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1 Introduction

Our investigation was prompted by an essay in [6] considering very triangular numbers,
which are triangular numbers whose Hamming weight1 is also a triangular number. While
the formula tn = n(n+1)

2
for the nth triangular number is known, to the best of our

knowledge no explicit formula is known for the nth very triangular number. The lack of
such a formula opens the way to investigations such as ours, concerning the distribution
of very triangular numbers among the triangular numbers. We point out that the study of
very triangular numbers is a special case of a general task: given a (polynomial) function
p, characterize all positive integers of the form p(n), whose digit sum in base b belongs to
a pre-defined subset of N. Other special cases of this problem include finding all squares
whose digit sum is also a square (see [8]), and finding all n ∈ N whose digit sum is a
square (see [7]).
A recurring theme in the present work is finding appropriate values of n so that the
binary representation of tn can be handled swiftly. Naturally, various (combinations
of) powers of 2 surface as ’appropriate’, making the theoretical arguments easier but the
numerical work more and more memory expensive. Nonetheless, elementary programming
in Mathematica™ provided a wealth of suggestive patterns and led to the formulation of
many of our results.
After (re-)establishing the infinitude of very triangular numbers, we consider arithmetic
progressions and related results including the twin very triangular number theorem, and
address the existence of strings of consecutive triangular numbers that either must, or
do not contain a very triangular number. The paper concludes with some open problems
and potential further avenues of investigation.

1The Hamming weight of a positive integer is simply the binary digit-sum of the number.
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In what follows we shall use the the following notational conventions: T denotes the set
of triangular numbers; V T denotes the set of very triangular numbers, and |(n)12| denotes
the Hamming weight of the positive integer n.

2 The Infinitude of Very Triangular Numbers

In priming the reader for further inquiry, Tanton [6, p.217, Theorem] shows that there are
infinitely many very triangular numbers, by noting that |(t2n+3)

1
2| = 6 ∈ T for all n ∈ N.

We generalize this observation in the next theorem.

Theorem 2.1 (Infinitude of V T -II) Suppose that 2(`+ 1) is an even triangular num-
ber, and let n > 2`−1. Then t2n+2`−1 ∈ V T . In particular, there are infinitely many very
triangular numbers.

Proof. Note that

(2n +
∑`−1

i=0 2i)(2n + 2`)

2
= (2n +

`−1∑
i=0

2i)(2n−1 + 2`−1)

= 22n−1 + 2n+`−1 +
`−1∑
i=0

2n−1+i +
`−1∑
i=0

2`−1+i.

The restriction on n ensures that each power of 2 appearing in the last expression is
distinct (2n − 1 > n + ` − 1 > n + ` − 2 > · · · > n − 1 > 2` − 2 > · · · > ` − 1). Since
there are exactly 2(`+ 1)-many distinct powers, we conclude that∣∣(t2n+2`−1)

1
2

∣∣ = 2(`+ 1) ∈ T,

and consequently, t2n+2`−1 ∈ V T as claimed. �
Theorem 2.1 shows that given any even triangular number k, there are infinitely many
very triangular numbers with Hamming weight equal to k. Our next result shows that
given any triangular number k, there are very triangular numbers with Hamming weight
equal to k.

Theorem 2.2 (Infinitude of V T -III) Let k ∈ T be a triangular number. Then t2k−2` ∈
V T for all 0 ≤ ` ≤ bk

2
c. Moreover, |(t2k−2`)12| = k for all 0 ≤ ` ≤

⌊
k
2

⌋
.
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Proof. Let k ∈ T be given. The cases i = 0, 1 are treated in Theorem 3.4. Suppose now
that 2 ≤ ` ≤

⌊
k
2

⌋
. We compute

t2k−2` =
(2k − 2`)(2k − 2` + 1)

2
=

1

2

(
2k+`+1(2k−`−1 − 1) + 2`(2k−` − 1) + 22`

)
=

k−`−2∑
j=0

2k+`+j +
k−`−1∑
i=0

2i+`−1 + 22`−1

=
k−`−2∑
j=0

2k+`+j +
`−1∑
i=0

2i+`−1 +
k−`−1∑
i=`

2i+`−1 + 22`−1

︸ ︷︷ ︸
=

k−`−2∑
j=0

2k+`+j +
`−1∑
i=0

2i+`−1 + 2k−1.

Given the restriction 2 ≤ ` ≤
⌊
k
2

⌋
we see that all powers of 2 in the last expression

are distinct. Since there are (k − ` − 1) + ` + 1 = k many of these, we conclude that
|(t2k−2`)12| = k, as claimed. �

One may wonder whether given an odd triangular number m, are there very triangular
numbers with Hamming weight equal to m, and if so, how many? Setting ` = 0 in
Theorem 2.2 shows that |(t2k−1)12| = (2k − 2) − (k − 1) + 1 = k, hence answering the
first question in the positive. The answer to the second question – as presented in the
following two propositions – is perhaps somewhat surprising. While there are infinitely
many very triangular numbers vt ∈ V T with |(vt)12| = 15, 21, 45, 55, . . .(all odd triangular
numbers greater than 3), we are reasonably certain that there are only four very triangular
numbers with Hamming weight equal to three.

