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Abstract - Sociophysics utilizes mathematical tools from physics to study social phe-
nomena. In particular, interactions between individuals can impact emerging trends in the
opinions of a population as a whole. This research focuses on the long-term opinion dis-
tributions of a population of individuals who can influence one another through pairwise
interactions, where one individual modifies their opinion to be more in line with their neigh-
bor. Interactions are governed by a social network, where friends on the network interact
while strangers do not. We introduce a new model for opinion formation with averaging
behavior where the opinion of an individual at any time t is an integer between −k and k.
For example, an opinion of k could indicate a heavily republican opinion and −k a heavily
democratic opinion. As the process evolves in time, interactions between neighbors x and
y in the social network result in person x updating her opinion to be one step closer to the
opinion of person y. We first consider the scenario where everyone in the social network is
friends with everyone else. For k = 1 we compute explicitly the long-term opinion distribu-
tion via differential equations. For values of k > 1, we solve for the long-term distribution
numerically using Runge-Kutta. We then compute the long-term opinion distribution via
simulation, in the more general social network scenario.
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1 Introduction

Sociophysics is a research area that employs mathematical tools to study the behavior of
human populations and how microscopic interactions between individual agents impacts
the population on a macroscopic level. The name sociophyics arises from the notion that
interacting individuals are analogous to colliding particles on different social networks.
Several models have been developed to predict and understand different types interactions
between individuals in the real world, including the work of [2], [5], [1].

The Sznajd Model (SM) was initially proposed by Katarzyna Sznajd-Weron and Jozef
Sznajd, and was referred to as the “United we stand, divided we fall” (USDF) model. This
model proposes that multiple individuals with a shared opinion can convince others to
share the same opinion as the group. The USDF model was applied to a one-dimensional
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lattice, where two neighbors who shared the same opinion would convince their closest
neighbors to share the same opinion. Since the publication of the USDF model, researchers
such as [1], [3], [7], [8], [10] have been inspired to explore different modifications to the
original model. These variations range from adding noise and considering the model in
different network structures, to modifying the interaction process.

In her review article [6], Katarzyna Sznajd-Weron provides an overview of the SM and
some of the work that has been inspired by the model over the past 20 years since it was
developed. Dietrich Stauffer was the first to name the model as the SM and generalized
the original one-dimensional USDF model into two dimensions. In [1], he compares the
SM with Ising models by representing an opinion with either −1 or +1. Stauffer observed
the model on a square lattice, where two neighbors convinced their six (eight) nearest
neighbors to share the same opinion. Stauffer used this model to explain the distribution
of votes in local elections in Brazil.

In their work, [2] argued that compromise should be considered when studying opinion
dynamics. This motivated them to investigate a modification of the SM where an individ-
ual can change their opinion in a random, diffusive process. This modification captures
the spontaneous changes in opinions an individual may have due to other factors, such as
the media. [9] explored another modification of the SM that models interactions where
every individual has an assigned level of persuasiveness and stubbornness. This model
can be used to describe people in a social structure with a higher status that could result
in a bias or individuals who never change their minds.

In this paper, we were inspired by [4] who explored a slight modification of the SM,
where instead of there being only two opinions (+1 or −1), their model introduces a
third opinion that accounts for an indecisive opinion (+1, 0,−1). With an algorithm,
they performed simulations to observe the interacting opinion dynamical system in the
long run, using the “two against one” SM. On the complete graph, they used a system
of differential equations that represented their model to study the equilibrium. After
simulations, they discovered that when there are three opinions with equally distributed
initial conditions, the system is at equilibrium and no change occurs. As soon as there is a
change in the initial distribution of the opinions, the effects coincide with other equilibria
from their system of differential equations.

In the real world, the sentiment of an individual on a particular topic (say political
party preference) often falls on a spectrum. Furthermore, an individual often changes
their opinion on a topic gradually over time. For example, it is highly unlikely that
through a single interaction, someone who strongly leans republican would spontaneously
convert their view to strongly lean democrat. The model introduced and studied in this
paper takes these ideas in mind in order to better represent the real world. We describe
our model in more detail in the next section.

2 Model Description

The model studied in this paper involves N interacting agents on a social network. The
social network can be represented by a finite, connected graph G = (V,E), where the
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vertex set V is the set of individuals, and the edge set E is the set of social connections.
We assume that for all time t, G remains fixed in that no new individuals are added or
removed and no social connections are lost or created throughout the life of the process.
At each time t ≥ 0, each individual x ∈ V has an opinion taken from the set

K = {−k,−k + 1, . . . , k − 1, k}.

