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Abstract - The study of prime divisibility plays a crucial role in number theory. The p-adic
valuation of a number is the highest power of a prime, p, that divides that number. Using
this valuation, we construct p-adic valuation trees to visually represent the valuations of a
sequence. We investigate how nodes split on trees generated by linear functions with rational
coefficients, as well as those formed from a product of linear or lower degree polynomials.
We describe the infinite branches of these polynomial trees and the valuations of their
terminating nodes.
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1 Introduction

A core aspect of number theory is investigating patterns within primes and their divis-
ibility. One way we measure this divisibility is with the p-adic valuation, the greatest
power of the prime p which divides a given integer. This definition is extended to rational
numbers and provides a new way to categorize the field of rationals. Using a sequence of
rational numbers, we can create a p-adic valuation sequence which describes the p-adic
valuation of each term. These sequences show a connection between a function and how
the powers of a prime number appear in its outputs, as Guan [5] notes in Chapter 5 of
their thesis. To better recognize the patterns within these p-adic valuation sequences,
we construct p-adic valuation trees that organize the terms into nodes and create a vi-
sual aid from which to view these sequences. The structure of p-adic valuation trees and
their relation to their generating sequences could provide insight into features of prime
divisibility. For this paper, we will discuss sequences generated by polynomial functions.

Previously, the works from Almodovar et al. [1], Boultinghouse et al. [3], Kozhushkina
et al. [6], and Nguyen [8] characterize 2-adic valuation sequences and trees for specific
quadratic polynomials, depending upon their coefficients. Some polynomials discussed
are n2+a for some integer a, or more general quadratics with integer coefficients, written
as an2 + bn+ c. However, these characterizations are not complete. Boultinghouse et al.
[2] also classified the structure of p-adic valuation trees for all quadratic polynomials using
their discriminant for odd primes p. Beyond quadratic polynomials, Guan [5] conjectured
about higher-degree polynomials and their p-adic valuation trees.
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In this paper, we will describe the exact structure of a p-adic valuation tree generated
by a linear polynomial with rational coefficients. Then, we will characterize the p-adic
valuation trees for quadratic polynomials which are factorable over the rationals. Next,
we construct, in its entirety, the p-adic valuation trees for any completely factorable
polynomial with rational coefficients. Finally, we remark upon polynomials which factor
into nonlinear parts and their p-adic valuation trees.

2 Background

2.1 p-Adic Numbers

Definition 2.1 Given a prime p, the p-adic valuation of an integer n, denoted νp(n), is
an integer x, such that

px | n and px+1 ∤ n.

This can be extended to find the p-adic valuation of any rational number r. Written in
the form r = a

b
, the valuation satisfies the property

νp(r) = νp

(a
b

)
= νp(a)− νp(b).

Remark 2.2 If n = ab for a, b ∈ Q, then νp(n) = νp(a) + νp(b).

Using the p-adic valuation, we create an absolute value on the rational numbers.

Definition 2.3 We define the p-adic absolute value, | · |p : Q → Q, to be

|x|p = p−νp(x)

for any x ∈ Q− {0}. If x = 0, we say |0|p = 0.

With the p-adic absolute value, we now define the field of p-adic numbers which will
be crucial to this paper. We use [4] as a reference for the following definition and theorem.

Definition 2.4 The p-adic numbers are a completion of the rational numbers with respect
to the p-adic absolute value. This is denoted by Qp.

Theorem 2.5 Every p-adic number α ∈ Qp, can be uniquely written as the series

α =
∞∑

n=n0

anp
n = an0p

n0 + an0+1p
n0+1 + · · · ,

where n0 ∈ Z∪{∞}, an ∈ Z, 0 ≤ an ≤ p−1, and an0 ̸= 0. When n0 = ∞, we have α = 0.
When n0 ≥ 0, the number α is a p-adic integer. The set of p-adic integers is denoted by
Zp.
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Notice that the p-adic integers can be described using modular arithmetic. Consider
an arbitrary p-adic integer

α = a0 + a1p+ · · ·+ anp
n + · · ·

where 0 ≤ an ≤ p− 1. Then we have

α ≡ a0 mod p

≡ a0 + a1p mod p2

...

≡ a0 + a1p+ · · ·+ anp
n mod pn+1.

We can also construct p-adic valuation sequences by finding the p-adic valuation of each
term in a given sequence. Throughout this paper, our sequences will be generated by
polynomial functions.

Example 2.6 Consider the sequence generated by f(n) = n2 + 4:

{f(n)}n≥0 = {4, 5, 8, 13, 20, 29, 40, . . . }.

The corresponding 2-adic valuation sequence is

{ν2(f(n))}n≥0 = {2, 0, 3, 0, 2, 0, 3, . . . }.

Next, we will use these p-adic valuation sequences to construct valuation trees.

2.2 p-Adic Valuation Trees

Consider a sequence of rational numbers, {Sn}n≥0, and its p-adic valuations, {νp(Sn)}n≥0.
We can construct a tree to visually represent this valuation sequence, using nodes and
branches. The node on the top of the tree contains all the terms in the sequence. If this
node splits, it travels to the next level with p branches, each containing the terms in the
sequence of the form c0 + np where 0 ≤ c0 ≤ p− 1. For this paper, the branches will be
organized from left to right with c0 increasing from 0 to p− 1. These branches end at the
node on the 1st level. At the kth level, if a node splits, its branches will contain the terms
in the sequence of the form c0 + c1p+ · · ·+ ck−1p

k−1 + npk, where ci has been previously
determined for all 0 ≤ i ≤ k− 1. In the tree, the number c0 + c1p+ · · ·+ ck−1p

k−1 will be
written above its respective branch.

Now let us define the conditions by which a node will split.

Definition 2.7 A node in the p-adic valuation tree of {νp(Sn)}n≥0 is called terminating
when the valuation is the same for all terms in that node. In the tree, this will be denoted
by a circle with the valuation written inside. This type of node will not split.
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Definition 2.8 A node is called non-terminating when at least two terms within the same
node have different valuations. In the tree, this will be denoted by a circle with an asterisk
inside. This node will split into the next level.

The sequences discussed in this paper will be constructed from polynomials with inte-
ger or rational coefficients, however, these trees can be constructed from other sequences.
Following the work done by Boultinghouse et al. [2] and others, we will focus on polyno-
mials.