Proposition 2.3 Let ` > 1 so that 2` + 1 is a triangular number. There are infinitely
many very triangular numbers vt ∈ V T with |(vt)12| = 2`+ 1.

Proof. Given ` as in the statement, consider the triangular numbers t22`−2`+1. We
compute

t22`−2`+1 =
1

2

(
22` − 2` + 1

) (
22` − 2` + 2

)
= 24`−1 − 23` + 22`+1 − 2` − 2`−1 + 1

=
`−2∑
i=0

23`+i +
∑̀
i=0

2`+i − 2`−1 + 1

=
`−2∑
i=0

23`+i +
∑̀
i=1

2`+i + 2`−1 + 1.

Given the restriction on `, the the powers of 2 in the above summands are all distinct,
and there are (`− 1) + `+ 1 + 1 = 2`+ 1 many of them. �
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We complete this section with a discussion of triangular numbers with Hamming weight
equal to 3. Theorem 2.2 ascertains that t23−1 = t7 and t23−2 = t6 have Hamming weight
equal to three, but Proposition 2.3 (which would imply the infinitude of such) does not
apply to the case 2`+ 1 = 3. As a curiosity, we mention here that the sequence A212192
(see [9]) in the Online Encyclopedia of Integer Sequences® lists 21, 28, 276, 1540 as the
sequence of triangular numbers with Hamming weight equal to 3, with the comment that
there are no more triangular numbers among the first one million positive integers with
Hamming weight equal to 3. Whether or not there are infinitely many triangular numbers
with Hamming weight equal to three appears to remain an unsolved problem. Our next
result shows that 21, 28, 276 and 1540 are the only triangular numbers with Hamming
weight equal to three in a large (infinite) collection of triangular numbers.

Proposition 2.4 The only very triangular numbers tn with |(n)12| ≤ 5 and |(tn)12| = 3 are
21, 28, 276 and 1540.

Proof. The case of |(n)12| = 1 trivially yields |(tn)12| = 2 6= 3. The cases |(n)12| = 2, 3, 4, 5
are all handled by case analysis. Lest we fall victim of paralysis by (sub)-case analysis,
we only present here the case |(n)12| = 3, as this case is ‘big enough’ to be representa-
tive of the others, and to indicate the general method of reasoning; yet small enough
not to cause the reader any undue discomfort. Suppose thus that |(n)12| = 3, and write
n = 2σ(1) + 2σ(2) + 2σ(3) for some increasing function σ : {1, 2, 3} ↪→ N∪{0}. We will need
to distinguish between the cases when σ(1) = 0 and when σ(1) > 0.
Consider first the case σ(1) ≥ 1, and the corresponding diagram (see Figure 1) represent-
ing the summands in n(n+ 1), with solid arrows in the diagram pointing towards known
larger quantities, and dashed ones between quantities we cannot compare without further
assumptions.

2σ(1) 2σ(2) 2σ(3)

22σ(1) 2σ(1)+σ(2) 2σ(1)+σ(3)

2σ(1)+σ(2) 22σ(2) 2σ(2)+σ(3)

2σ(1)+σ(3) 2σ(2)+σ(3) 22σ(3)

+ +

+ +

+ +

+ +

Figure 1: The case |(n)12| = 3 and σ(1) ≥ 1.

If σ(2) > 2σ(1), then the sum looks like 2 + 22σ(1) + 2σ(2)+ terms whose powers are all
greater than σ(2). As such, we conclude that |(n(n+ 1))12| ≥ 4.
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If σ(2) = 2σ(1), then

n(n+ 1) = 2σ(1) + 22σ(1)+1 + 23σ(1)+1 + 24σ(1) + terms with powers involving σ(3). (1)

We now consider the subcases σ(1) = 1 and σ(1) > 1. In the former, we obtain

n(n+ 1) = 2 + 23 + 25 + terms with powers involving σ(3).

The smallest of the remaining powers is σ(3) ≥ 3. If σ(3) = 4 or σ(3) ≥ 6, we trivially
obtain that |(n(n+ 1))12| ≥ 4. If σ(3) = 3, we get |(n(n+ 1))12| = 4, while if σ(3) = 5, we
obtain |(n(n+ 1))12| = 6. If on the other hand σ(1) > 1, then the four displayed powers of
2 in (1) are all distinct. We must therefore have σ(3) = 2σ(1) + 1, or σ(3) = 3σ(1) + 1, as
all other cases immediately yield |(n(n + 1))12| ≥ 4. Suppose first that σ(3) = 2σ(1) + 1.
Then

n(n+ 1) = 2σ(1) + 22σ(1)+2 + 23σ(1)+1 + 23σ(1)+2 + 24σ(1)+3

with all terms distinct, since σ(1) > 1. Thus |(n(n+1))12| = 5. Finally, if σ(3) = 3σ(1)+1,
then

n(n+ 1) = 2σ(1) + 22σ(1)+1 + 23σ(1)+2 + 24σ(1) + 24σ(1)+2 + 25σ(1)+2 + 26σ(1)+2,

from which |(n(n+ 1))12| ≥ 6 readily follows.
We now consider the case σ(1) = 0. The corresponding diagram is given in Figure 2:

1 2σ(2) 2σ(3)

1 2σ(2) 2σ(3)

2σ(2) 22σ(2) 2σ(2)+σ(3)

2σ(3) 2σ(2)+σ(3) 22σ(3)

+ +

+ +

+ +

+ +

Figure 2: The case |(n)12| = 3 and σ(1) = 0.

We see that in this case

(†) n(n+ 1) = 2 + 2σ(2) + 2σ(2)+1 + 22σ(2) + terms with powers involving σ(3).

The only way for the first four summands not all to be distinct is if σ(2) + 1 = 2σ(2), or
σ(2) = 1. We rewrite

n(n+ 1) = 22 + 23 + terms with powers involving σ(3).
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If σ(3) > 3, we obtain |(n(n + 1))12| ≥ 4. If σ(3) = 3, we get n(n + 1) = 22 + 27, hence
|(n(n+ 1))12| = 2. Finally, if σ(3) = 2, we arrive at n(n+ 1) = 23 + 24 + 25, corresponding
to the very triangular number tn = 1

2
n(n+ 1) = 22 + 23 + 24 = 28.

If the first four summands in (†) are distinct, we must have σ(3) = σ(2) + 1 if we want to
reduce the number of summands. In this case however

n(n+ 1) = 2 + 2σ(2) + 2σ(2)+3 + 22σ(2) + 22σ(2)+3,

which means that |(n(n+1))12| ≥ 4 no matter what σ(2) is. Since we have exhausted all the
cases, we conclude that the only very triangular number tn with |(n)12| = 3 and |(tn)12| = 3
is t7 = 28. For the sake of completeness we present (without proof) the remaining very
triangular numbers with three 1s in their binary representation: |(n)12| = 2 gives t6 = 21;
|(n)12| = 4 gives t23 = 276, and |(n)12| = 5 yields t55 = 1540. �

Based on the extensive numerical, and partial theoretical evidence, we are confident
to make the following

Conjecture 2.5 If n ∈ N is such that |(n)12| ≥ 6, then |(tn)12| ≥ 4.

3 The Twin Very Triangular Number Theorem and Arithmetic
Progressions

We now turn our attention to the location and distribution of very triangular numbers
among the triangular numbers. We begin by showing that there are infinitely many pairs
of consecutive triangular numbers which are also very triangular. We provide two proofs:
the first (Theorem 3.4) is what the reader would be led to when considering (perhaps
using a computer algebra system) very triangular numbers which have special binary
representations, while the second (Proposition 3.7) establishes – and then uses – the fact
that the digit sum function |(tn)12| is constant over well chosen sequences in its domain.
The first proof requires two preliminary results.

Lemma 3.1 Let k ∈ N. Then 22k−2 + 22k−3 + · · ·+ 2k−1 is a triangular number.

Corollary 3.2 Any number of the form 22k−2+22k−3+· · ·+2k−1, k ∈ T is very triangular.

Remark 3.3 (i) Corollary 3.2 provides an alternative proof of the Theorem on page
217 of [6] establishing the existence of infinitely many very triangular numbers.

(ii) We also see that there is at least one very triangular number with k many 1s in its
binary representation for every k ∈ T .

(iii) Not every very triangular number is of this form. For example, (21)2 = 10101.

Theorem 3.4 (The twin very triangular number theorem) There are infinitely
many integers n ∈ N such that tn, tn+1 ∈ V T .
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Proof. Let k ∈ T , k > 1 be given. By Corollary 3.2

11 · · · 1︸ ︷︷ ︸
k

00 · · · 0︸ ︷︷ ︸
k−1

=
2k−2∑
i=k−1

2i ∈ V T.

Let n+ 1 := 11 · · · 1︸ ︷︷ ︸
k

=
∑k−1

i=0 2i = 2k − 1. Then

tn+1 =
(n+ 1)(n+ 2)

2
=

(2k − 1)2k

2
=

(
k−1∑
i=0

2i

)
2k−1 =

k−1∑
i=0

2k−1+i =
2k−2∑
i=k−1

2i.

Since tn+1 = tn + (n+ 1), we see that tn+1 − (n + 1) = (11 · · · 1︸ ︷︷ ︸
k

00 · · · 0︸ ︷︷ ︸
k−1

)− (11 · · · 1︸ ︷︷ ︸
k

) ∈ T .

