resp. 〈−1〉−p ). Of course, by Lemma
2.9, we knew this for p 6∈ Rog(P), and we can now use Lemma 4.3, to generalise this for
p ∈ Rog(P).

We further study rogue loops. Let α ∈ {+,−}. For a rogue prime p, and a rogue loop
〈g〉αp in Aαp , by the length of 〈g〉αp , we will mean the size of its underlying set. We will
denote the order of 2 in (Z/pZ)× by Op(2). Take p = 7, we have

A+
7 = 〈2〉+7 t 〈1〉+7 , |〈2〉+7 | = 3, |〈1〉+7 | = 2 (8)

In this simple example, we notice that rogue loops have size one more than 〈1〉+7 . Fur-
thermore, if p = 31, we have

A+
31 = 〈2〉+31 t 〈4〉+31 t 〈10〉+31 t 〈27〉+31 t 〈29〉+31 t 〈1〉+31, (9)

and a simple calculation gives that every rogue loop has size 5, and that |〈1〉+31| = 4.
Note that 2 has order 3 in (Z/7Z)×, and has order 5 in (Z/31Z)×. With this in mind, we
provide the following powerful result.

Theorem 4.5 Let p ∈ Rog(P) and α ∈ {+,−}. Then

|〈α1〉αp | = Op(2)− 1 6
p− 3

2
.

Furthermore, if 〈g〉αp is a rogue loop in Aαp , then

|〈g〉αp | = Op(2), (10)

and hence the maximum length of a rogue loop is p−1
2

. Finally, the number of disjoint
rogue loops in Aαp is given by

p− 1

Op(2)
− 1. (11)

Remark 4.6 It is interesting to see that when p 6∈ Rog(P), we have Op(2) = p− 1, and
there are no rogue loops. Hence (11) holds for all p ∈ P, and furthermore, for p 6∈ Rog(P),
it follows by Lemma 2.9, that

|〈α1〉αp | = p− 2 = Op(2)− 1,

and hence the right equation in (10) also holds for all p ∈ P.
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Proof. Fix α ∈ {+,−}. Since p ∈ Rog(P), by Theorem 2.10, 2 is not a primitive root
modulo p, and hence

Op(2) 6
p− 1

2
. (12)

Now let 〈g〉αp be a rogue loop in Aαp , then

〈g〉αp =
{

2n−1(g + α1)− α1 mod p | n ∈ N
}
.

Suppose k, ` ∈ N satisfy

2k−1(g + α1)− α1 ≡ 2`−1(g + α1)− α1 mod p.

It then follows
2k ≡ 2` mod p =⇒ k ≡ ` mod Op(2).

Hence the set {2n−1(g + α1)− α1 mod p | n ∈ N}, contains Op(2) distinct values, and it
follows that

|〈g〉αp | = Op(2).

Furthermore, we have

〈α1〉αp = {2nα1− α1 mod p | n ∈ N, n < gαk } ,

and since
gαk = min {n ∈ N | 2n · α1− α1 ≡ 0 mod p} = Op(2),

it follows that |〈α1〉αp | = Op(2)− 1. Combining this with (12), we get

|〈α1〉αp | 6
p− 1

2
− 1 =

p− 3

2
.

Finally by Proposition 4.1, we have

Aαp =
⊔
[g]Rαp

{
y ∈ 〈g〉αp

}
=⇒ p− 2 = |Aαp | =

∑
[g]Rαp

|〈g〉αp |.

If we let
X =

{
[g]Rαp | 〈g〉

α
p is a rogue loop

}
,

it then follows that

p− 2 =
∑
[g]Rαp

|〈g〉αp | = |〈α1〉αp |+
∑

[g]Rαp ∈X

|〈g〉αp | = Op(2)− 1 +Op(2)|X|,

and solving for |X| gives the result. �
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Remark 4.7 Let p ∈ P, and consider Cα[p]. It follows from the above result that if we
can find a q ∈ Rog(P) such that q < p, and p ∈ 〈α1〉αq , then

|Cα[p]| 6 |〈α1〉αq | 6
q − 3

2
<
p− 3

2
. (13)

Hence, it would follow that the bound (1) is strict. In other words, if we can find a
q ∈ Rog(P) such that q < p, and the congruence relation

2n ≡ α1 · p+ 1 mod q, (14)

has a solution, then (13) holds.