Example 2.9 The figure below is the 2-adic valuation tree representing {νp(Sn)}n≥0,
where Sn = n2 + 4:

∗
0 1

∗
0 2

0

2 3

Figure 2.1: 2-Adic valuation tree of n2 + 4

This is the visual representation of the 2-adic valuation sequence in Example 2.6. This
tree has 3 levels. We label the highest level as the 0th level. The 0th level has a non-
terminating node. This node splits into two branches, one where the terms have the form
2n and another with the form 1 + 2n. Hence, 0 is written above the branch to the left
and 1 is written above the branch to the right. The 1st level has a non-terminating node
of the form 2n and a terminating node of the form 1 + 2n with a valuation of 0. The
non-terminating node of the form 2n splits into two branches, one where the terms have
the form 2(2n) = 4n and another with the form 2(1 + 2n) = 2 + 4n. Hence, 0 is written
above the branch to the left and 2 is written above the branch to the right. The 2nd level
has a terminating node of the form 4n with a valuation of 2 and a terminating node of
the form 2 + 4n with a valuation of 3. We can determine these terminating nodes from
ν2((4n)

2 + 4) = 2 and ν2((2 + 4n)2 + 4) = 3 for all n ∈ N. This also shows us that
the non-terminating node at the 1st level has a valuation of at least 2 due to the fixed
valuations of the nodes beneath it.

Definition 2.10 A tree is infinite if every level has a non-terminating node. A tree is
finite if it is not infinite.

The previous example is a finite tree because it does not have a non-terminating node
at the 2nd level.

Since every non-terminating node is contained within a non-terminating node on the
previous level, an infinite tree will have at least one path of non-terminating nodes that
passes through every level. We will refer to this path as an infinite branch. For an infinite
branch, every level will have a non-terminating node which will split. In addition, one
of the successive nodes will also be non-terminating. This creates an infinite path from
the 0th level down through every other level using these non-terminating nodes. The
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following theorem shows a useful connection between infinite trees, infinite branches, and
their generating polynomial.

Theorem 2.11 (L. Almodovar et al. [1]) Any infinite branch in the tree associated to
the polynomial f corresponds to a root of f(x) = 0 in the p-adic field Qp.

Corollary 2.12 (L. Almodovar et al. [1]) The p-adic valuation νp(f(n)) admits a closed-
form formula if the equation f(x) = 0 has no solutions in Qp.

However, if a root of a polynomial is a p-adic number, it does not imply that this
corresponds to an infinite branch on the tree for this polynomial, nor does this tree have
to be infinite. An example of this is shown in Remark 3.3. The root of a polynomial
will only correspond to an infinite branch on the tree for this polynomial if that root is
a p-adic integer. More specifically, if a polynomial has a root in the p-adic integers, then
its respective tree will be infinite. The reasoning behind this will be seen throughout the
proofs of this paper. We will explore this in the next section in a simple case.

3 Linear Trees

First, we will describe the p-adic valuation tree for a linear polynomial with integer coef-
ficients.

Proposition 3.1 Let f(n) = an+ b ∈ Z[n], where a ̸= 0 and gcd(a, b) = 1. If − b
a
∈ Zp,

then a non-terminating node at the kth level splits into p − 1 terminating nodes with a
valuation of k and one non-terminating node with a valuation of at least k + 1.

Proof. We will prove this by induction. Write the p-adic expansion for − b
a
as

− b

a
= c0 + c1p+ c2p

2 + · · · ,

where 0 ≤ ci ≤ p− 1. First, consider the 0th level, where the non-terminating node splits
into p branches of the form j0 + np for 0 ≤ j0 ≤ p− 1. Notice that the congruence

f(j0 + np) = a(j0 + np) + b

≡ aj0 + b mod p

≡ 0 mod p

has the solution j0 ≡ − b
a
≡ c0 mod p. Thus, when j0 ̸≡ c0 mod p, the branch has a

terminating node with a valuation of 0. When j0 ≡ c0 mod p, the branch has a valuation
of at least 1. To see that this branch has a non-terminating node, consider

c0 + c1p+ c2p
2 + · · ·+ csp

s
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with s large enough. This natural number is within the node and is arbitrarily close to
the root − b

a
. Since f(n) is a linear function, it is continuous under Qp, and so f(c0 +

c1p+ c2p
2 + · · ·+ csp

s) is arbitrarily close to f
(
− b

a

)
= 0. Thus,

νp(f(c0 + c1p+ c2p
2 + · · ·+ csp

s))

is arbitrarily large. Now, consider the natural number

c0 + (c1 + 1)p+ c2p
2 + · · ·+ csp

s,

which is also within the same node but not as close to − b
a
. Note that this natural number

is not necessarily written under the unique series representation of p-adic numbers. Since
0 ≤ c1 ≤ p− 1, if c1 = p− 1, then

c0 + (c1 + 1)p+ c2p
2 + · · ·+ csp

s = c0 + 0p+ (c2 + 1)p2 + · · ·+ csp
s.

This can be repeated until the coefficients are all between 0 and p − 1. The expression
remains congruent to c0 mod p, so it is within the same node. However, the coefficient of
the pth term is not c1, so this expression is not as close to − b

a
. Again by the continuity

and linearity of f(n), f(c0+(c1+1)p+ c2p
2+ · · ·+ csp

s) is not as close to f
(
− b

a

)
= 0, so

νp(f(c0 + (c1 + 1)p+ c2p
2 + · · ·+ csp

s))

is some fixed finite value that is different than the previous valuation. Hence, the branch
has two elements with different valuations, signifying a non-terminating node.