The reader will note that

11 · · · 1︸ ︷︷ ︸
k

00 · · · 0︸ ︷︷ ︸
k−1

− 11 · · · 1︸ ︷︷ ︸
k

=
2k−2∑
i=k−1

2i −
k−1∑
i=0

2i

=
2k−2∑
i=k−1

2i − (2k − 1)

=
2k−2∑
i=k+1

2i + 2k−1 + 1,

and that ∣∣∣∣∣∣
(

2k−2∑
i=k+1

2i + 2k−1 + 1

)1

2

∣∣∣∣∣∣ = (k − 2) + 2 = k ∈ T.

We conclude that tn ∈ V T . Since tn+1 ∈ V T as well, the proof is complete. �

Remark 3.5 The following observations are in order:

(i) The proof of Theorem 3.4 shows that if k ∈ T , then t2k−2, t2k−1 ∈ V T . Not all twin
pairs of very triangular numbers are of this form, however, as demonstrated by the
pair (903, 946).

(ii) While the theorem exhibits twin very triangular numbers tn, tn+1 with the property
that |(tn)12| = |(tn+1)

1
2| = k for some k ∈ T , this property does not hold in general

for twin pairs. For instance, |(t175)12| = 10, while |(t176)12| = 6.

(ii) These pairs cannot be ‘continued’ into triples of consecutive very triangular numbers,
since t2k /∈ V T for any k ∈ N.

the pump journal of undergraduate research 6 (2023), 317–333 323



Theorem 3.4 raises the question of just how long strings of consecutive triangular
numbers one can have that are also very triangular. The reader can easily check that
|(t581)12| = |(t582)12| = |(t583)12| = 10 and that|(t1702)12| = |(t1703)12| = |(t1704)12| = |(t1705)12| =
10 (there are many more such examples) which would indicate that perhaps one can find
arbitrarily long strings of consecutive triangular numbers that are also very triangular.
Open question: Is it true that for any positive integer k, there exists an (or infinitely

many) arithmetic progression AP (k) of length k so that tj ∈ V T for all j ∈ AP (k)?

A first attempt to answer this open question could start with the following theorem
of Szemerédi.

Theorem 3.6 (Szemerédi, [5]) If A ⊂ N is such that

lim sup
N→∞

|A ∩ {1, 2, . . . , N}|
N

> 0,

then for all k ∈ N, A contains infinitely many arithmetic progressions of length k.

If πV T (x) and πT (x) denote the counting functions of very triangular and triangular
numbers less than or equal to x, then

πV T (tN)

πT (tN)
=
|V T ∩ {t1, t2, . . . , tN}|

N
=
|σ(N) ∩ {1, 2, . . . , N}|

N
,

where {tσ(n)}∞n=1 is the sequence of very triangular numbers. Consequently, by applying

Theorem 3.6 we see that if lim supN→∞
πV T (tN )
πT (tN )

> 0, then σ(N) contains infinitely many
arithmetic progressions of length k for every k ∈ N. Alas, this approach cannot work,
since lim supN→∞

πV T (tN )
πT (tN )

= 0 (see the discussion preceding Proposition 4.5 and Theorem

4.2). Nonetheless, the answer to the open question may still be in the positive, as is the
case in the celebrated Green-Tao theorem (see [2]) regarding arithmetic progressions of
primes.

While we can not answer the question as posed, following historical precedence2, we can
prove the existence of infinitely many arithmetic progressions AP (k) of length six or less,
such that {tj}j∈AP (k) ⊂ V T . In fact, we establish the existence of strings of consecutive
very triangular numbers which are also consecutive triangular numbers. The only result
we need in order to be able to demonstrate our claim is the following proposition.

Proposition 3.7 Suppose that n > 5. Then for all m ≥ n and 0 ≤ k < 2b(n−1)/2c, the
following equality holds: ∣∣(t2m+3+k)

1
2

∣∣ =
∣∣(t2n+3+k)

1
2

∣∣ .
Proof. Note first that for any n and 0 ≤ k,

t2n+3+k = 22n−1 + 2n+1 + (k + 1)2n + 2n−1 + 4 + 2 + tk + 3k.

2Before proving the full result, Szemerédi first established the existence of infinitely many arithmetic
progressions with lengths k = 4 (see [4])
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Given the restriction k < b(n− 1)/2c, we see that

tk =
k(k + 1)

2
<

2b(n−1)/2c(2b(n−1)/2c + 1)

2
≤ 2n−2 + 2b(n−1)/2c−1 < 2n−2 + 2n−4,

and

3k < 3 · 2b(n−1)/2c = 2b(n−1)/2c+1 + 2b(n−1)/2c < 2n−2 + 2n−3.

It follows that tk + 3k < 2n−1, and hence∣∣(t2m+3+k)
1
2

∣∣ =
∣∣(22n−1 + 2n+1 + (k + 1)2n + 2n−1)12

∣∣+
∣∣(tk + 3k + 4 + 2)12

∣∣
=
∣∣(22m−1 + 2m+1 + (k + 1)2m + 2m−1)12

∣∣+
∣∣(tk + 3k + 4 + 2)12

∣∣
=
∣∣(t2n+3+k)

1
2

∣∣ .
The proof is complete. �

Corollary 3.8 There are infinitely many j ∈ N such that {tj+`}5`=0 ⊂ V T .

