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Abstract - Sachs and Conway-Gordon used linking number and a beautiful counting
argument to prove that every graph in the Petersen family is intrinsically linked (have a
pair of disjoint cycles that form a nonsplit link in every spatial embedding) and thus each
family member has no flat spatial embedding (an embedding for which every cycle bounds a
disk with interior disjoint from the graph). We give an alternate proof that every Petersen
family graph has no flat embedding by applying Böhme’s Lemma and the Jordan-Brouwer
Separation Theorem.
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1 Introduction

Sachs [6], [7] and Conway-Gordon [3] (for K6, the complete graph on 6 vertices) proved,
using the linking number and a beautiful counting argument, that every graph in the
Petersen family is intrinsically linked (that is, has a pair of disjoint cycles that form a
nonsplit link in every spatial embedding). As a consequence of being intrinsically linked,
every graph in the Petersen family has no flat embedding. A flat spatial embedding is
one in which every cycle bounds a disk with interior disjoint from the graph. When such
a disk is attached to a cycle, we say that cycle has been paneled.

We have devised a new family of proofs that every Petersen family graph has no flat
embedding, without using intrinsic linking. We sketch our methods here. They were
inspired by the proofs that K5 and K3,3 (the complete bipartite graph with two partitions
each of size 3) are nonplanar using the Jordan Curve Theorem (see, for example, [4]
Theorem 64.2 and Theorem 64.4).

Given a graph G with a flat embedding, consider a set of cycles in G such that,
pair-wise, intersections are either connected or empty. We call such a set of cycles a
Böhme system. Böhme’s Lemma [2] concludes that for a Böhme system of cycles in a flat
embedding of G, it is possible to panel the cycles in the system simultaneously–that is,
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each cycle bounds a disk with interior disjoint from the graph and from all other disks. The
Jordan-Brouwer Separation Theorem then allows us to conclude that any sphere resulting
from paneling a Böhme system (which we will call a Böhme sphere) will separate space
into an inside (bounded) and an outside (unbounded) component. Since we work in the
PL category, by Alexander’s result [1], the inside component is a topological ball.

For the sake of contradiction, we suppose a Petersen family graph has a flat embedding
and then find an appropriate Böhme system. We then argue that some resulting Böhme
sphere must be intersected by an edge of the embedded graph, which contradicts flatness.
In this way, we prove that each Petersen family graph cannot have a flat embedding. In
the next section, we provide further details for each graph in the Petersen Family.

We conclude this introductory section with some terminology and background. We
work in the PL category throughout.

Suppose a graph G has a three cycle with vertices a, b, c. To perform a ∆ -Y exchange
on the three-cycle in G, an extra vertex y is added, edges ab, bc, and ca are removed, and
the edges ay, by, and cy are added to transform G into G′. If a graph H has a degree
three vertex, y, to perform a Y-∆ exchange on H at y, we begin with the Y subgraph,
having vertices a, b, c, y and edges ay, by, and cy. We remove the y vertex and all edges
incident to y and then add edges ab, bc, and ca to make a triangle and transform H to
the graph H ′.

The Petersen family of graphs consists of K6 and K3,3,1 and the graphs obtained from
K6 and K3,3,1 by ∆−Y exchanges (equivalently, from K6 by ∆−Y and Y −∆ exchanges).
We will denote the remaining graphs in this family, with subscripts indicating the number
of vertices, as P7, P8, P9, P10 (which is the classic Petersen graph) andK4,4−e. Robertson,
Seymour and Thomas proved Sachs’ conjecture that the Petersen family of graphs form
the complete minor-minimal set of graphs that are intrinsically linked. They further
showed that a graph has a flat embedding if and only if it has a linkless embedding [5].

2 Proofs

In this section, we go through details of the proof for each graph in the Petersen family.

2.1 K6

An induced subgraph of a graph G is another graph, formed from a subset of the vertices
of G and all of the edges of G connecting pairs of vertices in that subset.

Denote the vertices of K6 as {a, b, c, d, e, f}. By way of contradiction suppose that
G = K6 has a flat embedding. Consider the induced subgraphs, H1 = G[{b, c, e, f}], H2 =
G[{a, b, e, f}], and H3 = G[{b, d, e, f}], where G[{a, b, c, d}] is the subgraph of K6 induced
by the vertices a, b, c, d. Notice the cycle (b, e, f) ∈ Hi for i = 1, 2, 3, see Figure 1.