Next, suppose that the statement is true for all levels up to the kth level. For the
non-terminating node at the kth level, branches to the (k + 1)st level have the form

Nk+1 = c0 + c1p+ · · ·+ ck−1p
k−1 + jkp

k + npk+1,

where 0 ≤ jk ≤ p− 1. By the inductive step, we know that

νp(f(Nk+1)) ≥ k,

and so f(Nk+1) ≡ 0 mod pk. Notice that the congruence

f(Nk+1) = a(Nk+1) + b

≡ a(c0 + c1p+ · · ·+ ck−1p
k−1 + jkp

k + npk+1) + b mod pk+1

≡ 0 mod pk+1

has the solution

c0 + c1p+ · · ·+ ck−1p
k−1 + jkp

k ≡ − b

a
≡ c0 + c1p+ · · ·+ ck−1p

k−1 + ckp
k mod pk+1,

which implies jk ≡ ck mod p. When jk ̸≡ ck mod p, then f(Nk+1) ̸≡ 0 mod pk+1 and so
νp(f(Nk+1)) = k. Thus, the branch has a terminating node with a valuation of k. When
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jk ≡ ck mod p, then f(Nk+1) ≡ 0 mod pk+1 and so νp(f(Nk+1)) ≥ k+1. Hence, this node
has a valuation of at least k + 1. To see that this node is non-terminating, consider

c0 + c1p+ c2p
2 + · · · ck+1p

k+1 + · · ·+ csp
s

with s large enough. This natural number is within the node and is arbitrarily close to the
root − b

a
. Since f(n) is a continuous function, f(c0+ c1p+ c2p

2+ · · · ck+1p
k+1+ · · ·+ csp

s)
is arbitrarily close to f

(
− b

a

)
= 0. Thus,

νp(f(c0 + c1p+ c2p
2 + · · ·+ ck+1p

k+1 + · · ·+ csp
s))

is arbitrarily large. Now, consider the natural number

c0 + c1p+ c2p
2 + · · ·+ (ck+1 + 1)pk+1 + · · ·+ csp

s,

which is also within the same node but not as close to − b
a
. Again, by the continuity and

linearity of f(n), f(c0 + c1p + c2p
2 + · · · + (ck+1 + 1)pk+1 + · · · + csp

s) is not as close to
f
(
− b

c

)
= 0 so

νp(f(c0 + c1p+ c2p
2 + · · ·+ (ck+1 + 1)pk+1 + · · ·+ csp

s))

is some fixed finite value that is different than the previous valuation. Hence, the branch
has two elements with different valuations, signifying a non-terminating node.

Thus, through induction, we see that for any level k, there is a non-terminating node
that splits into p− 1 terminating nodes with a valuation of k and a non-terminating node
with a valuation of at least k + 1. □

Thus, the p-adic valuation tree for a linear function with a p-adic integer root has one
infinite branch. Additionally, notice that the infinite branch corresponds to the p-adic
expansion for − b

a
as the proof also shows that jr ≡ cr mod pr for all r ≥ 0.

Example 3.2 Now, consider when p = 3 and f(n) = 2n − 5. We can write the root of
this polynomial as the p-adic expansion

5

2
= 1 · 30 + 2 · 31 + 1 · 32 + 1 · 33 + 1 · 34 + · · ·
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and see that this is a 3-adic integer. The tree for {ν3(2n− 5)}n≥0 is shown below.

∗
0

1
2

0 ∗
1

4
7

0

1 1 ∗
7

16
25

2 ∗
16

43
70

2

3 ∗
43

124
205

3

4 ∗ 4

Figure 3.1: 3-Adic valuation tree for 2n− 5

The infinite branch matches the 3-adic expansion for 5
2
, following our hypothesis.

Remark 3.3 For the case where − b
a
/∈ Zp, it must be true that a ≡ 0 mod p and b ̸≡

0 mod p. We can write a = pr and b = ps + t for r, s, t ∈ Z, where 1 ≤ t ≤ p− 1. Thus,
every term in the sequence {f(n)}n≥0 has the form

an+ b = prn+ ps+ t

= p(rn+ s) + t

≡ t mod p

̸≡ 0 mod p,

and so νp(f(n)) = 0. Hence, the tree consists of a single terminating node with a valuation
of 0.

4 Combining Two Linear Trees

First, let us discuss the effect of combining a linear tree with a tree generated by a
constant.

Lemma 4.1 Let f(n) = c(an + b), where a, b ∈ Z, gcd(a, b) = 1, c ∈ Q, and a, c ̸= 0.
Consider the tree generated by {νp(f(n))}n≥0. If − b

a
∈ Zp, then a non-terminating node

at the kth level splits into p − 1 terminating nodes with a valuation of νp(c) + k and one
non-terminating node with a valuation of at least νp(c) + k+ 1. If − b

a
/∈ Zp, then the tree

is a singular terminating node with a valuation of νp(c).
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Proof. The proof is trivial given the property of p-adic valuations seen in Remark 2.2.
This implies that νp(f(n)) = νp(c) + νp(an+ b). □

Notice that because c ∈ Q, we have described the trees for every linear polynomial
with rational coefficients.

Example 4.2 Consider when p = 3 and f(n) = 3
2
(n + 6) = 3

2
n + 9. We can write the

root of this polynomial as the p-adic expansion

−6 = 0 · 30 + 1 · 31 + 2 · 32 + 2 · 33 + 2 · 34 + · · ·

and see that this is a 3-adic integer. Since ν3
(
3
2

)
= 1, the tree for {ν3

(
3
2
n+ 9

)
}n≥0 is as

follows.
∗

0
1

2

∗
0

3
6

1 1

2 ∗
3

12
21

2

3 3 ∗
21

48
75

4 4 ∗
75

156
237

5 5 ∗

Figure 4.1: 3-Adic valuation tree for
3

2
n+ 9

Thus, we see that the infinite branch matches the 3-adic expansion −6. The valuations
of the terminating nodes are one greater due to the factor of 3

2
.

The following theorem will describe the p-adic valuation tree for the product of two
linear polynomials in Z[n].

Theorem 4.3 Let f(n) = (a1n+b1)(a2n+b2), where ai, bi ∈ Z, ai ̸= 0, and gcd(ai, bi) = 1
for i ∈ {1, 2}. Consider the roots of the polynomial − b1

a1
and − b2

a2
. We have the following

cases:

(i) If − b1
a1

= − b2
a2
, then the tree generated by {νp(f(n))}n≥0 has the same terminating

and non-terminating nodes as the tree generated by {νp(a1n+ b1)}n≥0. However, the
valuations at these nodes are twice what they are for {νp(a1n+ b1)}n≥0.