We interpret the values of K to be representative of a range of opinions on a specific
topic. Taking political preference as an example, we may interpret values very close to k
to indicate that an individual leans strongly Republican and values close to −k to indicate
a strong Democrat preference. The larger the value of k, the more granular the set of
opinions becomes.

Figure 1: Set of possible opinions: K = {−k, . . . , k}

The model under consideration in this paper can be studied from both a deterministic
and stochastic point of view, each of which will be given treatment in the present paper.
To describe the dynamics of the model, we first consider the idea that in general, most
people are unlikely to change their opinion on any given topic drastically at a single point
in time. In fact, it seems that most individuals that go through a transformation of
sentiment on any given topic go through that transformation over an extended period of
time often resulting from multiple exposures to ideologies different from their own. It is
with this idea in mind we describe the dynamics that follow.

At the time that an interaction occurs, we choose an edge (x, y) ∈ E at random.
Individuals x and y are to be the two individuals that interact. With equal likelihood,
one individual let’s say x is to become the “persuader” and the other y is to become the
“persuaded.” Letting o(x) and o(y) be the pre-interaction opinions and o(x)′, o(y)′ be the
post-interaction opinions of x and y respectively, the opinions of x and y are then updated
accordingly:

o(x)′ = o(x) and o(y)′ = o(y) + sign(o(x)− o(y))

In words, the dynamics above can be described as the “persuaded” updates their
opinion to be one step closer to that of the “persuader,” while the “persuader” remains
fixed in their views.

Now that the procedure for a single interaction has been described, we consider next
a few cases of our model:

(i) Process is deterministic, G is the complete graph.
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(ii) Process is stochastic, G is the complete graph, at each time step every individual
interacts with someone else by randomly pairing individuals.

(iii) Process is stochastic, G need not be complete, at each time step a single interaction
occurs by selecting at random an edge (x, y) ∈ E.

2.1 Deterministic Case

The simplest version of the model to analyze is the one in which the evolution is completely
deterministic. In this case we utilize ordinary differential equations as the mathematical
vehicle for analysis. To make the analysis tenable, we make the assumption that the social
network is the complete graph with N vertices as shown in Figure 2.1. This allows all
individuals to interact with all other individuals.

Figure 2: The complete graph with N vertices. Vertices represent individuals and edges
between vertices represent social connections.

We define the function Pi(t), i ∈ K to be the fraction of individuals with opinion i at
time t. Note that for all time t ≥ 0, we must have that

0 ≤ Pi(t) ≤ 1 for all i ∈ K (1)

and
k∑

i=−k

Pi(t) = 1. (2)

Assuming that neighbors on the graph interact at rate 1, we can derive the system of
2k + 1 differential equations given in Equation (3).
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

dP−k
dt

= P−k(P−k+1)− P−k(1− P−k)

dPi

dt
= Pi−1

(
k∑

j=i

Pj

)
+ Pi+1

(
i∑

j=−k

Pj

)
− Pi(1− Pi) for− k < i < k

dPk

dt
= Pk(Pk−1)− Pk(1− Pk)

(3)

We are particularly interested in finding the long-term opinion distribution, namely
we wish to find lim

t→∞
Pi(t) for each i ∈ K. It will be shown in Section 3 that in the case

where k = 1, the explicit solution to the system of ODEs in Equation (3) can be found
and for k > 1, the equilibrium can be found.

2.2 Stochastic Case

We now consider a stochastic version of the model by utilizing discrete-time Markov chains
as the analytical tool. In this case, we let (Xt)t≥0 be a discrete-time Markov with state
space S containing all functions of the form:

f : V → K, (4)

and use the notation Xt(x) = i to indicate that at time t, individual x ∈ V has opinion
i ∈ K.

Under this stochastic scenario, we will analyze two different schemes for how interac-
tions occur:

• Scheme 1: At each time step, every individual interacts with someone else. In this
case, G must be the complete graph.

• Scheme 2: At each time step, one pair of neighbors are chosen at random to interact.
In this case G need only to be finite and connected.