We write this formally as a conjecture, which is numerically supported for the first 100000
rogue primes up to N = 2157537. We refer the reader to A.5 for the Python code of this
computation.

Conjecture 4.8 Let N ∈ N, let α ∈ {+,−}. Then, ∃ q ∈ Rog(P) such that N ∈ 〈α1〉αq .
Hence (14) always has solutions.

5 Further Investigation and Open Questions

We begin this section by studying (6). We have seen in Example 3.8 that this equation
can hold with equality, and it is natural to ask ourselves whether this is always the case.
If p ∈ P, then one reason for (6) to not hold with equality is if there exists a prime
q ∈ Rog(P) such that q < p, (p, α1) ∈ Rα

q , and

ordAαq (p) = |Cα[p]|.

Hence, 2 ·max {Cα[p]}+ α1 could have q as its only factor smaller than p, and thus (6),
would not hold with equality. This raises a further question: does 2 max {Cα[p]}+α1 have
divisors smaller than p? We tackle the first of these potential issues with an improved
version of Qα

p .

Definition 5.1 (Corogueness) Let n ∈ N and α ∈ {+,−}. A prime q ∈ P is said to be
corogue to n in Aαp if (n, α1) ∈ Rα

q . The set of primes corogue to n in Aαp is denoted by

Rogα(n) =
{
p ∈ P | p < n, and (n, α1) ∈ Rα

p

}
. (15)

Remark 5.2 Clearly, Qα
n ⊆ Rogα(n). In fact, Rogα(n) is simply the set Qα

n together
with an appropriate set of rogue primes, depending on n.

We give an example to illustrate that this inclusion can be proper.

Example 5.3
Q+

17 = {5, 11, 13} , Rog+(17) = {5, 7, 11, 13} .
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The set Rogα(n) is precisely the set we need in order to obtain an extended notion of
order, which coincides with our original definition. The idea here is to use the results
from Theorem 4.5: we can rewrite (5) as

ordAαp (q) = |〈α1〉αp | − kqα = Op(2)− 1− kqα .

This motivates the following definition.

Definition 5.4 (Order of an element in a corogue set) Let n ∈ N and α ∈ {+,−}.
For a prime p ∈ Rogα(n) we define the order of n in Aαp to be

ordAαp (n) = Op(2)− 1− kpα ,

where
ukpα = n,

in the rogue sequence 〈α1〉αp .

The only difference between Definition 5.4 and Definition 3.2, is that for n ∈ N, the
number ordAαp (n) is now defined for p ∈ Rogα(n), whereas previously, it was only defined
for p ∈ Qα

n. We can thus give an improved version of Theorem 3.6, which is more likely
to give equality.

Theorem 5.5 Let p ∈ P and let α ∈ {+,−}. Suppose that Rogα(p) is non-empty, then

|Cα[p]| 6 min
{

ordAαq (p) | q ∈ Rogα(p)
}
. (16)

Proof. Repeat the argument of Theorem 3.6, using the extended terminology. �
To address the second issue we raised concerning equality of (6), we conjecture the exis-
tence of divisors of the first composite element of a rogue sequence, that are smaller then
the base prime.

Conjecture 5.6 Let p ∈ P, such that p > 3 and let α ∈ {+,−}. Denote γα =
2 max {Cα[p]}+ α1. Then

min {q ∈ P : q | γα} < p.

Hence, (16) holds with equality.

The following note illustrates how Conjecture 5.6 justifies the choice of introducing rogue
sets and rogue sequences to study Cunningham chains.

Remark 5.7 In Note 3.7 we discussed that the non-emptiness of Qα
p is difficult to study.