Proof. In light of Proposition 3.7, it suffices to find an n > 5 and integers 0 ≤ k < k+1 <
k+ 2 < k+ 3 < k+ 4 < k+ 5 < 2b(n−1)/2c so that {t2n+3+k+`}5`=0 ⊂ V T . Using a CAS, we
find that n = 30, and k = 1870 < 1871 < 1872 < 1873 < 1874 < 1875 < 2b(30−1)/2c = 214

is such a pair. In fact ∣∣(t230+1873)
1
2

∣∣ =
∣∣(t230+1874)

1
2

∣∣ =
∣∣(t230+1875)

1
2

∣∣ =∣∣(t230+1876)
1
2

∣∣ =
∣∣(t230+1877)

1
2

∣∣ =
∣∣(t230+1878)

1
2

∣∣ = 21.

�
We remark that the first instance of six consecutive triangular numbers that are all very
triangular occurs much sooner: {t30301, t30302, t30303, t30304, t30305, t30306} ⊂ V T . Corollary
3.8 generalizes the twin very triangular number theorem, and could be viewed as the
sextuplet very triangular number theorem, although we suspect that such a moniker is
not likely to catch on.

4 Gaps and Consecutive Strings

The first results of this section finds ranges in the sequence of triangular numbers that
must contain at least one very triangular number.

Theorem 4.1 (Bertrand’s postulate for very triangular numbers)
For n = 4, 5, 6 and n > 9, there exists a very triangular number m ∈ V T with
tn < m < t2n.

Proof. Suppose first that n > 9. Then there exists k ∈ N such that either

(i) n = 2k−1 + 1,
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(ii) n = 2k−1 + 2, or

(iii) 2k−1 + 2 < n ≤ 2k.

It’s easy to check that in cases (i) and (ii), n < 2k−1 + 3 < 2n, and consequently tn <
t2k−1+3 < t2n. Since n > 9, we see that k > 4, and by Theorem 2.1 t2k−1+3 ∈ V T . In
case (iii), we have n ≤ 2k < 2k + 3 < 2k + 4 < 2n, and once more we conclude that
tn < t2k+3 < t2n, with t2k+3 ∈ V T . Table 1 completes the proof by checking the cases for
n = 4, 5, 6.

Table 1: Bertrand’s postulate for very triangular numbers (small n)

n tn m ∈ V T t2n

4 10 21,28 36
5 15 21,28 55
6 21 28 78
7 28 N/A 105
8 26 N/A 136
9 45 N/A 171
10 55 190 210
...

...
...

...
19 210 231, 276, 378, 435, 630 741
...

...
...

...

�
The very triangular numbers also possess the property that is a natural dual to the one
described in Theorem 4.1:

Theorem 4.2 (The gap theorem for very triangular numbers) For any k ∈ N
there exist consecutive very triangular numbers with at least k triangular numbers between
them.

We provide two proofs of Theorem 4.2. The first, non-constructive proof uses the following
result of Drmota, Mauduit and Rivat (see [1] and the reference therein to [3] as well as
the discussion of applicability to general quadratic P (n) ∈ Z[X]), in which sq(n) denotes
the sum of the digits of the non-negative integer n in its q-ary digital expansion.

Theorem 4.3 (Theorem E in [1]) For any integers q ≥ 2 and m ≥ 2, and quadratic
P (n) ∈ Z[X], there exists σq,m > 0 such that for any a ∈ Z,

card {n ≤ x : sq(P (n)) ≡ a mod m} =
x

m
Q(a,D) +Oq,m

(
x1−σq,m

)
,

where D = gcd(q − 1,m) and

Q(a,D) = card {0 ≤ n < D : P (n) ≡ a mod D} .
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Proposition 4.4 Let πV T (x) and πT (x) denote the counting functions of very triangular
and triangular numbers less than or equal to x. Then

lim sup
N→∞

πV T (tN)

πT (tN)
= 0. (2)

Proof. Let ε > 0 be given, and let m =
∏k pj be the product of the first k odd primes,

with k large enough so that (2/3)k < ε. Since m is odd, we see that the number of residue
classes represented by a triangular number is the same as the number of residue classes
mod m represented by 8tn + 1, which by virtue of the identity 8tn + 1 = (2n+ 1)2 is equal
to the number of residue classes mod m represented by a square mod m. The reader may
recall (or rediscover using an argument involving primitive roots) that for an odd prime

p, there are φ(p)
2

+ 1 = p+1
2

many squares mod p. Consequently, using the simple bound
p+1
2
< 2p

3
, (p ≥ 3) we conclude that there are fewer than

k∏
j=1

(
2pj
3

)
=

(
2

3

)k
m < εm

residue classes mod m represented by triangular numbers. We now employ Theorem 4.3
with q = 2, D = 1 and p(n) = tn to conclude that

πV T (tN)

πT (tN)
=

card {n < N : |(tn)12| ∈ T}
N

≤ card {n < N : |(tn)12| ≡ a mod m for some a ∈ T}
N

≤ ε
m

N

N

m
+O2,m

(
N−σ2,m

)
< 2ε, (N � 1).