(ii) If − b2
a2

/∈ Zp, then the tree generated by {νp(f(n))}n≥0 has the same terminating
and non-terminating nodes as the tree generated by {νp(a1n + b1)}n≥0. Moreover,
the terminating nodes have the same valuations as those on the tree generated by
{νp(a1n+ b1)}n≥0.
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(iii) If − b1
a1
,− b2

a2
∈ Zp and − b1

a1
̸= − b2

a2
, then either there exists an integer r such that

− b1
a1

≡ − b2
a2

mod pr and − b1
a1

̸≡ − b2
a2

mod pr+1, or we say r = 0. When 0 ≤ k ≤
max {r − 1, 0}, the non-terminating node at the kth level splits into p−1 terminating
nodes with a valuation of 2k and one non-terminating node with a valuation of at
least 2(k+1). At the rth level, the non-terminating node splits into p−2 terminating
nodes with a valuation of 2r and two non-terminating nodes with a valuation of at
least 2r + 1. When k ≥ r + 1, a non-terminating node at the kth level splits into
p − 1 terminating nodes with a valuation of k + r and one non-terminating node
with a valuation of at least k + 1 + r.

Before going through the proof of these cases, let us examine some examples which
reflect these results.

Example 4.4 Consider the polynomial f(n) = (5n − 4)(n + 23) = 5n2 + 111n − 92.
This has factors 5n− 4 and n+ 23 with roots 4

5
and −23 respectively. Written as 5-adic

expansions, we have

4

5
= 4 · 5−1 + 0 · 50 + 0 · 51 + · · ·

−23 = 2 · 50 + 0 · 51 + 4 · 52 + · · · ,

which shows us that 4
5
/∈ Z5 and −23 ∈ Z5. Hence, the tree for {ν5(5n2 + 111n− 92)}n≥0

will be identical to the tree for {ν5(n+ 23)}n≥0:

∗
0 1

2
3 4

0 0 ∗
2 7

12
17 22

0 0

∗
2 27

52
77 102

1 1 1 1

2 2 2 2 ∗
102 227

352
477 602

3 3 3 3 ∗

Figure 4.2: 5-Adic valuation tree for 5n2 + 111n− 92

This tree has one infinite branch corresponding to the 5-adic expansion for −23.

Example 4.5 Next, consider f(n) = (n−16)(5n−2) = 5n2−82n+32. This has factors
n − 16 and 5n − 2 with roots 16 and 2

5
respectively. Written as a 2-adic expansion, we

have

16 = 0 · 20 + 0 · 21 + 0 · 22 + 0 · 23 + 1 · 24 + 0 · 25 · · ·
2

5
= 0 · 20 + 1 · 21 + 0 · 22 + 1 · 23 + 1 · 24 + 0 · 25 + · · · .
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Since 16 ≡ 2
5
mod 21 but 16 ̸≡ 2

5
mod 22, we say r = 1 and expect the non-terminating

node at the 1st level to split into two non-terminating nodes. The tree for {ν2(5n2−82n+
32)}n≥0, as seen below, has two infinite branches corresponding to the 2-adic expansions
for 16 and 2

5
.

∗
0 1

∗
0 2

0

∗
0 4

∗
2 6

∗
0 8

3 ∗
2 10

3

∗ 4 4 ∗

Figure 4.3: 2-Adic valuation tree for 5n2 − 82n+ 32

Now we will look at the proof for the above theorem. This proof will not be exhaustive
due to its similarities to previous proofs and will instead rely upon the properties of p-adic
valuations.

Proof. (i) Since − b1
a1

= − b2
a2

and gcd(a1, b1) = gcd(a2, b2) = 1, by unique representation,

we know that a1 = a2 and b1 = b2. Hence, a1n + b1 = a2n + b2 and f(n) = (a1n + b1)
2.

As a result,

νp(f(n)) = νp((a1n+ b1)
2) = νp(a1n+ b1) + νp(a1n+ b1) = 2νp(a1n+ b1).

Terminating nodes on a1n+ b1 will have fixed valuations, and so, at that same node, f(n)
will have a fixed valuation that is twice that of a1n+ b1. If a node on the tree of a1n+ b1
is non-terminating, then there exist n1, n2 in this node such that

νp(a1n1 + b1) ̸= νp(a1n2 + b1).

Now we see that

νp(f(n1)) = 2νp(a1n1 + b1)

̸= 2νp(a1n2 + b1)

= νp(f(n2))

and this same node is non-terminating on the tree of f(n).

(ii) Since − b2
a2

/∈ Zp, by Remark 3.3, νp(a2n+ b2) = 0 for all n ∈ Z>0. Thus,

νp(f(n)) = νp((a1n+ b1)(a2n+ b2))

= νp(a1n+ b1) + νp(a2n+ b2)

= νp(a1n+ b1).
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Since f(n) and a1n+ b1 have identical valuations, their p-adic valuation trees will also be
identical, with the same terminating and non-terminating nodes and the same valuations
at those nodes.

(iii) First, let us consider when 0 ≤ k ≤ r− 1. Since − b1
a1

≡ − b2
a2

mod pr, we have that

a1n+ b1 ≡ a2n+ b2 mod pk for all 0 ≤ k ≤ r, and the proof is clear from part (i).
Next, consider the rth level. Write the two roots as

− b1
a1

= c1,0 + c1,1p+ c1,2p
2 + · · ·

− b2
a2

= c2,0 + c2,1p+ c2,2p
2 + · · · ,

where 0 ≤ ci,j ≤ p− 1 for i ∈ {1, 2} and j ≥ 0. Thus, c1,j = c2,j when 0 ≤ j ≤ r − 1 and
c1,r ̸= c2,r. Using the proof from Proposition 3.1, we can see that on the rth level, the tree
for {νp(a1n + b1)}n≥0 splits into p − 1 terminating nodes with a valuation of r and one
non-terminating node with a valuation of at least r + 1. The non-terminating node has
the form c1,0 + c1,1p+ · · ·+ c1,rp

r + npr+1, where

− b1
a1

≡ c1,0 + c1,1p+ · · ·+ c1,rp
r mod pr+1.

The tree for {νp(a2n + b2)}n≥0 splits similarly. The non-terminating node has the form
c2,0 + c2,1p+ · · ·+ c2,rp

r + npr+1, where

− b2
a2

≡ c2,0 + c2,1p+ · · ·+ c2,rp
r mod pr+1.

Thus, we have

− b1
a1

̸≡ − b2
a2

mod pr+1

c1,0 + c1,1p+ · · ·+ c1,rp
r ̸≡ c2,0 + c2,1p+ · · ·+ c2,rp

r mod pr+1,

and these two nodes are not the same.
Without loss of generality, we will show that one of these nodes is non-terminating.