Let Si denote the collection of induced cycles in the induced subgraph Hi:

S1 = {(b, e, f), (b, c, e), (c, e, f), (b, c, f)} ⊆ H1

S2 = {(b, e, f), (a, b, e), (a, e, f), (a, b, f)} ⊆ H2

S3 = {(b, e, f), (b, d, e), (d, e, f), (b, d, f)} ⊆ H3
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Let S = ∪3
i=1Si.

Take a flat embedding of K6. As all the cycles of S have connected pairwise intersec-
tions, we can apply Böhme’s Lemma to get simultaneous paneling disks of the ten 3-cycles
that make up S. As we panel each Si, we form a sphere Ti, then by Jordan-Brouwer The-
orem applied to, say, T1, there are inside and outside components, B1 and B′

1 respectively,
with B1 ∪ B′

1 = R3 − T1, and, say, B1 a ball (which follows from Alexander’s result [1]
in the PL category). Without loss of generality as the edge ad is disjoint from T1, we
may assume that ad ⊂ B1. As ad ⊂ B1 and a ∈ T2, d ∈ T3 then T2, T3 ⊂ B1 ∪ T1. This
means that T2 and T3 are in the closure of B1. Now similarly observe there exists, via
Jordan-Brouwer, an inside and outside region for T2. Without loss of generality suppose
that T3 is in the closure of the inner region (ball) of T2. As d ̸∈ T2 and d ∈ T3, d is in
the inner ball of T2. As T2 is inside the closure of B1 and c ∈ T1, c is outside T2. As edge
cd exists and as c and d are on opposite sides of T2, edge cd must intersect a disk of T2.
This brings us a contradiction. Thus K6 has no flat embedding.

Figure 1: A spatial embedding of the subgraph of K6 formed by H.

The remaining cases
For all remaining Petersen family graphs except P10 and K4,4−e, similarly to the proof for
K6, we consider a flat embedding, and a cycle C with vertex set V (C), together with three
vertices disjoint from V (C); v1, v2 and v3, such that each G[V (C)∪ {vi}] forms a Böhme
system. After paneling each Böhme system, the result is three spheres that intersect only
along C and the disk that panels C. In each case, two vertices are on opposite sides of a
resulting Böhme sphere. In each case, the two vertices are connected either by an edge,
or path consisting of two edges that is disjoint from G[V (C)∪{vi}] for the appropriate i,
and the result is a contradiction of flatness. More details follow.
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2.2 P7

Denote the six vertices of K6 by {a, b, c, 1, 2, 3}, and suppose that a ∆ − Y exchange
took place between 1, 2, and 3, with new vertex y. By way of contradiction, suppose that
G = P7 has a flat embedding. Consider the induced subgraphs:

H1 = G[{a, b, c, 1}]
H2 = G[{a, b, c, 2}]
H3 = G[{a, b, c, 3}]

Note that each Hi contains the cycle (a, b, c). One can check that the induced cycles
in H1 ∪ H2 ∪ H3 = K3,1,1,1 form a Böhme system. Take a flat embedding of P7. The
simultaneous paneling of the Böhme system turns each Hi into a Böhme sphere. Note
that since the Hi share exactly one cycle, for a paneled flat embedding, the determined
Böhme spheres bound balls (let Bi be the ball associated to Hi). We can conclude that
each pair of balls is comparable, set-wise. In particular, once one Böhme sphere (and
associated ball) is in place, the next has to go all to one side or the other, by flatness, the
definition of Böhme system, and the Jordan-Brouwer Theorem. Without loss of generality,
we may assume B1 ⊆ B2 ⊆ B3. Then the path consisting of two edges connecting 1 and
3 through y must intersect a panel of H2, a contradiction of flatness. This is analogous to
the argument for K6, except the vertices {1, 2, 3} are connected by a Y subgraph instead
of a triangle.

Figure 2: A spatial embedding of P7.

2.3 K4,4 − e

Denote the vertices of G = K4,4 − e as V1 = {a, b, c, d} and V2 = {1, 2, 3, 4} where all
possible edges from V1 to V2 are present, except e = 4a
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Figure 3: A spatial embedding of K4,4 − e. Possibly the edge a3 intersects a panel.

