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1 Introduction

In 2011, a group of researchers introduced some of the first 2-player games that are played
on knot diagrams [4]. Chief among these fascinating new mental toys was a game that
came to be known as the Knotting-Unknotting Game. This game was inspired by research
that investigated the following question: if we are given a diagram of a knot that is missing
some of its over/under crossing information, when can we determine that it is unknotted
or, alternatively, is nontrivially knotted? Answering this question for knots (and the
analogous question for links) is the key to unlocking winning strategies for knot and link
games.

Since the Knotting-Unknotting Game was introduced, researchers have introduced
and studied many other 2-player games on knot and link diagrams, including the Link
Smoothing Game, the Linking-Unlinking Game, the Region Unknotting Game, the Region
Smoothing Swap Game, the Arc Unknotting Game, Untangle, and more. See [3] for a
summary of several of these. The focus of this paper is an interesting hybrid of the
Knotting-Unknotting Game and the Linking-Unlinking Game, called the KnotLink Game.
In [1], Adams, Henrich, and Stoll introduced this game and studied winning strategies for
the families of rational knots and links that can be made with two twists. In this paper,
we explore winning strategies for the KnotLink Game when the gameboards are from a
family of Whitehead-like links or pretzel links.

Before we delve into an investigation of the KnotLink Game, let’s define the basic
objects and tools we’re going to be working with. Later, equipped with these resources,
we’ll explore the world of game-playing and strategy and share our results.
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2 Knot Theory Essentials

2.1 The Basics

A knot is a closed curve (i.e., a circle) embedded in 3-dimensional Euclidean space (R3

or S3) that doesn’t intersect itself. A link is a collection of knots, where each knot in the
collection is referred to as a component of the link. An oriented knot or link is one
in which we choose a preferred direction we’d like to travel around a knot or link—it is
often denoted by arrows. Two (oriented) knots or links are considered to be equivalent
if you can bend, twist, stretch, pull, expand, or contract one of them to turn it into the
other. The idea you might have in mind for knot equivalence moves in 3-space is that
of a stretchy, knotted up rubber band. In this process of reforming a knot (or link) into
one that is topologically equivalent, we only prohibit cutting and regluing it (or magically
passing a knot/link through itself).

Knots and links are typically represented by knot and link diagrams. A knot dia-
gram is a 2-dimensional closed curve with a finite number of transverse self-intersections
(meaning that self-intersection points are not points of tangency). Similarly, a link dia-
gram is a 2-dimensional representation of a link. In knot and link diagrams, we decorate
the transverse intersection points to make it clear which strand passes over and which
passes under. These are called crossings. If some of these over/under decorations are
missing, we call the 2-dimensional picture a pseudodiagram and refer to the unknown
crossings as precrossings. When all of the crossing information is missing, we call this
pseudodiagram a shadow, while a diagram (with all of its crossing information intact) is
also considered to be a special type of pseudodiagram [2]. See Figure 1.

Figure 1: Three pseudodiagrams: a shadow (left), a “mixed” pseudodiagram (center),
and a knot diagram (right)

There are a few standard knots and links that occur often enough to warrant descrip-
tions and illustrations, among them are the unknot and the unlink. The unknot is the
unique knot that can be represented by a diagram with no crossings. All knots that are not
unknots are classified as nontrivial knots. An unlink, similarly, is a disjoint (or “un-
linked”) collection of unknots. All links that are not unlinks are classified as nontrivial
links. One of the simplest nontrivial links is the Hopf link, as it is—diagrammatically
speaking—made up of two crossings with opposite overstrand slopes to intertwine the two
components. A trefoil knot is the simplest nontrivial knot. A figure-eight knot is one
that can be represented by a diagram with four crossings, but no fewer. Examples of each
of these are shown in Figure 3.
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While a knot diagram represents just one kind of knot, a knot has infinitely many
ways it can be represented diagrammatically. One thorny problem in knot theory is:
when you’re given two knot diagrams, how can you tell if they represent equivalent knots
in 3-space? In the 1920s, Kurt Reidemeister proved [8] that two knot diagrams represent
equivalent knots if and only if the diagrams can be related by a sequence ofReidemeister
moves and planar isotopies (i.e., wiggling in such a way that no crossings are introduced
or removed). The three types of Reidemeister moves, or R-moves, are shown in Figure 2.
Reidemeister I (RI) introduces or removes a small loop. Reidemeister II (RII) slides two
portions of the knot so that one lies above the other or, conversely, pulls two overlapping
strands apart. Reidemeister III (RIII) moves a strand of the knot that lies entirely over
or entirely under two crossing strands past the crossing.

These moves—especially RI and RII—appear frequently in our results, as they help
simplify our game board to determine if our result is an unknot/unlink or a nontrivial
knot/link. If a crossing in a diagram is one that can be removed with an RI move (possibly
after a sequence of other RI moves), then we call it a reducible crossing.1

Figure 2: Reidemeister moves: RI, RII, and RIII

Figure 3: A collection of simple knots and links: unknot (left), the Hopf link (center left),
trefoil (center right), and figure-eight knot (right)

2.2 Orientation & Crossing Signs

To describe salient features of a knot or link diagram, it can be helpful to refer to the
sign of a crossing in the diagram. We are able to assign +1 or −1 to each crossing if we

1There are sneakier reducible (aka “nugatory”) crossings that don’t quite fit this description, but we
won’t encounter them in this paper.
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first give our diagram an orientation. To specify a knot or link diagram’s orientation, we
choose a place on the diagram and begin drawing arrows, following one component in one
direction until we have traced the whole component and are back to where we started.
We do this for each individual component (choosing a direction we will travel around it)
if we have a link. See Figure 4.

Figure 4: Two oriented links

Then, to determine the sign of a crossing, look at a crossing in the diagram from the
perspective that both strands involved in the crossing are oriented upwards. (You may
have to rotate your head sideways or upside down!) From this perspective, if the strand
with the positive slope is the overstrand, we say the crossing is positive and associate to
it a sign of +1. Otherwise, we say it’s negative and associate to the crossing a sign of
−1. See Figure 5.