To see that this branch has a non-terminating node, consider

c1,0 + c1,1p+ c1,2p
2 + · · ·+ c1,rp

r + · · ·+ c1,sp
s

with s large enough. This natural number is within the node and is arbitrarily close to
the root − b1

a1
. Since f(n) is a polynomial function, it is continuous under Qp, and so

f(c1,0+ c1,1p+ c1,2p
2+ · · ·+ c1,rp

r + · · ·+ c1,sp
s) is arbitrarily close to f

(
− b1

a1

)
= 0. Thus,

νp(f(c1,0 + c1,1p+ c1,2p
2 + · · ·+ c1,rp

r + · · ·+ c1,sp
s))
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is arbitrarily large. Now, consider the natural number

c1,0 + c1,1p+ c1,2p
2 + · · ·+ (c1,r + α)pr + · · ·+ c1,sp

s ̸≡ − b2
a2

mod ps+1

for some α ∈ Z. This is also within the same node, but not as close to − b1
a1
. This

number is also not close to − b2
a2
. Again, since f(n) is a continuous function with two roots,

f(c1,0+c1,1p+c1,2p
2+· · ·+(c1,r+α)pr+· · ·+c1,sp

s) is not close to f
(
− b1

a1

)
= f

(
− b2

a2

)
= 0

so
νp(f(c1,0 + c1,1p+ c1,2p

2 + · · ·+ (c1,r + α)pr + · · ·+ c1,sp
s))

is some fixed finite value which is different than the previous valuation. Since this node
has multiple different valuations, it is non-terminating.

This results in two distinct non-terminating nodes, one derived from each of the roots of
the polynomial. The other p−2 nodes are terminating for both the tree of {νp(a1n+b1)}n≥0

and {νp(a2n + b2)}n≥0, so their valuations are fixed, specifically with a valuation of r.
Since νp(f(n)) = νp(a1n+ b1) + νp(a2n+ b2), the valuations at these nodes for the tree of
{νp(f(n))}n≥0 are fixed. Thus, these nodes are terminating and have a valuation of 2r.

Lastly, consider the kth level when k ≥ r + 1. Without loss of generality, consider a
non-terminating node that splits into p branches of the form c1,0+c1,1p+ · · ·+c1,k−1p

k−1+
ikp

k + npk+1, where 0 ≤ ik ≤ p− 1 and

− b1
a1

≡ c1,0 + c1,1p+ · · ·+ c1,k−1p
k−1 + ikp

k mod pk.

Since − b1
a1

̸≡ − b2
a2

mod pr+1, Proposition 3.1 tells us that within the tree of {νp(a2n +

b2)}n≥0, the nodes the form c1,0 + c1,1p + · · · + c1,k−1p
k−1 + ikp

k + npk+1 are contained
within the node of the form c1,0+c1,1p+ · · ·+c1,r+1p

r+1, which terminates with a valuation
of r. Within the tree of {νp(a1n+b1)}n≥0, the non-terminating node on the kth level splits
into p− 1 terminating nodes with a valuation of k and one non-terminating node with a
valuation of at least k+1. For the nodes that terminate on the tree of {νp(a1n+ b1)}n≥0,
we have

νp(f(n)) = νp(a1n+ b1) + νp(a2n+ b2)

= k + r,

which is a fixed valuation. Hence, p − 1 nodes terminate with a valuation of k + r. For
the node that is non-terminating on the tree of {νp(a1n+ b1)}n≥0, we have

νp(f(n)) = νp(a1n+ b1) + νp(a2n+ b2)

≥ k + 1 + r,

which is not a fixed valuation since νp(a1n + b1) is not fixed, while νp(a2n + b2) is fixed.
Hence, this node is non-terminating with a valuation of at least k + 1 + r. □
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We see that the p-adic valuation tree for the product of two linear factors has an infinite
branch for each distinct p-adic integer root. Again, the infinite branch corresponds to the
p-adic expansion of that root.

Using Lemma 4.1, we can extend this theorem to describe the tree for any factorable
quadratic polynomial with coefficients in Q.

Example 4.6 Consider the polynomial f(n) = 3
2
(n− 9)(3n+ 1) = 9

2
n2 − 39n− 27

2
. This

has factors n−9 and 3n+1 with roots 9 and −1
3
respectively. Written as 2-adic expansions,

we have

9 = 1 · 20 + 0 · 21 + 0 · 22 + 1 · 23 · · ·

−1

3
= 1 · 20 + 0 · 21 + 1 · 22 + 0 · 23 · · · .

Since 9 ≡ −1
3
mod 22, but 9 ̸≡ −1

3
mod 23, we say r = 2 and expect our two infinite

branches to separate at the 2nd level. Furthermore, the factor of 3
2
means that the val-

uations of the terminating nodes change by ν2
(
3
2

)
= −1. The 2-adic valuation tree for

{ν2
(
9
2
n2 − 39n− 27

2

)
}n≥0 matches our expected behavior with the two infinite branches

and valuations one less due to the factor of 3
2
.

∗
0 1

−1 ∗
1 3

∗
1 5

1

∗
1 9

∗
5 13

4 ∗ ∗ 4

Figure 4.4: 2-Adic valuation tree for
9

2
n2 − 39n− 27

2

5 Combining Three or More Linear Trees

We can extend our previous results to describe the p-adic valuation tree for a polynomial
comprised of any finite number of linear factors.

Lemma 5.1 Let f(n) = (a1n+ b1)(a2n+ b2) · · · (arn+ br), where ai, bi ∈ Z, ai ̸= 0, and

gcd(ai, bi) = 1 for all 1 ≤ i ≤ r. Suppose the root of one of the factors, − bj
aj
, is not a

p-adic integer. Then the tree of {νp(f(n))}n≥0 is identical to the tree of
{
νp

(
f(n)

ajn+bj

)}
n≥0

.
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Proof. Suppose − bj
aj

/∈ Zp for some 1 ≤ j ≤ r. Then, by Remark 3.3, we know

νp(ajn+ bj) = 0. Therefore, we have

νp(f(n)) = νp(f(n))− νp(ajn+ bj) + νp(ajn+ bj)

= νp

(
f(n)

ajn+ bj

)
+ νp(ajn+ bj)

= νp

(
f(n)

ajn+ bj

)
.