Since ε > 0 was arbitrary, the conclusion follows. �
We are now in position to give the first argument vis-à-vis gaps between consecutive very
triangular numbers.
Proof. [Proof 1 of the existence of arbitrarily long gaps between very triangular numbers]
We proceed by contradiction. To this end, suppose that there is an upper bound K ∈ N
on the size of gaps between consecutive very triangular numbers: given any tσ(j) ∈ V T ,
there exists a very triangular number satisfying tσ(j) < tσ(`) < tσ(j)+K . This would imply
that

lim sup
N→∞

πV T (tN)

πT (tN)
≥ lim

N→∞

bN
K
c

N
=

1

K
,

presenting a contradiction to Proposition 4.4. �
Our second – constructive – proof of the existence of the gaps is essentially the proof

of Proposition 4.5. Since the proof consists of a (long) series of manipulation of sums and
is not particularly illuminating, we delegate it to the Appendix, and content ourselves
with merely stating the result here.

Proposition 4.5 Suppose that k ∈ T and that 4 | k. If 2k − 2
k
2 < n ≤ 2k − 2

k
2 + k

4
, then

tn /∈ V T .
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5 Future Work

We invite the reader to carry out investigations similar to ours, either to make our under-
standing of very triangular numbers more complete, or to extend these results to other
sets of integers. Some results analogous to those presented in this work are known about
very square numbers (i.e., squares whose Hamming weight is also a square) but a treat-
ment of all quadratic p(n) (c.f. Introduction) would be a quite nice result.
Regarding Conjecture 2.5: using techniques similar to those presented in this paper we
were able to show that if |(n)12| = 6, then |(tn)12| ≥ 4. We suspect however that this
approach will not suffice in settling the conjecture for all |(n)12| ≥ 7.
Naturally, the open question posed in Section 3 should be settled, along with the related
question of whether or not one can partition the set V T with finitely many arithmetic
progressions, and finally, whether it is possible to find a closed formula for the nth very
triangular number. Obtaining such a formula would answer many of the posed questions
in one fell swoop.
Finally, as a generalization of the present work, we propose the study of subsets of the
natural numbers f : N ↪→ N and S ⊂ f(N) so that, using the notation of Theorem 4.3,
sq(S) ⊂ f(N), and understanding how properties of S depend on the choice of a particular
f .

Appendix

We now present the proof of Proposition 4.5
Proof. Let n, k = 4` be as in the statement, and write n = 2k − 2

k
2 + m. Suppose first

that m = 2p for some 0 ≤ p ≤ blog2 `c. In this case tn can be written as

tn =
1

2

(
4`−1∑
j=2`

2j + 2p

)(
4`−1∑
j=2`

2j + 2p + 1

)

=
1

2

(4`−1∑
j=2`

2j

)2

+

4`+p∑
j=2`+p+1

2j +
4`−1∑
j=2`

2j + 22p + 2p


=

1

2

(
8`−1∑
j=6`+1

2j + 24` +

4`+p∑
j=2`+p+1

2j +
4`−1∑
j=2`

2j + 22p + 2p

)

=
1

2

(
8`−1∑
j=6`+1

2j + 24`+p+1 +
4`−1∑

j=2`+p+1

2j +
4`−1∑
j=2`

2j + 22p + 2p

)

=
1

2

(
8`−1∑
j=6`+1

2j + 24`+p+1 +
4∑̀

j=2`+p+2

2j +

2`+p∑
j=2`

2j + 22p + 2p

)
.

Given that 0 ≤ p ≤ blog2 `c, we see that

p ≤ 2p < 2` ≤ 2`+ p < 2`+ p+ 2 < 4` < 4`+ p+ 1 < 6`+ 1
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as soon as ` ≥ 2, and hence

|(tn)12| =

{
4`+ 1 = k + 1 if p = 0

4`+ 2 = k + 2 if p ≥ 1
/∈ T for any k ∈ T with k ≥ 3.

Finally, if ` = 1, then n = 13 and |(t13)12| = 5 /∈ T .

Assume now that n, k = 4` are as in the statement, and write n = 2k − 2
k
2 +m, with

m =
r∑
j=1

2σ(j) for some 2 ≤ r ≤ blog2 `c,

and
σ : {1, 2, . . . , r} ↪→ {0, 1, 2, . . . , blog2 `c}.

A simple calculation shows that

tn =
1

2

2k/2 +

 k∑
j=k/2+1

2j +
r∑
j=1

2σ(j)

( r∑
j=1

2σ(j) + 1

)
+

2k−1∑
j=3k/2+1

2j

 .