The formulation of Theorem 5.5 translates this issue to the non-emptiness of Rogα(p).
Conjecture 5.6 says that this is never the case. Hence, if Conjecture 5.6 holds true, in
addition to saying that (16) holds with equality, we can also remove the non-emptiness
assumption on Rogα(p).

Another interesting consequence of Conjecture 5.6 is the following.
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Remark 5.8 If Conjecture 5.6 holds, then given p ∈ P,∃ aα ∈ P such that aα < p, and

2|C
α[p]|(p+ α1)− α1 = aα · bα,

for some bα ∈ N. It then follows that

bα =
2|C

α[p]|(p+ α1)− α1

aα
>

2|C
α[p]|(p+ α1)− α1

p+ α1

and thus, since b is a positive integer, we must have bα ≥ 2|C
α[p]|. We thus have

|Cα[p]| ≤ log2(bα),

giving some kind of logarithmic bound.

With this remark, we give a simple logarithmic bound for a specific type of prime, namely
the Mersenne Primes1.

Lemma 5.9 Let p ∈ P and let α ∈ {+,−}. If p = 2n − 1, for some n ∈ N, then

|Cα[p]| < log2(p+ 1).

Proof. Suppose p = 2n − 1, for some n ∈ N, it follows that log2(p+ 1) ∈ N, and

2log2(p+1)(p+ 1)− 1 = (p+ 1)2 − 1 = p(p+ 2),

which is composite. Similarly, we have

2log2(p+1)(p− 1) + 1 = p2,

which is also composite. �
It is conjectured that there are infinitely many such Mersenne primes, and hence we can
imagine that this logarithmic bound could hold for infinitely many primes.

Conjecture 5.10 Let p ∈ P, such that p > 5 and let α ∈ {+,−}. Then

|Cα[p]| < log2(p+ 1). (17)

We give graphs in Figures 3 and 4, which illustrate this bound, and refer the reader to
A.3 and A.4 respectively for the Python code of these figures.

1See [1, page 25]
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Figure 3: Chains of the first kind

Figure 4: Chains of the second kind
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Theorem 5.11 Conjecture 5.10 implies Conjecture 5.6.

Proof. We fix α ∈ {+,−}, and show that by induction on the length of |Cα[p]|, by
assuming Conjecture 5.10, we have Conjecture 5.6. Suppose p ∈ P such that |Cα[p]| = 1.
Then p 6= 3, and it follows that

p2 − (2p+ 1) > 0, p2 − (2p− 1) > 0.

Hence there exists a divisor of 2p+α1 which is smaller than p. Assume the result holds for
some n ≥ 1 and suppose p ∈ P such that |Cα[p]| = n+1. It follows that |Cα[2p+α1]| = n,
and hence there exists a prime divisor q of

γα = 2 max {Cα[p]}+ α1

such that q < 2p+ α1. Suppose for a contradiction, that q > p. Then we have

γα > p2 =⇒ 2|C
α[p]|(p+ α1)− α1 > p2 =⇒ |Cα[p]| > log2

(
p2 + α1

p+ α1

)
(18)

If α = −, we conclude that |C−[p]| ≥ log2(p+ 1), contradicting (17). For α = +, we first
note that from (18) we obtain |C+[p]| ≥ log2(p + 1 − 2p

p+1
). Now, if p + 1 = 2n for some

n, then by Lemma 5.9, it follows that log2(p + 1 − 2p
p+1

) ≤ |C+[p]| < log2(p + 1), which

is a contradiction, since |C+[p]| is an integer. Hence, we assume that p + 1 is not equal
to a power of 2. But then since |C+[p]| is an integer, it follows that |C+[p]| ≥ log2(p+ 1)
which again contradicts (17). �
We now give a result which establishes a relationship between logarithmic bounds on the
size of chains to quadratic bounds on the size of the elements on the chain.