□

Theorem 5.2 Let f(n) = (a1n+ b1)(a2n+ b2) · · · (arn+ br), where ai, bi ∈ Z, ai ̸= 0, and
gcd(ai, bi) = 1 for all 1 ≤ i ≤ r. Suppose the root of each factor, − bi

ai
, is a p-adic integer.

Write their p-adic expansions as

− b1
a1

= c1,0 + c1,1p+ c1,2p
2 + · · · ,

− b2
a2

= c2,0 + c2,1p+ c2,2p
2 + · · · ,

...

− br
ar

= cr,0 + cr,1p+ cr,2p
2 + · · · ,

where 0 ≤ ci,j ≤ p− 1 for all 1 ≤ i ≤ r and j ≥ 0. For any k ≥ 0, consider a node on the
kth level. Write the terms in this node as d0 + d1p + d2p

2 + · · · + dk−1p
k−1 + npk, where

0 ≤ di ≤ p− 1. For all 1 ≤ i ≤ r, find the smallest j < k such that dj ̸= ci,j and denote
this j as vi. If, for any 1 ≤ i ≤ r, no such j exists, then the node is non-terminating.
Otherwise, the node is terminating with valuation

r∑
i=1

vi.

Proof. First, suppose there exists some root

− bi
ai

= ci,0 + ci,1p+ ci,2p
2 + · · ·+ ci,kp

k + · · · ,

where dj = ci,j for all j < k. Then the node of the form d0+d1p+d2p
2+· · ·+dk−1p

k−1+npk

contains the truncation of this root

ci,0 + ci,1p+ ci,2p
2 + · · ·+ ci,kp

k + · · ·+ ci,sp
s,

where s is arbitrarily large. We can show this is contained in the node by setting

n = ci,k + ci,k+1p+ · · ·+ ci,sp
s−k.

the pump journal of undergraduate research 7 (2024), 299–322 313



To see that this same node is non-terminating in the p-adic valuation tree of f(n), notice
that the natural number

ci,0 + ci,1p+ ci,2p
2 + · · ·+ ci,kp

k + · · ·+ ci,sp
s

for large enough s is within the node and is arbitrarily close to the root − bi
ai
. Since f(n)

is a polynomial function, it is continuous under Qp, and so f(ci,0 + ci,1p + ci,2p
2 + · · · +

ci,kp
k + · · ·+ ci,sp

s) is arbitrarily close to f
(
− bi

ai

)
= 0. Thus,

νp(f(ci,0 + ci,1p+ ci,2p
2 + · · ·+ ci,kp

k + · · ·+ ci,sp
s))

is arbitrarily large. Now consider the natural number

ci,0 + ci,1p+ ci,2p
2 + · · ·+ (ci,k + α)pk + · · ·+ ci,sp

s

where α ∈ Z+ is chosen such that this natural number does not match a truncation of
− bj

aj
for any 1 ≤ j ≤ r. Since there are r roots of f(n), there are r truncations to avoid.

There are infinite choices for α, all of which lead to unique natural numbers (the map
on the natural numbers induced by adding a positive integer, such as αpk, is injective).
Thus, there are infinitely many such α where the natural number above does not match a
truncation of one of the roots of f(n), so this α exists. This is also within the same node,

but not as close to − bi
ai

or any other − bj
aj
. Again, since f(n) is continuous and has r roots,

f(ci,0 + ci,1p+ ci,2p
2 + · · ·+ (ci,k + α)pk + · · ·+ ci,sp

s) is not as close to f
(
− bj

aj

)
= 0, so

νp(f(ci,0 + ci,1p+ ci,2p
2 + · · ·+ (ci,k + α)pk + · · ·+ ci,sp

s))

is some fixed finite value that is different than the previous valuation. Hence, this node
has two terms with different valuations and is therefore non-terminating.

Next, suppose vi exists for all 1 ≤ i ≤ r. Hence, there exists j < k such that dj ̸= ci,j.
Choose some 1 ≤ t ≤ r and set 0 ≤ jt < k to be the smallest integer, where djt ̸= ct,jt .
Here, vt = jt. Then, the node of the form

d0 + d1p+ d2p
2 + · · ·+ djt−1p

jt−1 + npjt

contains the truncation of the root − bt
at
, and is therefore non-terminating. By Propo-

sition 3.1, we know that on the tree for {νp(atn + bt)}n≥0, this node splits into one
non-terminating node and p − 1 terminating nodes with a valuation of jt. The node of
the form d0 + d1p+ d2p

2 + · · ·+ djtp
jt + npjt+1 contains the node of the form d0 + d1p+

d2p
2 + · · ·+ dk−1p

k−1 + npk but does not contain the truncation of the root − bt
at
. Hence,

this node is terminating with a valuation of jt on the tree for {νp(atn + bt)}n≥0. Now,
looking at the node of the form

d0 + d1p+ d2p
2 + · · ·+ dk−1p

k−1 + npk,
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we know it must also have a valuation of jt for the tree for {νp(atn + bt)}n≥0 since it is
contained within a terminating node.

We can repeat this process for all 1 ≤ i ≤ r and retrieve r fixed valuations, one for
each factor. Hence, at the node of the form

d0 + d1p+ d2p
2 + · · ·+ dk−1p

k−1 + npk,

we have

νp(f(n)) = νp(a1n+ b1) + νp(a2n+ b2) + · · ·+ νp(arn+ br)

= v1 + v2 + · · ·+ vr

=
r∑

i=1

vi,

which is a fixed valuation, signifying a terminating node. □

This is a different method of constructing trees compared to the previous results.
Instead of describing how the non-terminating nodes split within the tree, this proposition
tells us the status of individual nodes. Regardless, we can still discuss some general
properties of the overall tree.

The following corollary relates to the result from Medina et al. [7] which showed
that a p-adic valuation sequence generated by a polynomial with integer coefficients is
unbounded if and only if it has a p-adic integer root. The unbounded behavior appears
as an infinite branch and, in fact, this corollary will show the exact number of distinct
p-adic integer roots.

Corollary 5.3 Let f(n) = (a1n + b1)(a2n + b2) · · · (arn + br), where ai, bi ∈ Z, ai ̸= 0,
and gcd(ai, bi) = 1 for all 1 ≤ i ≤ r. Then, there are a number of infinite branches equal
to the number of distinct p-adic integer roots. Moreover, the form of each infinite branch
corresponds to the p-adic expansion for one of these roots.