The reader will note that

2 ≤
r∑
j=1

2σ(j) + 1 ≤ 2σ(r)+1 ≤ 2r+1 ≤ 2log2(`)+1 ≤ k

2
< 2k/2,

and that

2σ(r) + 1 ≤ 2r + 1 ≤ 2 log2(`) + 1 < 2` =
k

2
.

Consequently, the largest power of 2 in the expression k∑
j=k/2+1

2j

( r∑
j=1

2σ(j) + 1

)
is less than or equal to 3k/2, whereas the largest power of 2 in the expression(

r∑
j=1

2σ(j)

)(
r∑
j=1

2σ(j) + 1

)
is less than k/2. Therefore,

|(tn)12| =

∣∣∣∣∣∣
 k∑

j=k/2+1

2j +
r∑
j=1

2σ(j)

( r∑
j=1

2σ(j) + 1

)1

2

∣∣∣∣∣∣+
k

2

=

∣∣∣∣∣∣
 k∑

j=k/2+1

2j

( r∑
j=1

2σ(j) + 1

)1

2

∣∣∣∣∣∣ (3)

+

∣∣∣∣∣∣
((

r∑
j=1

2σ(j)

)(
r∑
j=1

2σ(j) + 1

))1

2

∣∣∣∣∣∣+
k

2
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We compute the first summand in (3). To this end, note that k∑
j=k/2+1

2j

( r∑
j=1

2σ(j) + 1

)
=

k∑
j=k/2+1

2j +
r∑
j=1

(
2σ(j)+k+1 − 2σ(j)+k/2+1

)
=

k∑
j=k/2+1

2j +
r∑
i=1

k+σ(i)∑
j=σ(i)+k/2+1

2j

=

 k+σ(r)∑
j=σ(r)+k/2+1

2j

+
k∑

j=k/2+1

2j +
r−1∑
i=1

k+σ(i)∑
j=σ(i)+k/2+1

2j

= 2k+1 +

σ(r)+k/2∑
j=k/2+1

2j +

 k+σ(r)∑
j=σ(r)+k/2+2

2j

+
r−1∑
i=1

k+σ(i)∑
j=σ(i)+k/2+1

2j

= 2k+1 + 2k/2+σ(r)+1 +

σ(r−1)+k/2∑
j=k/2+1

2j +

 k+σ(r)∑
j=σ(r)+k/2+2

2j +

k+σ(r−1)∑
j=σ(r−1)+k/2+2

2j


+

r−2∑
i=1

k+σ(i)∑
j=σ(i)+k/2+1

2j

= 2k+1 + 2k/2+σ(r)+1 + 2k/2+σ(r−1)+1 +

σ(r−2)+k/2∑
j=k/2+1

2j

+

 k+σ(r)∑
j=σ(r)+k/2+2

2j +

k+σ(r−1)∑
j=σ(r−1)+k/2+2

2j +

k+σ(r−2)∑
j=σ(r−2)+k/2+2

2j


+

r−3∑
i=1

k+σ(i)∑
j=σ(i)+k/2+1

2j

= 2k+1 + 2k/2+σ(r)+1 + 2k/2+σ(r−1)+1 + · · ·+ 2k/2+σ(2)+1 +

σ(1)+k/2∑
j=k/2+1

2j

+

 k+σ(r)∑
j=σ(r)+k/2+2

2j +

k+σ(r−1)∑
j=σ(r−1)+k/2+2

2j +

k+σ(r−2)∑
j=σ(r−2)+k/2+2

2j + · · ·+
k+σ(1)∑

j=σ(1)+k/2+2

2j


= 2k+σ(1)+1 + 2k/2+σ(r)+1 + 2k/2+σ(r−1)+1 + · · ·+ 2k/2+σ(2)+1 +

σ(1)+k/2∑
j=k/2+1

2j

+

 k+σ(r)∑
j=σ(r)+k/2+2

2j + · · ·+
k+σ(3)∑

j=σ(3)+k/2+2

2j +

k+σ(2)∑
j=σ(2)+k/2+2

2j +
k∑

j=σ(1)+k/2+2

2j


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= 2k+σ(2)+1 + 2k/2+σ(r)+1 + 2k/2+σ(r−1)+1 + · · ·+ 2k/2+σ(2)+1 +