The evolution of scheme 1 is described below by Algorithm 1.
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Algorithm 1

1: Set initial conditions for each individual.
2: for t = 1, 2, . . . do
3: Randomly form N

2
pairs from the N individuals such that each individual is paired

with someone else where xi 6= yi, (i = 1, 2, . . . , N) and
4: for Each pair (x, y) do
5: if Xt−1(x) < Xt−1(y) then
6: Set Xt(y) = Xt(y)− 1
7: else if Xt−1(x) > Xt−1(y) then
8: Set Xt(y) = Xt(y) + 1
9: else

10: Leave opinions unchanged
11: end if
12: end for
13: end for

When randomly forming pairs for Algorithm 1, person x is the persuader, and person
y is the persuaded therefore, (x, y) 6= (y, x). Also note each individual has equal likelihood
to be chosen as either person x or y with P (x) = 0.5, P (y) = 0.5.

The evolution of scheme 2 is described below by Algorithm 2. In particular, we will
consider when G is the 1 and 2-dimensional lattice with reflective boundary conditions as
shown in Figures 3 and 4.

Algorithm 2

1: Set initial conditions for each individual.
2: for t = 1, 2, . . . do
3: Randomly select an edge (x, y) ∈ E
4: if Xt−1(x) < Xt−1(y) then
5: Set Xt(y) = Xt(y)− 1
6: else if Xt−1(x) > Xt−1(y) then
7: Set Xt(y) = Xt(y) + 1
8: else
9: Leave opinions unchanged

10: end if
11: end for
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Figure 3: Each vertex represents a person, the lines represent the interactions that an
individual may have with other individuals on a 1-Dimensional Lattice.

Figure 4: Each vertex represents a person, the lines represent the interactions that an
individual may have with other individuals on a 2-Dimensional Lattice.
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3 Main Results - Deterministic Case

As stated in Section 2, we are interested in the long-term opinion distribution lim
t→∞

Pi(t)

for each i ∈ K. We consider first the case where k = 1 and K = {−1, 0, 1}. When k = 1,
Equation (3) reduces to 

dP−1
dt

= −P−1P1

dP0

dt
= 2P−1P1

dP1

dt
= −P−1P1

(5)

which has solution given by

P−1(t) = C0 +
C0C1

etC0 − C1

, P0(t) =
−2C0C1

etC0 − C1

+ C2, P1(t) =
C0C1

etC0 − C1

(6)

where,

C0 = P−1(0)− P1(0), C1 =
P1(0)

P1(0) + C0

, C2 = P0(0) + 2P1(0) (7)

if P−1(0) 6= P1(0) and solution

P−1(t) =
1

t+ C3

, P0(t) =
−2

t+ C3

+ 1, P1(t) =
1

t+ C3

(8)

where,

C3 =
1

P1(0)
, (9)

when P−1(0) = P1(0). In this case, we can easily find the long-term opinion distribution.

lim
t→∞

P−1(t) = P−1(0)− P1(0), lim
t→∞

P0(t) = P0(0) + 2P1(0), lim
t→∞

P1(t) = 0

if C3 > 0, and

lim
t→∞

P−1(t) = 0, lim
t→∞

P0(t) = P0(0) + 2P−1(0), lim
t→∞

P1(t) = P1(0)− P−1(0)

if C3 < 0,and
lim
t→∞

P−1(t) = 0, lim
t→∞

P0(t) = 1, lim
t→∞

P1(t) = 0

if P−1(0) = P1(0).
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In words, the long-term behavior of the model is such that P0(t) continues to grow un-
til P−1(t) or P1(t) or both P−1(t) and P1(t) go to zero, in which case an equilibrium is
reached. In the specific case where P−1(0) = P1(0), opinion 0 always becomes sole opinion
at equilibrium.

When k > 1, it becomes very difficult to find an explicit solution to Equation (3) and so
we use Runge-Kutta to find a numerical solution. Although we were not able to find the
analytical solution to Equation (3), we were able to find the equilibrium values for the
system.

In order to understand the long-term behavior of the model for k > 1, we use Runge-
Kutta to numerically solve Equation (3) for several values of k with varying initial con-
ditions as shown in Figure 5.

Figure 5: Numerical Runge-Kutta solution to Equation (3) with k = 2 and initial opinion
distribution given by [.1, .2, .3, .05, .35].

Upon visually inspecting the numerical solution for Equation (3), it appears as though

the “average opinion” given by
k∑

i=−k

iPi(t) remains constant for all t ≥ 0 regardless of k
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or the initial conditions. This observation leads us to the following results.