Proof. From Proposition 3.1, we know that the tree {νp(ain + bi)}n≥0 has an infinite
branch if and only if − bi

ai
is a p-adic integer. We also know that this infinite branch

corresponds to the p-adic expansion for this root. Using a similar process as seen in
the proof for Theorem 5.2, we can show that every non-terminating node on the infinite
branch for the tree {νp(ain+bi)}n≥0 will also be non-terminating on the tree {νp(f(n))}n≥0.
Thus, this infinite branch remains on the combined tree and still corresponds to the p-adic
expansion for that root. This is done for every factor, creating an infinite branch for each
p-adic integer root whose structure matches the p-adic expansion of this root. Repeated
roots result in the same infinite branch, so only distinct p-adic integer roots create distinct
infinite branches. □

Thus, when constructing these trees, we can easily create the infinite branches by
looking at the p-adic expansions of the roots. In the case of linear factors, all other nodes
will be terminating.
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Example 5.4 Consider the polynomial

f(n) = (n− 2)(n+ 6)(n− 12) = n3 − 8n2 − 60n+ 144.

This has factors n− 2, n+ 6, and n− 12 with roots 2, −6, and 12 respectively. Written
as 2-adic expansions, we have

2 = 0 · 20 + 1 · 21 + 0 · 22 + 0 · 23 · · ·
−6 = 0 · 20 + 1 · 21 + 0 · 22 + 1 · 23 · · ·
12 = 0 · 20 + 0 · 21 + 1 · 22 + 1 · 23 · · · .

We expect there to be three infinite branches, each resembling the infinite branches on
their individual trees. We see the tree for {ν2(n3 − 8n2 − 60n+ 144)}n≥0 below.

∗
0 1

∗
0 2

0

∗
0 4

∗
2 6

4 ∗
4 12

∗
2 10

5

5 ∗ ∗ ∗

Figure 5.1: 2-Adic valuation tree for n3 − 8n2 − 60n+ 144

Notice that each of the infinite branches on the tree corresponds to one of the distinct
p-adic integer roots of the polynomial.

Again, using Lemma 4.1, we can extend this theorem to describe the tree for any
completely factorable polynomial of any degree with coefficients in Q.

Example 5.5 Consider p = 3 and the polynomial

f(n) =
3

5
(n+ 6)(2n− 5)(3n− 4) =

18

5
n3 +

39

5
n2 − 352

5
n+ 72.

This has factors n+ 6, 2n− 5, and 3n− 4 with roots −6, 5
2
, and 4

3
respectively. Written

as 3-adic expansions, we have

−6 = 0 · 30 + 1 · 31 + 2 · 32 + 2 · 33 + 2 · 34 + · · ·
5

2
= 1 · 30 + 2 · 31 + 1 · 32 + 1 · 33 + 1 · 34 + · · ·

4

3
= 1 · 3−1 + 1 · 30 + 0 · 31 + 0 · 32 + 0 · 33 + 0 · 34 + · · · .
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Since 4
3
is not a 3-adic integer, we expect there to be two infinite branches corresponding

to the 3-adic expansions for the roots −6 and 5
2
. Also, the valuations of the terminating

node will be one greater since ν3
(
3
5

)
= 1. The tree for {ν3

(
18
5
n3 + 39

5
n2 − 352

5
n+ 72

)
}n≥0

matches our expectations.

∗
0

1
2

∗
0

3
6

∗
1

4
7

1

2 ∗
3

12
21

2 2 2 ∗
7

16
25

3 3 ∗
21

48
75

3 ∗
16

43
70

3

4 4 ∗
75

156
237

4 ∗
43

124
205

4

5 5 ∗ 5 ∗ 5

Figure 5.2: 3-Adic valuation tree for
18

5
n3 +

39

5
n2 − 352

5
n+ 72

6 Combining Higher-Degree Trees

Now, let us discuss functions that are products of higher-degree polynomials. The de-
scriptions for their trees are far less complete and an area for further research.

First, we can state that infinite branches from the factors remain in the combined tree.

Proposition 6.1 Let f(n) = g1(n)g2(n) · · · gr(n), where gi(n) ∈ Z[n] for all 1 ≤ i ≤ r.
Suppose gj(n) has a root in Zp for some prime p. Write this root as its p-adic expansion

c0 + c1p+ c2p
2 + · · ·

where 0 ≤ ck ≤ p− 1 for all k ≥ 0. Then, on the tree for {νp(f(n))}n≥0, the nodes of the
form c0 + c1 + · · ·+ ctp

t + npt+1 are non-terminating for all t ≥ 0.

From Theorem 2.11, we know that when a function has a p-adic integer root, it results
in an infinite branch on its p-adic valuation tree. Moreover, this infinite branch displays
the coefficients of the root’s p-adic expansion. For a product, the root of one factor is also
a root for the product, resulting in the same infinite branch on our new tree.

Proof. Consider the factor gj(n) and a root of this polynomial, α, with p-adic expansion

α = c0 + c1p+ c2p
2 + · · · ,
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where 0 ≤ ck ≤ p− 1 for all k ≥ 0. Then, f(α) = 0, and we see that α is also a root for
the product.

Now consider a node on the tth level of the form c0+c1+ · · ·+ctp
t+npt+1 for any t ≥ 0.

To see that this node is non-terminating on the p-adic valuation tree of f(n), consider

c0 + c1p+ c2p
2 + · · ·+ ctp

t + · · ·+ csp
s

with s large enough. This natural number is within the node and is arbitrarily close
to the root α. Since f(n) is a polynomial function, it is continuous under Qp, and so
f(c0 + c1p+ c2p

2 + · · ·+ ctp
t + · · ·+ csp

s) is arbitrarily close to f(α) = 0. Thus,

νp(f(c0 + c1p+ c2p
2 + · · ·+ ctp

t + · · ·+ csp
s))

is arbitrarily large. Now consider the natural number

c0 + c1p+ c2p
2 + · · ·+ ctp

t + (ct+1 + β)pt+1 + · · ·+ csp
s,

where β ∈ Z+ is chosen such that this natural number is not another root of gj(n)
nor a root for any other gi(n). Using similar logic as the existence of α in Theorem
5.2, such β does exist. This is also within the same node but not as close to α or
any root of f(n). Again, since f(n) is continuous and has a finite number of roots,
f(c0 + c1p+ c2p

2 + · · ·+ ctp
t + (ct+1 + β)pt+1 + · · ·+ csp

s) is not as close to f(α) = 0, so

νp(f(c0 + c1p+ c2p
2 + · · ·+ ctp

t + (ct+1 + β)pt+1 + · · ·+ csp
s))

is some fixed finite value that is different than the previous valuation. Hence, this node
has two terms with different valuations and is therefore non-terminating. □

We can also show some nodes which are definitively terminating on the p-adic valuation
tree.