Proposition 5.12 Let p ∈ P. Then

1. For chains of the first kind

|C+[p]| < log2(p+ 1) ⇐⇒ 2 max
{
C+[p]

}
+ 1 < (p+ 1)2 (19)

2. For chains of the second kind

(i) If |C−[p]| < log2(p− 2), then 2 max {C−[p]} − 1 < (p− 1)2

(ii) If 2 max {C−[p]} − 1 < (p− 1)2, then |C−[p]| < log2(p− 1)

Remark 5.13 In the above proposition, we can say more for chains of the first kind than
for chains of the second kind. This is a consequence of Lemma 5.9. Note that adapting
the proof of Lemma 5.9 to primes of the form p = 2n + 1 fails to produce bounds on the
size of chains of both the first and second kind.

Proof.
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1. (=⇒) If the LHS of (19) holds, then

2 max{C+[p]}+ 1 = 2|C
+[p]|(p+ 1)− 1 < 2log2(p+1)(p+ 1)− 1 < (p+ 1)2

giving the RHS of (19).

(⇐=) Suppose that the RHS of (19) holds, and assume for a contradiction that
|C+[p]| ≥ log2(p+ 2). Then

2 max{C+[p]}+1 = 2|C
+[p]|(p+1)−1 ≥ 2log2(p+2)(p+1)−1 = (p+1)2 +p > (p+1)2

which is a contradiction. Hence, |C+[p]| 6 log2(p+2). If p+1 = 2n, for some n ∈ N,
it follows by Lemma 5.9 that |C+[p]| < log2(p + 1). If p + 1 6= 2n for any n ∈ N, it
then follows that

blog2(p+ 2)c = blog2(p+ 1)c < log2(p+ 1)

and hence |C+[p]| < log2(p+ 1). In either case, we obtain the LHS of (19).

2. (i) If |C−[p]| < log2(p− 2) holds, then

2 max{C−[p]} − 1 = 2|C
−[p]|(p− 1) + 1 < 2log2(p−2)(p− 1) + 1

= (p− 1)2 + 2− p < (p− 1)2

giving (i).

(ii) Suppose that 2 max {C−[p]} − 1 < (p − 1)2, and assume for a contradiction
that |C−[p]| ≥ log2(p− 1). Then

2 max{C−[p]} − 1 = 2|C
−[p]|(p− 1) + 1 ≥ 2log2(p−1)(p− 1) + 1 > (p− 1)2

which contradicts our assumption, and (ii) follows.

�
We finish by remarking that Problem 5.1 in [2], implies that

|C1[p]| < log2(p)− 1 < log2(p+ 1),

giving Conjecture 5.10. This last conjecture is heavily supported by numerical evidence,
and hence gives further reason to investigate (17). By Theorem 5.11, this would prove the
very deep result that is Conjecture 5.6, and give equality to (16), giving an exact formula
for the length of the Cunningham chains.
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A Python Codes

A.1 Python Code for f1(x) :

import matplotlib.pyplot as plt

import numpy as np

import math

def prime(n):

for i in range(2, int(n / 2) + 1):

if (n % i == 0):

return 0

return 1

def getSophieGermainPrime(startLimit, endLimit):

l1 = []

p, r = startLimit, endLimit

if p == 1:

p = 2

for a in range(p, r + 1):

k = 0

for i in range(2, int(a / 2) + 1):

if (a % i == 0):

k = k + 1

break

if (k <= 0):

x = prime(2 * a + 1)

if (x == 1):

l1.append(a)

return (l1)

def print_C_len(p0):

i = 0;

list = []

while (True):

flag = 1;

x = pow(2, i);

p1 = x * p0 + (x - 1);

for k in range(2, p1):

if (p1 % k == 0):

flag = 0;

break;
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if (flag == 0):

break;

list.append(p1)

i += 1;

return (len(list))

def print_C_list(p0):

i = 0;

list = []

while (True):

flag = 1;

x = pow(2, i);

p1 = x * p0 + (x - 1);

for k in range(2, p1):

if (p1 % k == 0):

flag = 0;

break;

if (flag == 0):

break;

list.append(p1)

i += 1;

return (list)