Theorem 3.1 There is some C, such that

k∑
i=−k

iPi(t) = C

for all t ≥ 0.

Proof. To prove the desired result, we will show that,
d

dt

(
k∑

i=−k

iPi(t)

)
= 0. We have

that

d

dt

(
k∑

i=−k

iPi(t)

)
=

k∑
i=−k

i
dPi

dt

= −k [P−k+1P−k − P−k(1− P−k)] + k [Pk−1Pk − Pk(1− Pk)]

+
k−1∑

i=−k+1

i

[
Pi−1

(
k∑

j=i

Pj

)
+ Pi+1

(
i∑

j=−k

Pj

)
− Pi(1− Pi)

]

= −kP−k+1P−k + kPk−1Pk +
k−1∑

i=−k+1

i

[
Pi−1

(
k∑

j=i

Pj

)
+ Pi+1

(
i∑

j=−k

Pj

)]

−
k∑

i=−k

iPi(1− Pi)

= −kP−k+1P−k +
k−1∑

i=−k+1

iPi+1

(
i∑

j=−k

Pj

)
+ kPk−1Pk +

k−1∑
i=−k+1

iPi−1

(
k∑

j=i

Pj

)

−
k∑

i=−k

iPi(1− Pi)

=
k−1∑
i=−k

[
(i+ 1)Pi

k∑
j=i+1

Pj

]
+

k∑
i=−k+1

[
(i− 1)Pi

i−1∑
j=−k

Pj

]
−

k∑
i=−k

iPi(1− Pi)

=
k−1∑

i=−k+1

[
(i+ 1)Pi

k∑
j=i+1

Pj + (i− 1)Pi

i−1∑
j=−k

Pj

]
+ (−k + 1)P−k

k∑
j=−k+1

Pj

+ (k − 1)Pk

k−1∑
j=−k

Pj −
k∑

i=−k

iPi(1− Pi)

=
k−1∑

i=−k+1

iPi(1− Pi) +
k−1∑

i=−k+1

Pi

(
k∑

j=i+1

Pj −
i−1∑

j=−k

Pj

)
+ (−k)P−k(1− P−k)
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+ kPk(1− Pk) + P−k(1− P−k) + Pk(1− Pk)−
k∑

i=−k

iPi(1− Pi)

=
k−1∑

i=−k+1

Pi

(
k∑

j=i+1

Pj −
i−1∑

j=−k

Pj

)
+ P−k(1− P−k) + Pk(1− Pk)

=
k−1∑

i=−k+1

Pi

k∑
j=i+1

Pj −
k−1∑

i=−k+1

Pi

i−1∑
j=−k

Pj + P−k(1− P−k) + Pk(1− Pk)

=
k∑

j=−k+2

Pj

j−1∑
i=−k+1

Pi −
k−2∑
j=−k

Pj

k−1∑
i=j+1

Pi + P−k(1− P−k) + Pk(1− Pk)

= Pk

k−1∑
i=−k+1

Pi +
k−1∑

j=−k+2

Pj

j−1∑
i=−k+1

Pi − P−k
k−1∑

i=−k+1

Pi

−
k−2∑

j=−k+1

Pj

k−1∑
i=j+1

Pi + P−k(1− P−k)− Pk(1− Pk)

= Pk(1− Pk − P−k) +
k−1∑

j=−k+2

Pj

j−1∑
i=−k+1

Pi − P−k(1− Pk − P−k)

−
k−2∑

j=−k+1

Pj

k−1∑
i=j+1

Pi + P−k(1− P−k)− Pk(1− Pk)

= Pk(1− Pk)− PkP−k +
k−1∑

j=−k+2

Pj

j−1∑
i=−k+1

Pi − P−k(1− P−k) + PkP−k

−
k−2∑

j=−k+1

Pj

k−1∑
i=j+1

Pi + P−k(1− P−k)− Pk(1− Pk)

=
k−1∑

j=−k+2

Pj

j−1∑
i=−k+1

Pi −
k−2∑

j=−k+1

Pj

k−1∑
i=j+1

Pi

=
k−1∑

j=−k+2

Pj

j−1∑
i=−k+1

Pi −
k−1∑

i=−k+2

Pi

i−1∑
j=−k+1

Pj = 0,

and the result is shown. �
Theorem 3.1 establishes that the average opinion

∑k
i=−k iPi(t) remains constant for

all t ≥ 0. The next result given in Theorem 3.3 gives that at equilibrium, there are at
most two neighboring opinions j, j + 1 that become dominant in the long run. For ease
of writing let us first introduce some notation that will be used throughout the rest of the
paper. Define P ∗i as

P ∗i = lim
t→∞

Pi(t), i ∈ K.
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The remainder of Section 3 shall be limited to the case where Conjecture 3.2 holds.