Figure 5: The signs of a crossing

The sum of the signs of all crossings in a knot diagram is called the writhe of the
diagram. In a link diagram, we’re often interested in just the sum of the signs of the
crossings where one link component interacts with another, as in Section 2.3. In other
situations, we might want to know the local writhe, i.e. the sum of the crossing signs
of a smaller portion of a knot or link diagram. For both writhe and local writhe on
pseudodiagrams, we ignore precrossings and sum the signs of the crossings which have
been resolved.

As an exercise, we invite the reader to take a look at the RII move. Choose orientations
for both strands of the knot or link that are involved in the move. Show that, regardless
of how these orientations are chosen, the two crossings in the move have opposite signs,
so the local writhe is zero. This observation will be useful as we study game strategies
later!
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2.3 Linking Number

The linking number of an oriented, 2-component link is an invariant that can be used
to identify when a link is nontrivial. In essence, it is a measure of how intertwined two
components of a link are with each other.

To compute the linking number, lk, from an oriented, 2-component link diagram, we
take half the sum of the signs of those crossings that involve both components. So, if L
is our link with components L1 and L2, we have:

lk(L) =
1

2

∑
c∈L1∩L2

sign(c).

If the linking number of any two components of an oriented link, L, is zero, then L
may or may not be an unlink. On the other hand, if the linking number of two oriented
link components is nonzero, the resulting diagram is definitively a nontrivial link, and so
the linking number is a useful tool for detecting nontriviality of links.

We note that, if you are interesting in studying a link with more than two components,
you may compute the linking number of pairs of components in the link to get information.
For any two links with the same number of components, any differences in the profiles
of pairwise linking numbers for the two links will indicate the links are not equivalent to
each other.

2.4 Tricolorability

One of the most interesting nontrivial links is theWhitehead link. (See Figure 6.) What
makes this link so interesting is that it has a linking number of zero, so the linking number
cannot detect its nontriviality. This means that we could use more tools for detecting
nontriviality.

Figure 6: The Whitehead link, a nontrivial link with linking number zero

Tricolorability is an invariant of both knots and links that assigns a color—of three
possible colors—to each arc in a knot or link diagram (i.e., to each portion of the diagram
between adjacent underpasses). The assignment is made following some simple rules:

• Rule 1: Three different colors or one single color must be present at a crossing, but
never just two. (See Figure 7.)

• Rule 2: At least two colors must be used in the diagram as a whole in order for a
tricoloring to be valid.
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Figure 7: Color combination options for tricolorability

Tricolorability is a knot and link invariant because Reidemeister moves preserve the
tricolorability of diagrams. In other words, a diagram will be tricolorable before a Reide-
meister move if and only if it is tricolorable after the move.

As an invariant, tricolorability is useful for distinguishing knots and links from one
another. Since the unknot is not tricolorable, any other knot that is tricolorable must be
nontrivial. Likewise, since the unlink is tricolorable, any link that fails to be tricolorable
must be nontrivial. See Figure 8 for some examples.

Figure 8: Tricolorability (or not) of several knot and link diagrams

Returning to the example of a Whitehead link, the diagram in Figure 6 fails to be
tricolorable. (See for yourself! Try coloring this link and find out what goes wrong.)
Therefore, it cannot be the unlink.

3 The KnotLink Game

Now, we come to the heart of our work: the KnotLink Game, a game that can be played
on shadows of knots and links. There are two players in this game, the Simplifier and
the Complicator, and each of these players has a unique goal. The Simplifier’s goal is to
turn the game board into an unknot or an unlink. The Complicator wants to turn the
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game board into a nontrivial knot or link. At the beginning of the game, the players are
given a game board: a knot or link shadow. Primarily, players take turns “resolving”
crossings in the diagram until every crossing has been resolved. Resolving a crossing is
when a player decides which strand will cross over and which strand will cross under at
a precrossing. While most moves consist of resolving crossings, in addition, each player
may choose—no more than one time during the game—to smooth rather than resolve
a crossing. There are two types of smoothings the players can choose from, shown in
Figure 9.

Figure 9: (Top) two possible ways to resolve a precrossing; (bottom) two possible smooth-
ings of a precrossing, a horizontal smoothing shown on the left and a vertical smoothing
shown on the right.

Let’s see how the game is played by walking through the sample game shown in Fig-
ure 10. We begin with a knot shadow. Here, the Simplifier moves first on precrossing 1,
choosing to use their one special smoothing move (shown in orange). This turns the knot
into a link. The Complicator responds (in blue) by resolving crossing 2. The remaining
moves are played (on precrossings labeled in numerical order), with the Simplifier’s (or-
ange) moves alternating with the Complicator’s (blue) moves. At the end of the game,
the linking number of the link is ±1 (depending on how orientations for the components
are chosen), so the link is nontrivial. Hence, the Complicator wins.

The KnotLink Game is a type of combinatorial game in which one of the two players
can guarantee themselves a win (regardless of how their opponent plays) if they follow a
winning strategy. So, the most natural question to ask of the KnotLink Game is: given
a particular starting shadow, who has a winning strategy?

In the paper that introduced the KnotLink Game [1], the authors determined winning
strategies for certain families of knots and links (in the “rational” knot/link family),
including (2,m)-torus knots and links. Here, we study winning strategies for the KnotLink
Game on two other infinite families: a family of Whitehead-like links and a pretzel link
family.

4 The KnotLink Game on a Whitehead Link Family

One of the link families we were most excited to explore for the KnotLink Game is a family
of linking-number-zero links related to the Whitehead link. The particular diagram shown
of the Whitehead link in Figure 6 has a twist with two crossings (on the right) contained
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Figure 10: A sample KnotLink Game with Simplifier playing first (shown in orange) and
Complicator playing second (shown in blue)

in one of the link’s two components. To generate an infinite family of links from this
particular link, we replace the 2-crossing twist with a twist having an arbitrary number
of crossings. See Figure 11 for an image of a general link in this family.

Figure 11: The Whitehead link family we will investigate. The “oval” crossings, c1 through
c4, are shown in blue. The remaining n twist crossings, labeled t1, . . . , tn, are indicated
in orange.