List_Primes=[]

for i in range(6,50000):

if prime(i)==True:

List_Primes.append(i)

Non_rogue_list = [set of Non rogue prime numers]

p = 0

SG_primes = getSophieGermainPrime(6, 50000)

Chain_length = []

x1 = [i for i in List_Primes]

for j in x1:

p = print_C_len(j)

Chain_length.append(p)

Q = []

List_of_k = []
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for i in List_Primes:

for j in Non_rogue_list:

if j < i:

Q.append(j)

for m in Q:

if (i + 1) % m == 0:

Q.remove(m)

if Q:

k_i = min(Q)

List_of_k.append(k_i)

Q = []

break

Order_list=[]

Chain_list=[]

index=0

for i in range(len(List_Primes)):

new_k=List_of_k[i]

remainder=List_Primes[i]%new_k

while remainder !=0:

remainder=remainder*2+1

remainder=remainder%new_k

index=index+1

Order_list.append(index)

index=0

array1 = np.array(Order_list)

array2 = np.array(Chain_length)

subtracted_array = np.subtract(array1, array2)

subtracted = list(subtracted_array)

index2=0

x=range(1,50000)

y=[]

for i in x:

y.append(math.log(i+1,2)+1)

plt.scatter(x, y, marker=’.’, label="log_2{x+1}+1",c=’r’)

plt.scatter(List_Primes, subtracted, marker=’.’, label="f_1(x)",c=’b’)

plt.legend()

plt.show()
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A.2 Python Code for f2(x) :

import matplotlib.pyplot as plt

import numpy as np

import math

def prime(n):

for i in range(2, int(n / 2) + 1):

if (n % i == 0):

return 0

return 1

def getSophieGermainPrime(startLimit, endLimit):

l1 = []

p, r = startLimit, endLimit

if p == 1:

p = 2

for a in range(p, r + 1):

k = 0

for i in range(2, int(a / 2) + 1):

if (a % i == 0):

k = k + 1

break

if (k <= 0):

x = prime(2 * a - 1)

if (x == 1):

l1.append(a)

return (l1)

def print_C_len(p0):

i = 0;

list = []

while (True):

flag = 1;

x = pow(2, i);

p1 = x * p0 - (x - 1);

for k in range(2, p1):

if (p1 % k == 0):

flag = 0;

break;

if (flag == 0):
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break;

list.append(p1)

i += 1;

return (len(list))

def print_C_list(p0):

i = 0;

list = []

while (True):

flag = 1;

x = pow(2, i);

p1 = x * p0 - (x - 1);

for k in range(2, p1):

if (p1 % k == 0):

flag = 0;

break;

if (flag == 0):

break;

list.append(p1)

i += 1;

return (list)

List_Primes=[]

for i in range(6,50000):

if prime(i)==True:

List_Primes.append(i)

Non_rogue_list = [set of Non rogue prime numers]

p = 0

SG_primes = getSophieGermainPrime(6, 50000)

Chain_length = []

x1 = [i for i in List_Primes]

for j in x1:

p = print_C_len(j)

Chain_length.append(p)

Q = []

List_of_k = []

for i in List_Primes:
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for j in Non_rogue_list:

if j < i:

Q.append(j)

for m in Q:

if (i - 1) % m == 0:

Q.remove(m)

if Q:

k_i = min(Q)

List_of_k.append(k_i)

Q = []

break

Order_list=[]

Chain_list=[]

index=0

for i in range(len(List_Primes)):

new_k=List_of_k[i]

remainder=List_Primes[i]%new_k

while remainder !=0:

remainder=remainder*2-1

remainder=remainder%new_k

index=index+1

Order_list.append(index)

index=0

array1 = np.array(Order_list)

array2 = np.array(Chain_length)

subtracted_array = np.subtract(array1, array2)

subtracted = list(subtracted_array)

index2=0

x=range(1,50000)

y=[]

for i in x:

y.append(math.log(i+1,2)+1)