Conjecture 3.2 For all k ≥ 1, and all i ∈ K, we have that P ∗i exists.

Proof. In support of Conjecture 3.2, we give the following inductive heuristic argument.

Base Case: As we have explicit solutions when k = 1 for Pi(t), it is easily seen that
Conjecture 3.2 holds for k = 1 by investigating Equations (8) and (9).

Inductive Step: Assume that 3.2 holds for k = r where r ≥ 1. Let k = r + 1. From

Equation (3),
dPk

dt
can be written in the form

dPk

dt
= Pk(Pk + Pk−1 − 1). (10)

Equations (1) and (2) give that Pk is bounded and monotone, and so we must have that
P ∗k exists. Specifically, at equilibrium, it must be the case that either

P ∗k + P ∗k−1 = 1 or P ∗k = 0.

Similarly, we must also have that

P ∗−k + P ∗−k+1 = 1 or P ∗−k = 0.

Case 1: (P ∗k +P ∗k−1 = 1 or P ∗−k +P ∗−k+1 = 1) In this case, Equations (1) and (2) imply
that P ∗i = 0 for all i 6= k − 1, k or i 6= −k + 1,−k respectively and thus P ∗i exists.

Case 2: (P ∗k = P ∗−k = 0) In this case, when t is very large, we end up with a system of
2r + 1 differential equations satisfying Equation (3). Our inductive hypothesis suggests
that P ∗i exists for all −r < i < r. �

Theorem 3.3 Let j = min(i ∈ K|P ∗i > 0). Then, P ∗j + P ∗j+1 = 1 and P ∗i = 0 for all
i 6= j, j + 1.

Proof. Let j = min(i ∈ K|P ∗i > 0). By definition, P ∗i is the value of Pi(t) at equilibrium
and so we must have that

dP ∗i
dt

= 0 for all i ∈ K.

Combining this with Equation (3) gives that

dP ∗j
dt

= P ∗j−1

(
k∑

i=j

P ∗i

)
+ P ∗j+1

(
j∑

i=−k

P ∗i

)
− P ∗j (1− P ∗j )

= P ∗j+1

(
j∑

i=−k

P ∗i

)
− P ∗j (1− P ∗j )

the pump journal of undergraduate research 6 (2023), 354–370 365



= P ∗j+1

(
P ∗j +

j−1∑
i=−k

P ∗i

)
− P ∗j (1− P ∗j )

= P ∗j+1P
∗
j − P ∗j (1− P ∗j )

= P ∗j (P ∗j + P ∗j+1 − 1)

= 0

The above equation implies that P ∗j = 0 or P ∗j +P ∗j+1 = 1. We have already assumed that
P ∗j > 0 and so it must be the case that P ∗j + P ∗j+1 = 1 and the result is shown. �

Our next result makes use of Theorems 3.1 and 3.3 to find explicit values for P ∗i for
all i ∈ K.

Theorem 3.4 Let C =
k∑

i=−k

iPi(0) and let j = min(i ∈ K|P ∗i > 0) then,

j ≤ C ≤ j + 1,

and
P ∗j = 1− C + j, P ∗j+1 = C − j and P ∗i = 0 for all i 6= j, j + 1.

Proof. Let C =
k∑

i=−k

iPi(0) and let j = min(i ∈ K|P ∗i > 0) Then Theorem 3.3 gives that

P ∗j + P ∗j+1 = 1 and P ∗i = 0 for all i 6= j, j + 1. Combining this with Theorem 3.1 gives
that

C =
k∑

i=−k

iPi(0)

=
k∑

i=−k

iPi(t) for all t ≥ 0

=
k∑

i=−k

iP ∗i

= jP ∗j + (j + 1)Pj+1

= j + Pj+1,

and so we must have that P ∗j = 1−C + j and P ∗j+1 = C − j. Furthermore, we must have
that for any δ satifying 0 ≤ δ ≤ 1,

j ≤ jδ + (j + 1)(1− δ) ≤ j + 1.