Let’s now consider what happens when our two players play on this family of White-
head links. We prove four theorems in order to address all possible combinations of player
order and parity of number of twist crossings (in other words, the even/oddness of n in
t1, t2, ..., tn in Figure 11). In Theorems 4.1–4.4, we will show that for even n, the second
player has a winning strategy, while for odd n, the first player wins.

Before we get started proving these results, we would like to observe that the winning
strategies we outline are not the only possibilities for success, however, they are straight-
forward to describe and, thus, they are the ones we have chosen to present. We also want
to introduce some language we use when analyzing game strategies. Often during game
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Figure 12: Complicator’s winning strategy when playing second on an even twist diagram
in Theorem 4.1

play, a smoothing turns one or more crossings in the diagram into reducible crossings—in
other words, these crossings do not and cannot affect the knottedness or linkedness of
the diagram. Note that resolves also can create reducible crossings. We refer to moves
involving these crossings as wasted moves.

Note that the proof of Theorem 4.1 is written in great detail, while the remaining three
theorems are proven more succinctly. To aid the reader, we’ve provided an illustration
of the Complicator’s response moves for Theorem 4.1 (showing that the Complicator has
a winning strategy playing second). In Figure 12, we consider all six of the Simplifier’s
possible moves and clearly outline how the Complicator should respond in order to ensure
the diagram will not be completely simplified. This strategy can be applied at any point
in the game, and the Complicator’s response moves only rely on the Simplifier’s most
recent move. Let’s get started!

Theorem 4.1 If the KnotLink Game is played on a Whitehead link shadow from the
family shown in Figure 11 where there is an even number of crossings in the twist, then
the Complicator has a winning strategy when playing second.

Proof. Let us consider pairs of moves, a move by the Simplifier followed by a Compli-
cator countermove. For what follows, we assume the moves described are played at an
arbitrary point in the game. See Figure 11 for crossing labeling conventions. We describe
the winning strategy for the Complicator responding to moves of the Simplifier.

Case 1. [Simplifier moves in the oval.] Here, we consider how the Complicator should
respond if the Simplifier makes a move in the oval, on a crossing ci.
Subcase 1-A. [Simplifier resolves a crossing in the oval.] Suppose the Simplifier chooses
to resolve a crossing, ci, in the oval. The Complicator’s response should be to resolve
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the corresponding crossing, ci±2, using the same sign the Simplifier used. By resolving
with the same sign, the Complicator will be able to avoid the possibility of an RII move
occurring in that pair.

Figure 13: Smoothing options to create, or not create, a wasted move

Subcase 1-B. [Simplifier smooths in the oval.] Suppose the Simplifier uses their smooth-
ing move on a crossing ci in the oval to turn the 2-component link into a knot. There
are two possible outcomes: either a wasted move will be created in the corresponding
crossing, ci±2, or not. (See Figure 13.) In the following two subcases, we will see how the
Complicator should respond.

• Subcase 1-B-i. [Simplifier smooths in oval to create a wasted move.]

If a wasted move is created by the Simplifier’s smoothing, then the Complicator
should resolve this wasted move crossing (in any way). The final diagram will be
the figure-eight knot or the trefoil if this strategy and the strategy outlined for the
twists is followed. See Figure 14.

• Subcase 1-B-ii. [Simplifier smooths in oval without creating a wasted move.] If the
Simplifier smooths on ci without creating a wasted move, the Complicator should
respond by smoothing ci±2 in such a way that the shadow is turned back into a
2-component link. (Following this strategy, it will become the Hopf link by the end
of the game. See Figure 15 for a sample game.)

Case 2. [Simplifier moves in the twist.] Here, we consider how the Complicator should
respond if the Simplifier makes a move in the twist, on a crossing ti.
Subcase 2-A. [Simplifier resolves a crossing in twist.] Suppose, for this case, that the
Simplifier resolves a crossing in the twist. In order to avoid the twist having a local writhe
of zero (which would cause the twist to completely unravel), the Complicator’s response
should be to resolve another crossing in the twist using the same sign that was chosen
for the first resolved crossing in the twist. While this strategy may lead to some RII
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Figure 14: Subcase 1-B-i: In this example, the Simplifier’s first move results in a wasted
move. The outcome is a trefoil knot or a figure-eight knot.

Figure 15: Subcase 1-B-ii: Simplifier’s first move does not result in a wasted move

simplifications in the twist, the absolute value of the local writhe of the twist crossings
will be nonzero at the end of the game.
Subcase 2-B. [Simplifier smooths in the twist.] Suppose the Simplifier does a horizontal
smoothing. The Complicator should respond with a vertical smoothing in the twist.
Likewise, if the Simplifier does a vertical smoothing, the Complicator should respond
with a horizontal one in the twist. In both cases, the result is a three component link.
From here, the Complicator should respond to moves in the oval following the strategy
of Subcase 1-A. They should respond to Simplifier resolves of the reducible crossings, ti,
with their own resolves of reducible crossings. Then, the resulting link will be nontrivial.
See Figure 16.

□
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Figure 16: Example of a possible pseudodiagram after a vertical and a horizontal smooth-
ing move have both been played in the twist.

Theorem 4.2 If the KnotLink Game is played on a Whitehead link shadow where there
is an odd number of crossings in the twist, then the Complicator has a winning strategy
when playing first.

Proof. The Complicator should resolve a crossing in the twist with their first move.
Since this leaves an even number of crossings to resolve in the twist, the Complicator
can from this point forward, adopt the strategy described in proof of Theorem 4.1 with
similar outcomes. The Complicator will still be able to have the last move in the twist,
forcing the Simplifier to move first in the oval. If the Complicator always matches the
sign of their first move for all subsequent moves in the twist, they can force a nonzero
local writhe in the twist. Because the local writhe in the twist will necessarily be nonzero
and the Simplifier must move first in the oval, the Complicator’s winning strategy will
succeed in this case as well. We leave it to the reader to reconstruct the details of each
case. □

Theorem 4.3 If the KnotLink Game is played on a Whitehead link shadow where there
is an odd number of crossings in the twist, then the Simplifier has a winning strategy when
playing first.