plt.scatter(x, y, marker=’.’, label="log_2{x+1}+1",c=’r’)

plt.scatter(List_Primes, subtracted, marker=’.’, label="f_2(x)",c=’b’)

plt.legend()

plt.show()

the pump journal of undergraduate research 7 (2024), 124–156 151



A.3 Python Code for g1(x) :

import matplotlib.pyplot as plt

import math

def prime(n):

for i in range(2,int(n/2)+1):

if(n%i==0):

return 0

return 1

def getSophieGermainPrime(startLimit,endLimit):

l1=[]

p,r=startLimit,endLimit

if p==1:

p=2

for a in range(p,r+1):

k=0

for i in range(2,int(a/2)+1):

if(a%i==0):

k=k+1

break

if(k<=0):

x=prime(2*a+1)

if(x==1):

l1.append(a)

return(l1)

def print_C(p0):

i = 0;

list=[]

while (True):

flag = 1;

x = pow(2, i);

p1 = x * p0 + (x - 1);

for k in range(2, p1):

if (p1 % k == 0):

flag = 0;

break;

if (flag == 0):

break;

list.append(p1)

i += 1;
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return(len(list))

p = 0

SG_primes = getSophieGermainPrime(1,1000)

List_Primes=[]

for i in range(6,100000):

if prime(i)==True:

List_Primes.append(i)

y1=[]

x1 = [i for i in List_Primes]

for j in x1:

p = print_C(j)

y1.append(p)

y=[]

for i in List_Primes:

y.append(math.log(i+1,2))

plt.scatter(x1, y1, marker=’.’, label="length of chain",c=’g’)

plt.scatter(List_Primes, y, marker=’.’, label="log_2(p+1)",c=’r’)

plt.xlabel(’Prime numbers’)

plt.legend()

plt.show()

A.4 Python Code for g2(x) :

import matplotlib.pyplot as plt

import math

def prime(n):

for i in range(2,int(n/2)+1):

if(n%i==0):

return 0

return 1

def getSophieGermainPrime(startLimit,endLimit):

l1=[]

p,r=startLimit,endLimit

if p==1:

p=2

for a in range(p,r+1):

k=0

for i in range(2,int(a/2)+1):

if(a%i==0):
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k=k+1

break

if(k<=0):

x=prime(2*a-1)

if(x==1):

l1.append(a)

return(l1)

def print_C(p0):

i = 0;

list=[]

while (True):

flag = 1;

x = pow(2, i);

p1 = x * p0 - (x - 1);

for k in range(2, p1):

if (p1 % k == 0):

flag = 0;

break;

if (flag == 0):

break;

list.append(p1)

i += 1;

return(len(list))

p = 0

SG_primes = getSophieGermainPrime(1,1000)

List_Primes=[]

for i in range(6,100000):

if prime(i)==True:

List_Primes.append(i)

y1=[]

x1 = [i for i in List_Primes]

for j in x1:

p = print_C(j)

y1.append(p)

y=[]

for i in List_Primes:

y.append(math.log(i+1,2))
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plt.scatter(x1, y1, marker=’.’, label="length of chain",c=’g’)

plt.scatter(List_Primes, y, marker=’.’, label="log_2(p+1)",c=’r’)

plt.xlabel(’Prime numbers’)

plt.legend()

plt.show()

A.5 Python Code for Conjecture 4.8

from itertools import islice

from sympy import nextprime, is_primitive_root

def generator():

p = 2

while(p:=nextprime(p)):

if not(is_primitive_root(2, p)):

yield p

roguePrimes = list(islice(generator(), 100000)) #OEIS A001122 Chai Wah Wu

c = max(roguePrimes)

#print(c)

valid = set() #numbers which are generated by plus (minus) 1

for prime in roguePrimes:

generated = []

a = 1

while True:

generated.append(a)

a = (2*a + 1)%prime

if a == 0:

break

valid.update(generated)

m = list(valid)

for i in range(1, c+1): #largest number+1 for which we can guarantee q

if m[i-1] != i:

print(i)

break
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