And so we also have that j ≤ C ≤ j + 1, and the result is shown. �
Theorem 3.4 establishes not only an expression for the equilibria but also that if

P ∗j + P ∗j+1 = 1, then j ≤ C ≤ j + 1 because the average opinion remains constant for all
time.
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4 Main Results - Stochastic Case

In the present section we present the main results in the case where the model is stochas-
tic as described in Subsection 2.2. Recalling the definition of (Xt)t≥0 as a discrete-time
Markov chain with finite state space, we can conclude that there is not a unique station-
ary distribution because the process (Xt)t≥0 is not irreducible. In fact, there are many
absorbing states for the process of the form:

fi : V → {i} where i ∈ K.

Reaching state fi at some time T would indicate that Xt(x) = i for all x ∈ V and t ≥ T .
We can therefore conclude that regardless of X0, for each realization of the process (Xt)t≥0,
there will be some i ∈ K and T < ∞ such that Xt = fi for all t ≥ T . In words, it is
guaranteed that a consensus will be reached among the population in a finite amount of
time. This behavior differs greatly from what we see in the deterministic version of the
model where it is possible for two adjacent opinions to dominate in the long run.

Knowing that in the stochastic case, one opinion will eventually take over, we are
interested three things:

1. Given X0, what is limt→∞ P (Xt = fi) for all i ∈ K?

2. Does the structure of the social network have an effect on the above probability?

3. Does the number of interactions per time-step have an impact on the above proba-
bility?

Because of the stochastic nature of the model and the difficulty of studying this model
analytically, we will use Monte-Carlo simulation to glean insight into the behavior of the
stochastic model.
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Complete Graph - Everyone Interacts
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Figure 6: In each of the four subplots, N = 100, K = {−2, −1, 0, 1, 2}, initial distribu-
tion of opinions is [.1 .2 .3 .05 .35] and the number of simulations is 1000. The simulations
resulted in a variance of .2489, .2402, .3395, and .2793 respectively.
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Figure 7: In each of the four subplots, N = 400, K = {−2, −1, 0, 1, 2}, initial distribu-
tion of opinions is [.1 .2 .3 .05 .35] and the number of simulations is 1000. The simulations
resulted in a variance of .2191, .2309, .2777, and .2449 respectively.
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Long Term Opinion Distribution - Deterministic Case
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Figure 8: Long term opinion distribution lim
t→∞

Pi(t) in the deterministic case for i ∈
{−2, −1, 0, 1, 2} with initial distribution of opinions given by [.1 .2 .3 .05 .35]. Think-
ing of limt→∞ Pi(t) as the weights of a probably mass function for random variable X,
then Var(X) = .2275.

Comparing Figures 6 and 7 with Figure 8, we can see that though there are slight
differences in the long term behavior of the stochastic model for the process on the com-
plete graph vs. 1D and 2D lattice, there does not appear to be much of a difference
when everyone interacts at each time-step vs. when only one interaction occurs at a time
or with different values of N . Interestingly, the long-term behavior in each of the four
cases studied seems to fit well with the long term opinion distribution in the deterministic
version of the model.

5 Conclusion

In conclusion, sociophysics offers a unique and valuable perspective for understanding the
behavior of human populations. Through the use of mathematical models, researchers
have been able to analyze and predict how interactions between individuals can lead to
macroscopic phenomena. The Sznajd Model has gained significant popularity among
researchers in the field, and in this paper, we proposed a modification to better capture
the gradual evolution of opinions in the real world, building upon previous work in the
area.

By introducing a range of opinions, our modified model allows for a more nuanced and
accurate representation of real-world situations where beliefs and opinions are not binary,
but rather fall on a spectrum. Moreover, our model allows for individuals to be influenced
by others’ opinions without entirely replacing their own. Through simulations on various
graph structures(1D, 2D Lattice), we observed that the impact of the interaction process
on the distribution of opinions in the long-run yield similar results to the deterministic
model.

Our work contributes to the expanding field of sociophysics and highlights the potential
of mathematical models in understanding human behavior. Future research can continue
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to build upon our ideas, deepening our understanding of how microscopic interactions
between individuals can influence macroscopic phenomena. In our future work, we aim
to conduct a more comprehensive exploration of our model, which may help us gain
deeper insights into the factors that contribute to the different outcomes observed in the
one-dimensional graph.
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