Proof. Let the Simplifier perform a vertical smoothing on t1 for their opening move. This
creates a 3-component link with an even number of wasted moves among the remaining
t2, t3, · · · , tn crossings (since n is odd). This crossing parity will force the Complicator
to be the first to move in the oval. When the Complicator moves in the oval crossings,
they have three options: they can use a smoothing that does not create a wasted move,
they can use a smoothing that does create a wasted move, or they can simply resolve
crossings. The Simplifier should always respond to a move in ci with a resolve in ci±2.
This resolve should be of opposite sign to the Complicator’s move when the move is a
resolve, but the sign does not matter if the Complicator uses a smoothing move. This
will force the Complicator to move first in the other pair of crossings in the oval, where
again the Simplifier should respond to a move in ci with a resolve in ci±2, of opposite sign
if the Complicator’s move is not a smoothing move. The result of this strategy, once all
crossings in the oval are resolved, will make one pair of crossings in the oval have an RII
move, and the other either have an RII move or a smoothing and an RI move.

Representative gameplay flowing from the Simplifier’s opening move is shown in Fig-
ure 17. □
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Figure 17: Illustration of Theorem 4.3: Simplifier’s opening move is a vertical smoothing.
Shown below are three possible game outcomes. Crossings in the twist have been left
unresolved since they are irrelevant to the game outcome and their even parity means
that the Complicator will be forced to move first in the oval.

Theorem 4.4 If the KnotLink Game is played on a Whitehead link shadow where there
is an even number of crossings in the twist, then the Simplifier has a winning strategy
when playing second.

Proof. Since the diagram has an even number of crossings, we can pair up crossings such
that the Complicator moves first in each pair, and the Simplifier has a response move on
the second crossing in the pair. We use the following pairs: {c1, c3}, {c2, c4}, {t1, t2}, · · · ,
{tn−1, tn}. The Simplifier’s winning strategy is similar to the Complicator’s winning
strategy described in the proof of Theorem 4.1, except the Simplifier will opt to respond
to any resolve by resolving the paired crossing with the opposite sign, so that the number
of crossings in the diagram can be reduced by two (using RII moves) after each pair of
resolves. On the other hand, if the Complicator uses a smoothing move on one of the
ci crossings and no wasted move is created (as in the first pseudodiagram in Figure 15),
then the Simplifier can respond with a smoothing move of their own in the paired crossing
in order to transform the diagram into a 2-component link, further simplifying it. The
opposite-sign resolve strategy above will ensure this link becomes unlinked. □

Now that we have shown the winning strategies for each case, we should point out a
simple way to remember who wins in the KnotLink Game played on the Whitehead link
family: whoever has the last move in the game has a winning strategy. If there are an
odd number of twists, then the first player has a winning strategy, otherwise the second
player has a winning strategy.

5 The KnotLink Game on Pretzel Links

We now turn our attention to another family of links to play the KnotLink Game on:
pretzel knots and links. While every member of the Whitehead link family has exactly
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two components, our pretzel link family members have one, two, or three components.
Let’s take a look at how we can construct a link in this family. We start with some
twisting.

Two strings twisted around each other with k crossings is called a ±k-twist. If we
orient the twist vertically and the crossings in this twist have overstrands with a positive
slope, we call it a k-twist. If the crossings have negatively-sloped overstrands, we call the
twist a −k-twist. We may then represent any pretzel link of the sort we want to study by
first setting three such twists vertically parallel. Next, we connect the closest loose ends
between the first and second twists and between the second and third twists. Finally, we
connect the remaining loose ends at the top and the bottom.

We illustrate two possible outcomes of this construction in Figure 18. If we form a
pretzel link by joining a p-twist, a q-twist, and an r-twist, we call the resulting object
a (p, q, r) pretzel link. So, in our example, the pretzel link on the left is the (3, 3, 3)
pretzel link, and the one on the right is the (4,−2,−3) pretzel link.

Figure 18: A (3, 3, 3) pretzel knot (left) and (4,−2,−3) pretzel link (right)

The ordering (p, q, r) of twists in a pretzel link is naturally cyclic, given the topology
of the link. In other words, the (p, q, r) pretzel link is equivalent to the ones denoted by
(q, r, p) and (r, p, q). (Test your visualization skills! Can you imagine grabbing the p twist
and pulling it over the other two twists, setting it down to the right of the r twist? What
would happen to the arcs connecting these twists? What would happen to the crossings
in the p twist? Would any new crossings be created? If so, could they be removed with
any Reidemeister moves?)

The parity of the number of crossings in each twist will be quite important for deter-
mining winning strategies. The number of components in a pretzel link depends only on
the parity of the twists. If all twists have an odd number of crossings or if exactly one
twist has an even number of crossings, then our pretzel link has a single component—that
is, it is a knot. Otherwise, it is a 2- or 3-component link, depending on the number of
even twists.[6] Using natural notation, we can understand the number of components in
a pretzel link as follows. If OOE denotes that exactly two of {p, q, r} are odd (in any
order), for instance, then OOO and OOE pretzel links are knots. EEO pretzel links have
two components, and EEE pretzel links have three components. We encourage you to
draw some examples of each link type to convince yourselves of this fact!

So, how will this affect the strategies of the players? For the Complicator, more
components creates more opportunities to end with a Hopf link or other, more complex,
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nontrivial link. To see how link components can be created or absorbed, we note that game
moves can change the parity of our twists. A vertical smoothing in a twist always changes
the parity of that twist. So, it changes OOO to OOE (keeping the knot a knot) and
changes EEE to EEO (keeping the link a link, but reducing the number of components).
Likewise, a vertical smoothing in a twist can either change pretzel knot OOE into an
OOO knot or an EEO link. A vertical smoothing performed on a twist in an EEO 2-
component pretzel link either reduces the number of components, transforming it into a
OOE knot (i.e., 1-component link), or increases the number of components, producing a
EEE 3-component link. This means that players with a smoothing move in reserve can
shift the category of knot or link of the game board if that might help them.