σ(1)+k/2∑
j=k/2+1

2j

+

 k+σ(r)∑
j=σ(r)+k/2+2

2j + · · ·+
k+σ(3)∑

j=σ(3)+k/2+2

2j +

k+σ(1)∑
j=σ(2)+k/2+2

2j +
k∑

j=σ(1)+k/2+2

2j


= 2k+σ(r)+1 + 2k/2+σ(r)+1 + 2k/2+σ(r−1)+1 + · · ·+ 2k/2+σ(2)+1 +

σ(1)+k/2∑
j=k/2+1

2j

+

 k+σ(r−1)∑
j=σ(r)+k/2+2

2j +

k+σ(r−2)∑
j=σ(r−1)+k/2+2

2j + · · ·+
k+σ(1)∑

j=σ(2)+k/2+2

2j +
k∑

j=σ(1)+k/2+2

2j


= 2k+σ(r)+1 +

r∑
j=2

2k/2+σ(j)+1 +

σ(1)+k/2∑
j=k/2+1

2j +
r∑
j=2

 k+σ(j−1)∑
i=σ(j)+k/2+2

2i

+
k∑

j=σ(1)+k/2+2

2j

= 2k+σ(r)+1 +

k+σ(r−1)∑
j=σ(r)+k/2+2

2j +

 r∑
j=3

2k/2+σ(j)+1 +
r−1∑
j=2

 k+σ(j−1)∑
i=σ(j)+k/2+2

2i


+ 2k/2+σ(2)+1 +

σ(1)+k/2∑
j=k/2+1

2j +
k∑

j=σ(1)+k/2+2

2j

= 2k+σ(r)+1 +

k+σ(r−1)∑
j=σ(r)+k/2+2

2j +

 r∑
j=3

2k/2+σ(j)+1 +
r−1∑
j=2

 k+σ(j−1)∑
i=σ(j)+k/2+2

2i


+ 2k+1 +

σ(1)+k/2∑
j=k/2+1

2j +

k/2+σ(2)∑
j=σ(1)+k/2+2

2j

= 2k+σ(r)+1 + 2k+σ(r−1)+1 +
k∑

j=σ(r)+k/2+2

2j

+

 r∑
j=3

2k/2+σ(j)+1 +
r−1∑
j=2

 k+σ(j−1)∑
i=σ(j)+k/2+2

2i

+

σ(1)+k/2∑
j=k/2+1

2j +

k/2+σ(2)∑
j=σ(1)+k/2+2

2j.
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Now,

r∑
j=3

2k/2+σ(j)+1 +
r−1∑
j=2

 k+σ(j−1)∑
i=σ(j)+k/2+2

2i


=

r∑
j=3

2k/2+σ(j)+1 +
r∑
j=3

 k+σ(j−2)∑
i=σ(j−1)+k/2+2

2i


=

r∑
j=3

2k+σ(j−2)+1 +

k/2+σ(j)∑
i=σ(j−1)+k/2+2

2i

 ,

hence, we arrive at the expression

r∑
j=1

2k+σ(j)+1 +
k∑

j=σ(r)+k/2+2

2j +
r∑
j=2

 k/2+σ(j)∑
i=σ(j−1)+k/2+2

2i

+

σ(1)+k/2∑
j=k/2+1

2j.

Therefore,∣∣∣∣∣∣
 k∑

j=k/2+1

2j

( r∑
j=1

2σ(j) + 1

)1

2

∣∣∣∣∣∣
= r + (k − (σ(r) + k/2 + 2) + 1) +

r∑
j=2

(k/2 + σ(j)− (σ(j − 1) + k/2 + 2) + 1)

+ (σ(1) + k/2− (k/2 + 1) + 1

= r + k/2− σ(r)− 1 +
r∑
j=2

(σ(j)− σ(j − 1))− (r − 1) + σ(1)

= k/2− σ(r) + (σ(r)− σ(1)) + σ(1) = k/2.

We now turn our attention to the second summand in (3). Since

r∑
j=1

2σ(j) + 1 ≤
blog2 `c∑
j=0

2j + 1 ≤ 2blog2 `c+1,

we see that (
r∑
j=1

2σ(j)

)(
r∑
j=1

2σ(j) + 1

)
≤

r∑
j=1

2σ(j)+blog2 `c+1 < 22(blog2 `c+1).

Consequently,

1 ≤

∣∣∣∣∣∣
((

r∑
j=1

2σ(j)

)(
r∑
j=1

2σ(j) + 1

))1

2

∣∣∣∣∣∣
≤ 2blog2 `c+ 1 ≤ 2(log2 k − log2 4) + 1 = 2 log2 k − 3.
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Recall that k ∈ T . If we write k = s(s+1)
2

for some s ∈ N, then the smallest triangular

number greater than k is s(s+1)
2

+ (s+ 1). On the other hand,

2 log2 k − 3 = 2 log2

(
s(s+ 1)

2

)
− 3 = 2(log2 s+ log2(s+ 1))− 5

< 4 log2(s+ 1)− 5
?
< s+ 1,

where the starred inequality is equivalent to (s+ 1)4 < 2s+6, which one easily establishes
by induction. We conclude that if tn ∈ T with n = 2k − 2k/2 +m for 1 ≤ m ≤ k/4, then

k =
s(s+ 1)

2
< |(tn)12| ≤

k

2
+
k

2
+ 2 log2 k − 3 <

s(s+ 1)

2
+ (s+ 1),

and consequently tn /∈ V T . The proof is complete. �
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