Proposition 6.2 Let f(n) = g1(n)g2(n) · · · gr(n), where gi(n) ∈ Z[n] for all 1 ≤ i ≤ r
as above. Consider a node on the p-adic valuation tree. If that node, or a node at a
higher level that contains the aforementioned node, is terminating on the tree for every
{νp(gi(n))}n≥0, then the node is terminating on the tree for {νp(f(n))}n≥0. Moreover, the
valuation of this node is the summation of the valuations for the individual factors at that
node.

Proof. Consider a node on the tth level of the form c0 + c1 + · · · + ctp
t + npt+1 for any

t ≥ 0. Suppose that this node is terminating, or a node that contains it terminates for
every tree {νp(gi(n))}n≥0. Then every tree has a fixed valuation at that node. Let us
define vi to be the valuation at this node for the tree {νp(gi(n))}n≥0. Then, at this node,
we have

νp(f(c0 + c1 + · · ·+ ctp
t + npt+1)) = νp(g1(c0 + c1 + · · ·+ ctp

t + npt+1))

+ νp(g2(c0 + c1 + · · ·+ ctp
t + npt+1))

+ · · ·+ νp(gr(c0 + c1 + · · ·+ ctp
t + npt+1))

= v1 + v2 + · · ·+ vr,
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which is a fixed value. Hence, this node is terminating for the tree {νp(f(n))}n≥0, and its
valuation is the sum of the valuation of the factors. □

Let us look at an example of this. While we will only use p = 2 for simplicity, be
aware that this works for any prime p.

Example 6.3 Consider the polynomial f(n) = (n2 + 4)(n2 + 7) = n4 + 11n2 + 28. The
factor n2 + 7 has roots ±

√
−7 with their 2-adic expansions being

√
−7 = 1 · 20 + 0 · 21 + 1 · 22 + 0 · 23 + · · ·

−
√
−7 = 1 · 20 + 1 · 21 + 0 · 22 + 1 · 23 + · · · .

The factor n2 + 4 has roots ±
√
−4, which are not 2-adic integers.

The tree for {ν2(n2 + 7)}n≥0 has two infinite branches.

∗
0 1

0 ∗
1 3

∗
1 5

∗
3 7

3 ∗
5 13

∗
3 11

3

∗ 4 4 ∗

Figure 6.1: 2-Adic valuation tree of n2 + 7

The tree for {ν2(n2 + 4)}n≥0 has no infinite branches.

∗
0 1

∗
0 2

0

2 3

Figure 6.2: 2-Adic valuation tree of n2 + 4

Thus, we expect the tree for {ν2(n4 + 11n2 + 28)}n≥0 to have two infinite branches
which match the infinite branches from the tree {ν2(n2+7)}n≥0. We also expect that the
nodes of the form 22n, 22n+ 2, 23n+ 1, 23n+ 22 + 21 + 1, 24n+ 22 + 1, and 24n+ 21 + 1
to be terminating with valuations 2, 3, 3, 3, 4, and 4 respectively.
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The tree for {ν2(n4 + 11n2 + 28)}n≥0 confirms our hypothesis.

∗
0 1

∗
0 2

∗
1 3

2 3 ∗
1 5

∗
3 7

3 ∗
5 13

∗
3 11

3

∗ 4 4 ∗

Figure 6.3: 2-Adic valuation tree of n4 + 11n2 + 28

However, as we may already see, this does not cover every node on these trees.

Remark 6.4 The trees for higher degree polynomials may contain nodes that are non-
terminating, but are not part of an infinite branch. In that case, that same node on
the combined tree for a product of higher degree polynomials may not necessarily be
non-terminating.

Example 6.5 First, notice that the tree for {ν2(n2 +1)}n≥0 has a non-terminating node
that is not part of an infinite branch. This is clear, considering there is no infinite branch
on this tree.

∗
0 1

0 1

Figure 6.4: 2-Adic valuation tree of n2 + 1

Also, notice that the tree for {ν2(n2 + 2)}n≥0 has a non-terminating node that is not
part of an infinite branch.

∗
0 1

1 0

Figure 6.5: 2-Adic valuation tree of n2 + 2

Their product is f(n) = (n2 + 1)(n2 + 2) = n4 + 3n2 + 2. The combined tree for
{ν2(n4+3n2+2)}n≥0 is terminating at the node that was non-terminating in the individual
trees.

1

Figure 6.6: 2-Adic valuation tree of n4 + 3n2 + 2
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There may be additional ways to describe p-adic valuation trees based on their factors.
As seen above in Example 6.5, the non-terminating node in the individual trees disappears
in the combined tree. This is due to the split branches of that node having reversed
valuations in the two factors, specifically, either 0 or 1. In terms of the sequence, this
means that n2 +1 alternates from 0 to 1 while n2 +2 alternates from 1 to 0. Thus, when
we multiply them together, the corresponding terms in the sequences add together, so
each term has a 0 and 1, resulting in a constant valuation. There is further investigation
that can be done to discuss exactly when this phenomenon occurs.

7 Conclusion

Using the results detailed above, we can describe many properties of p-adic valuation
trees generated by polynomial sequences. If the polynomial is factorable into linear parts,
we can describe the tree in its entirety, identifying the terminating and non-terminating
nodes, along with their valuations. Other factorable polynomials are not as complete with
their descriptions.

Using these results, we can also look at specific trees and determine the polynomial of
the lowest degree which could be represented by this tree, essentially the reverse process
from what was detailed in this paper. The true generating polynomial would be a multiple
of it where the other factors have a valuation of 0.

Additionally, all the work done within this paper uses the field of rational numbers
and p-adic valuations. However, other valuations and fields do exist. Whether or not
anything remarkable can come from using these valuations with these trees remains to be
seen.
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