Figure 19: A (4, 2, 3) pretzel link shadow, after a horizontal smoothing in the 4-twist,
becomes the shadow of a (2, 5)-torus knot (with some additional, extraneous crossings in
the former twist).

While vertical smoothing moves can have a big effect, the effect of a horizontal smooth-
ing in a twist can be even more profound. A horizontal smoothing in one twist creates a
knot or link pseudodiagram of a (2,m)-torus knot (if m is odd) or (2,m)-torus link (if m
is even) with two components. Here, m equals the sum of the number of crossings in the
remaining two twists.2 (See [1] for more on the KnotLink Game played on (2,m)-torus
links.) This leads to the following structural facts which are of interest to our players.

1. If m is odd and the local writhe of the crossings in the two remaining twists (i.e. the
non-reducible crossings) is ±1, then the knot is the unknot. This is because such a
local writhe means that all but one crossing can be removed by a sequence of RII
moves. A knot with only one crossing must be the unknot.

2. If m is odd and the absolute value of the local writhe of the crossings in the two
remaining twists is 3 or more, then the knot is not the unknot since it can be
represented by a reduced, alternating knot diagram with at least three crossings.3

2Technically, we might get a pseudodiagram that can only be resolved to a smaller, (2,m− 2i)-torus
link—but not a (2,m)-torus link—if there are crossings that have already been resolved with opposite
sign. Pairs of opposite-sign crossings can be reduced using RII moves at the end of the game.

3This fact is a direct consequence of the Tait conjecture that states that any reduced, alternating knot
or link diagram has the fewest crossings of any diagram of that knot or link. Despite the misleading
name, the Tait conjectures are actually theorems. At one time, they were conjectured by Peter Guthrie
Tait, but they have since been proven. The Tait conjecture we reference here was proven independently
by Kauffman, Murasugi and Thistlethwaite [5, 7, 9].
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3. If m is even and the absolute value of the local writhe of the crossings is ≥ 2, then
the link is not the unlink, since this condition guarantees a nonzero linking number.

Without further ado, let’s see what happens when we play the KnotLink Game on
this pretzel link family. Before we begin, we present a summary of our results in Table
1. Note that for Pretzel links (EEE and EEO) we have complete results for who wins,
no matter who plays first. However, in the cases of Pretzel knots (OOE and OOO), we
have only partial results, not a complete characterization of the game outcomes.

Simplifier plays first Complicator plays first

EEE Complicator wins (Lemma 5.2) Simplifier wins (Lemma 5.3)
EEO Simplifier wins (Lemma 5.5) Complicator wins (Lemma 5.6)
OOE It’s complicated (see Cor. 5.8, Prop. 5.9) Simplifier wins (Theorem 5.7)
OOO Simplifier wins (Theorem 5.10) It’s complicated (see Cor. 5.11)

Table 1: Game outcomes for pretzel link.

Let’s jump in to proving these results!

Theorem 5.1 For the KnotLink Game played on a (p, q, r) pretzel link shadow where
p, q, and r are even, Player 2 has a winning strategy.

We will prove Theorem 5.1 by considering the two cases of who plays first in the
following two lemmas.

Lemma 5.2 (EEE, Simplifier moves first.) Suppose the KnotLink Game is played on a
(p, q, r) pretzel link shadow where p, q, and r are even. If the Simplifier moves first, then
the Complicator has a winning strategy.

Proof. Note that because the Simplifier has only a single smoothing move to use,
the Complicator can ensure that the game will end in either EEE (Simplifier only used
resolves), EEO (Simplifier used a vertical smoothing), or EE (Simplifier used a horizontal
smoothing and removed a twist) configurations. The Complicator can also choose to move
last in every twist.

The Complicator’s strategy is, thus, relatively simple: ensure that the local writhe in
all but one of the even twists is zero, with a local writhe in the other even twist of ±2. In
all such cases, the resulting link will be nontrivial, either a Hopf Link or a disjoint union
of the Hopf Link and an unknot. Note that the Complicator will not use any smoothing
moves in this process. These cases describe the Complicator’s response to any Simplifier
move during the course of the game.
Case 1. [Simplifier resolves a crossing in an even twist.] Then the Complicator will
respond by resolving a crossing in the same twist with the opposite sign to keep the local
writhe in the twist zero, unless this is the last move in the first twist to be completed.
If it is the last move in the first twist to be completed, the Complicator will resolve the
crossing with the opposite sign to create a twist with a local writhe of ±2. By following
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Figure 20: Illustration of Lemma 5.2, Case 1. Note that the local writhes in each twist
in the final diagram, left to right, are 0, ±2, and 0.

this strategy, there will be one even twist with local writhe ±2 and one or two even twists
with local writhe zero at the end of the game.

Figure 21: Illustration of Lemma 5.2, Case 2. Note that the local writhes in each twist,
left to right, are 0, ±1, and ±2.

Case 2. [Simplifier uses a vertical smoothing in any twist.] Note that the Complicator’s
strategy means that the current local writhe of the resolved crossings in this twist is zero.
The Complicator should reply with a resolve in this twist. For the rest of the game, any
time the Simplifier resolves a crossing in this twist the Complicator should reply with a
resolve of the opposite sign. This will ensure that when all moves in this now-odd twist
have been played the local writhe will be ±1.
Case 3. [Simplifier uses a horizontal smoothing in any twist.] This makes all remaining
moves in this twist wasted moves. The Complicator should respond with a resolve in this
same twist. For the rest of the game, any time the Simplifier resolves a crossing in this
twist, the Complicator should reply with any resolve in the same twist. (The sign does
not matter since these are wasted moves.)

By following this strategy, the only possible final configurations are:

• EEE with local writhes of 0, 0, and ±2, which will yield a disjoint union of the
Hopf Link and an unknot.

• EEO with local writhes of 0, ±2, and ±1, which will yield the Hopf Link.
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Figure 22: Illustration of Lemma 5.2, Case 3. Note that the local writhes in the twists,
left and right, are 0 and ±2. (We do not sum the middle crossings because the horizontal
smoothing makes all crossings in this twist reducible, so they do not affect the game
outcome.)

• EE with local writhes of 0 and ±2, which will yield the Hopf Link.

Thus, the Complicator has won without using a smoothing move.
□

Lemma 5.3 (EEE, Complicator moves first.) Suppose the KnotLink Game is played on
a (p, q, r) pretzel link shadow where p, q, and r are even. If the Complicator moves first,
then the Simplifier has a winning strategy.

Proof. The Simplifier will be able to keep a local writhe of zero in every twist with this
strategy:
Case 1. [Complicator resolves a crossing.] Anytime the Complicator resolves a crossing
in a twist, the Simplifier will resolve a crossing with the opposite sign in the same twist.
Since the Simplifier will always be able to move last in each twist, this will ensure a local
writhe of zero in each twist if no other types of moves are used. This will result in the
unlink.
Case 2. [Complicator uses a vertical smoothing.] If the Complicator chooses to use
their smoothing move as a vertical smoothing, the Simplifier can reply with a vertical
smoothing in the same twist. Since each twist is even and the Simplifier always responds
in the same twist where the Complicator moved, there will always be a crossing left on
which the Simplifier can play their vertical smoothing. The effect of these two moves
produces another EEE pretzel link, and the game proceeds using only Case 1 above,
since no player has a smoothing move left. All twists will end with local writhe zero. This
will result in the unlink.
Case 3. [Complicator uses a horizontal smoothing.] If the Complicator chooses to use
their smoothing move as a horizontal smoothing, the Simplifier can reply with a resolve
in that same twist, as now all remaining moves in that twist are wasted moves. This
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preserves the Simplifier’s ability to always respond with a move in the same twist in
which the Complicator has just played, and thus always to have the last move in a twist.
The rest of the game will fall under Case 1, above, with the Simplifier able to ensure a
local writhe of zero in the two other twists. This will result in the unlink. □

Figure 23: Illustration of Lemma 5.3: Case 1 (left), Case 2 (center), Case 3 (right) all
result in the same final diagram of the unknot.

Theorem 5.4 For the KnotLink Game played on a (p, q, r) pretzel link shadow where p
and q are even, and r is odd, Player 1 has a winning strategy.

As with Theorem 5.1, the proof of this theorem is accomplished by proving two lemmas.

Lemma 5.5 (EEO, Simplifier moves first.) Suppose the KnotLink Game is played on a
(p, q, r) pretzel link shadow where p and q are even, and r is odd. If the Simplifier moves
first, then the Simplifier has a winning strategy.

Proof.
The Simplifier begins by resolving a crossing with sign −1 in the odd twist. This leaves

an even number of remaining moves in the odd twist, as well as in each of the two even
twists. The current local writhe of each of the even twists is zero, and the local writhe in
the odd twist is −1.
Case 1. [The Complicator resolves a crossing.] The Simplifier resolves a crossing in the
same twist with opposite sign. If the Complicator never uses a smoothing move, this will
result in an EEO diagram with local writhes of 0, 0, and −1, which will yield the unlink.
The Simplifier wins.
Case 2. [The Complicator uses a vertical smoothing in the odd twist.] The Simplifier
should resolve a crossing with sign +1 in this same twist to make the current local writhe
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in that twist zero. Note that the diagram is now of the form EEE, which will yield a
3-component link. For the rest of the game, the Simplifier should respond to each of the
Complicator’s resolves with a resolve in the same twist of the opposite sign. This will
result in a diagram with a local writhe in each twist of zero, which results in the unlink.
The Simplifier wins.
Case 3. [The Complicator uses a vertical smoothing in one of the even twists.] Note
that this shifts the diagram to OOE, which will yield a knot, with the Simplifier making
the next move. Further, note that based on the Simplifier’s opening move, this OOE
diagram must have a current local writhe of zero in both the even twist and in the newly
odd twist, along with a local writhe of −1 in the original odd twist. The Simplifier should
respond in the newly odd twist with a positive resolve. For the rest of the game, the
Simplifier continues to respond to the Complicator’s moves with a resolve of opposite sign
in the same twist as each Complicator move. By following this strategy, the even twist
will finish with local writhe zero, and the odd twists will finish with local writhes of ±1,
one of each sign. This results in the unknot. The Simplifier wins.
Case 4. [The Complicator uses a horizontal smoothing in an even twist.] This leaves
an odd number of wasted moves in that twist. Note also that the odd twist has current
local writhe −1 and the even twist must have current local writhe zero based on the
Simplifier’s strategy for replying to the Complicator’s resolve moves outlined in Case 1.
The Simplifier wastes a move by resolving in the same twist in which the Complicator just
used a smoothing. This leaves an even number of wasted moves and an even number of
remaining moves in the other two twists as well. For the rest of the game, the Simplifier
need only reply to any Complicator resolve with a resolve of opposite sign in the same
twist. This will yield a local writhe of zero in the remaining even twist and a local writhe
of −1 in the odd twist. Combined with the horizontal smoothing in the other even twist,
this will yield the unknot. The Simplifier wins.
Case 5. [The Complicator uses a horizontal smoothing in the odd twist and at least
one unresolved crossing remains in the even twists.] Then an even number of unresolved
crossings remain in each of the even twists and an odd number of unresolved crossings
remain in the (original) odd twist. Also, the local writhe for each even twist is currently
zero. The Simplifier responds with a horizontal smoothing in either one of the even twists.
This leaves an odd number of unresolved crossings available for wasted moves in that twist.
The odd number of wasted moves available in each of the twists, which now include a
horizontal smoothing, means there is an even number of available wasted moves overall.
For the rest of the game, the Simplifier will respond to a wasted move by the Complicator
with another wasted move, and will respond to a resolve in the remaining even twist with
a resolve of opposite sign. Since the even number of wasted moves available force the
Complicator to resolve first in the even number of unresolved crossings in the remaining
even twist, the final diagram will be the unknot. See Figure 24 for an example.
Case 6. [The Complicator uses a horizontal smoothing in the odd twist and no unresolved
crossings remain in either of the even twists.] There are no remaining moves in either of the
even twists, and the strategy followed by the Simplifier (Case 1) means that all crossings
in each even twist were resolved with a final local writhe of zero. The only remaining
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Figure 24: An example of Lemma 5.5, Case 5.

unresolved crossings will now be wasted moves because of the horizontal smoothing move
the Complicator just made. The result will thus be the unlink regardless of the Simplifier’s
next move or any subsequent moves from either player, since only wasted moves remain.
See Figure 25 for an example.

Figure 25: An example of Lemma 5.5, Case 6.

□

Lemma 5.6 (EEO, Complicator moves first.) Suppose the KnotLink Game is played on
a (p, q, r) pretzel link shadow where p and q are even, and r is odd. If the Complicator
moves first, then the Complicator has a winning strategy.

Proof. Case 1. [r ≥ 3.] The Complicator moves first by performing a vertical smoothing
move in the odd twist. The configuration is now EEE with the Simplifier moving next.

The Complicator may now use the winning strategy in Lemma 5.2, EEE moving
second to win, since that strategy does not require the use of any smoothing moves.
Case 2. [r = 1.] The Complicator moves first by performing a vertical smoothing move
in the odd twist. This is now equivalent to a local writhe of zero in that twist. The
Complicator may now use the winning strategy in Lemma 5.2, EEE moving second to

the pump journal of undergraduate research 8 (2025), 20–46 40



win. Following that strategy will now ensure that the next twist completed without
smoothings has a local writhe of ±2. The final configuration will be the Hopf Link.

Thus, the Complicator wins.
□

For the KnotLink Game played on a (p, q, r) pretzel link shadow where p and q are
odd, and r is even, we only know the outcome for some special cases. We prove that if
the Simplifier plays second, then the Simplifier wins. However, if the Complicator plays
second, several different outcomes are possible. We’ll look at some special cases to see
why this case is so vexing.

Theorem 5.7 (OOE, Complicator moves first.) Suppose the KnotLink Game is played
on a (p, q, r) pretzel link shadow where p and q are odd, and r is even. If the Complicator
moves first, then the Simplifier has a winning strategy.

Proof.
First, we observe that the Simplifier will get the last move. Also, importantly, because

the Simplifier can force the Complicator to move first in the even twist, the Simplifier can
make sure to move last in the even twist. With that in mind, let’s consider the following
strategy.

Strategy for the Even Twist: Any time the Complicator moves in the even twist, the
Simplifier will respond as follows in the same even twist:

• If the Complicator resolves a crossing, then the Simplifier resolves with opposite
sign.

• If the Complicator uses a vertical smoothing, the Simplifier uses a vertical smoothing
also.

• If the Complicator uses a horizontal smoothing, then the Simplifier resolves with
any sign in the (formerly) even twist (which now consists only of wasted moves).

Note that by following this part of the strategy, we ensure that the even twist has
local writhe zero or has been removed by a horizontal smoothing in the final diagram.

Knowing that the even twist can only turn out to be local writhe zero or removed by
horizontal smoothing, the Simplifier need now only ensure that the combined local writhe
of the odd twists is zero to know that the final configuration is the unknot or the unlink.

Strategy for the Odd Twists: Any time the Complicator moves in one of the odd
twists, the Simplifier will respond as follows:

• If the Complicator resolves a crossing in an odd twist with unresolved crossings
remaining, the Simplifier will respond by resolving a crossing with opposite sign in
the same twist. This will guarantee that the local writhe of the signs of the crossings
in each odd twist is ±1 by the end of the game if no smoothings are used in the odd
twists.
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• If the Complicator resolves the last unresolved crossing in one of the odd twists, the
Simplifier will resolve a crossing in the other odd twist with opposite sign. Note that
there must be an unresolved crossing remaining in the other odd twist because the
Simplifier’s strategy for the even twist means they must also have the last move in
the (combined) odd twists. By resolving with the opposite sign here, the Simplifier
ensures that by continuing with their strategy, the local writhe for the last completed
odd twist will be opposite of the local writhe for the first completed odd twist. In
fact, the two local writhes will be +1 and -1 if no smoothings are used in the odd
twists.

• If the Complicator uses a vertical smoothing in an odd twist with remaining unre-
solved crossings, then the Simplifier will respond with a vertical smoothing in that
same odd twist. Note that this simply means the twist is still an odd twist with two
fewer unresolved crossings than before.

• If the Complicator uses a vertical smoothing as the last move in an odd twist, then
the Simplifier will respond with a vertical smoothing in the other odd twist. Note
that based on the Simplifier’s strategy, the Complicator must have completed the
(first odd, now even) twist with local writhe zero. There also must now be an even
number of resolves left in the remaining odd twist, and the Simplifier’s strategy will
ensure a local writhe of zero in that twist as well.

• If the Complicator uses a horizontal smoothing in either odd twist, the Simplifier
can force a win with a horizontal smoothing in any other twist (including the even
twist). If no unresolved crossings remain in the even twist or the other odd twist,
then the local writhe in the even twist must be zero and the local writhe in the
completed odd twist must be ±1 which will result in the unknot regardless of any
remaining moves.

The only possible final configurations following this strategy are local writhes in each
twist of (1,−1, 0), (−1, 1, 0), or (0, 0, 0), or configurations with only one or two remaining
twists after horizontal smoothing moves. In all cases, the resulting diagram is the unknot
or the unlink. Thus, the Simplifier wins.

□
Now, what happens for the KnotLink Game played on a (p, q, r) pretzel link shadow

where p and q are odd, and r is even and the Simplifier moves first? It depends! The
following partial result in this case can be obtained as a corollary of Theorem 3.2 in [1].

Corollary 5.8 Suppose the KnotLink Game is played on a (1, 1, r) pretzel link shadow
with r even. If the Simplifier moves first, then the Complicator has a winning strategy.

Proof. In this special case, the pretzel link shadow is equivalent to a rational link
shadow of the form (2, r) (with r even) analyzed in [1]. According to Theorem 3.2 in [1],
the second player wins on this type of shadow, regardless of their goal. So, for pretzel
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links of the form (1, 1, r) where the Simplifier moves first, the Complicator has a winning
strategy. □

Another special case where we have some knowledge of game outcomes for (p, q, r)
where p and q are odd, and r is even is the (1, q, 2) case. Surprisingly, the game outcome
for this special case is the opposite of the game outcome for the OOE special case (1, 1, r)!

Proposition 5.9 Suppose the KnotLink Game is played on a (1, q, 2) pretzel link shadow
with q odd, q ≥ 3. If the Simplifier moves first, then the Simplifier has a winning strategy.

Proof. On the Simplifier’s first move they should resolve the single crossing in the first
twist with sign +1.
Case 1. [Complicator moves in the q-twist.] The first time the Complicator moves in the
q-twist, the Simplifier should respond with a horizontal smoothing in the q-twist. This is
guaranteed to be possible since q ≥ 3. For all subsequent moves the Complicator plays
in the q-twist, the Simplifier will respond by resolving a crossing in the q-twist with any
sign if a move in this twist is available.
Case 2. [Complicator moves first in the 2-twist.]
Subcase 2-A. If the Complicator resolves a crossing in the 2-twist, the Simplifier should
resolve the other crossing in the 2-twist with opposite sign, creating an RII move.
Subcase 2-B. If the Complicator performs a horizontal or vertical smoothing in the
2-twist, the Simplifier will resolve the other crossing in the 2-twist, say with sign −1.
Case 3. [Simplifier moves first in the 2-twist.] The Simplifier should resolve a crossing
with sign −1.

Let’s now consider the effect this combination of strategies has on the game outcome.
Since, in every case, the q-twist is smoothed horizontally, all q-twist crossings can be
undone with RI moves, leaving at most three crossings in the diagram (coming from the
1-twist and the 2-twist). The only precrossings that determine the final game board are
the precrossing in the first twist, which was resolved with a +1, and the two precrossings
in the 2-twist. Based on our strategy, if the 2-twist precrossings are both resolved, then
the local writhe of these three crossings is guaranteed to be ±1. Any 3-crossing knot
diagram with writhe ±1 is the unknot. If, on the other hand, the Complicator chose
to smooth a crossing in the 2-twist, a horizontal smoothing would instantly transform
the diagram into an unknot (or unlink) diagram. If the Complicator chose to smooth
vertically in the 2-twist, the Simplifier would have chosen the other 2-twist crossing to be
a −1 crossing, which would produce an unlink. □

The only remaining type of pretzel link to consider is that with all odd twists. Below
we show the result for when the Simplifier moves first, as well as a partial result in the
case where the Complicator moves first.

Theorem 5.10 (OOO, Simplifier moves first.) Suppose the KnotLink Game is played
on a (p, q, r) pretzel link shadow where p, q, and r are odd. If the Simplifier moves first,
then the Simplifier has a winning strategy.

Proof. The Simplifier can begin with a horizontal smoothing move in any twist. This
leaves an even number of wasted moves in that twist and two odd twists in place. This
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is a 2-component (2,m)-torus link shadow, with m even. Since there are an even number
of wasted moves, the Simplifier can force the Complicator to move first in the two odd
twists.

The Complicator is already quite constrained at this point. If the Complicator only
uses resolves in the twist crossings, the Simplifier will always reply with a resolve of
opposite sign in one of the twists that creates an RII move. This will leave the unlink at
the end of the game, and the Simplifier will win. Thus, we know the Complicator must
try a smoothing move at some point to have a chance at winning. But smoothing in
either direction on a wasted crossing would not affect the game outcome, and a horizontal
smoothing move in either of the other two twists would also grant the Simplifier a win
since this would transform the diagram immediately into a twisted-up unknot.

So, we know that the Complicator must use a vertical smoothing move at some point
in the game to have any hope of winning against the Simplifier’s strategy. But if the
Complicator uses a vertical smoothing, this will shift the underlying diagram from a
(2,m)-torus link pseudodiagram where m is even to a (2, n)-torus knot pseudodiagram
where n is odd. Furthermore, we know that when the Complicator makes this smoothing
move, the Simplifier’s strategy has thus far ensured a global writhe of the resolved, non-
wasted crossings equal to zero. The Simplifier must move next with a resolve somewhere,
which will change the writhe of resolved, non-wasted crossings to ±1. The Complicator
can resolve in a twist using the same sign to push the writhe to ±2, but the Simplifier
will return the writhe back to ±1 with each reply. This pattern will repeat until the
Simplifier’s last move, where the Simplifier can ensure the final diagram has a writhe of
±1. A (2, n)-torus knot with writhe ±1 is the unknot, and so the Simplifier wins. □

While we have a nice result if the Simplifier moves first on a pretzel link with all odd
twists, the situation when the Complicator moves first is murky. The following partial
result in this case can be obtained as a corollary of Theorem 3.5 in [1].

Corollary 5.11 Suppose the KnotLink Game is played on a (1, 1, r) pretzel link shadow,
with r odd. Then the Simplifier has a winning strategy regardless of who plays first.

Proof. A pretzel link of the form (1, 1, r) is equivalent to a rational link of the form
(2, r) (following the conventions of [1]). Since this case (where r is odd) is a KnotLink
Game played on a rational link shadow with one odd and one even twist, Theorem 3.5 in
[1] guarantees the Simplifier has a winning strategy regardless of who plays first. □

6 Conclusion

We conclude our investigation by collecting the game outcomes from our work and the
work of our predecessors in [1].

Do you notice something interesting? There are knot or link diagrams for all outcome
classes except for the outcome class where the Complicator wins playing either first or
second. This leads to a question we’re interested in knowing the answer to:
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C moves first, C wins C moves first, S wins

E Whitehead
S moves first, C wins EEE pretzel

EE rational [1]
(2, p)-torus link [1]

S moves first, S wins O Whitehead OE rational [1]
EEO pretzel EO rational [1]

OO rational [1]

Table 2: Game outcomes summary from this paper and previous research.

Q: Is there a knot or link shadow for which the Complicator has a winning
strategy regardless of whether they move first or second?

As you, dear reader, explore the KnotLink Game on diagrams that have not yet been
studied you might consider this question. Good luck, and have fun playing!
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