Assume by way of contradiction that K4,4 − e has a flat embedding.
Consider the set of cycles of the induced subgraphs Hi listed below, together with

their cycles, where i ∈ {1, 2, 3}.

H1 = G[b, c, d, 1, 4]
H2 = G[b, c, d, 3, 4]
H3 = G[b, c, d, 3, 4]

Each has corresponding induced cycles: S1 = {(1, b, 4, c), (1, c, 4, d), (1, b, 4, d)} ⊆ H1

S2 = {(2, b, 4, c), (2, c, 4, d), (2, b, 4, d)} ⊆ H2

S3 = {(3, b, 4, c), (3, c, 4, d), (3, b, 4, d)} ⊆ H2

Notice that S1 ∪ S2 ∪ S3, satisfies the hypotheses of Böhme’s Lemma with edges forming
K4,3. By Böhme’s lemma, we can simultaneously panel each of these cycles. Note that
all paneled cycles pass through the vertex 4. By abuse of notation, denote the sphere
resulting from paneling Si also as Si, where i ∈ {1, 2, 3}. Note that each Hi contains the
Y on vertices 4, b, c, d, as well as the vertex i. From here, the proof follows similarly to the
argument used for P7 (K6), with the base cycle (triangle) C replaced with the Y , where
for i ̸= j, Si ∩ Sj is precisely the Y .

2.4 K3,3,1

Label the vertices of G = K3,3,1 as in Figure 4. Assume by way of contradiction that
K3,3,1 has a flat embedding. Consider the collection of induced subgraphs:

H1 = G[a, c, 1, 2, 3]
H2 = G[a, b, c, 2, 3]
H3 == G[a, c, v, 2, 3]
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Figure 4: A spatial embedding of K3,3,1.

Each has corresponding induced cycles:

S1 = {(a, 2, c, 3), (a, 1, c, 2), (a, 1, c, 3)} ⊆ H1

S2 = {(a, 2, c, 3), (3, b, 2, c), (3, b, 2, a)} ⊆ H2

S3 = {(a, 2, c, 3), (c, 2, v), (c, v, 3), (3, v, a), (a, v, 2)} ⊆ H3

Notice that S1 ∪ S2 ∪ S3 satisfies Böhme’s lemma, and after paneling each, Si forms
a Böhme sphere. These Böhme spheres share precisely the same base cycle (a, 2, c, 3)
with the corresponding paneling disk. From here, the argument follows similarly to the
argument for K6.

2.5 P8

Denote the vertices of P8 by {v, a, b, c, 1, 2, 3, y}, where {v}, {a, b, c}, and {1, 2, 3} are the
partitions in K3,3,1, and triangle (v, a, 1) was exchanged to a Y subgraph, with resulting
new Y (degree 3) vertex y in the resulting P8.

By way of contradiction, suppose that G = P8 has a flat embedding. Consider the
induced subgraphs:

H1 = G[v, a, b, 1, 2, y]

H2 = G[a, b, c, 1, 2, y]

H3 = G[a, b, 1, 2, 3, y]

and their respective Böhme spheres formed by paneling their induced cycles, which is
possible by Böhme’s Lemma:
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Figure 5: A spatial embedding of P8.

S1 = {(a, y, 1, b, 2), (v, 2, a, y), (v, y, 1, b), (v, b, 2)}
S2 = {(a, y, 1, b, 2), (a, y, 1, c, 2), (b, 1, c, 2)}
S3 = {(a, y, 1, b, 2), (a, y, 1, b, 3), (a, 2, b, 3)}

Note that each Si contains the cycle (a, y, 1, b, 2). From here, the argument follows anal-
ogously to the argument for K6.

2.6 P9

Let P9 be labelled as in Figure 6.

Figure 6: A spatial embedding of P9.
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Assume by way of contradiction that G = P9 is has a flat embedding. Consider a flat
embedding, and consider the sets of induced subgraphs:

H1 = G[1, 2, 3, 4, 5, 6, 7]
H2 = G[1, 2, 3, 4, 5, 6, 8]
H3 = G[1, 2, 3, 4, 5, 6, 9]

Each induced subgraphs contains the following induced cycles:

S1 = {(1, 2, 3, 4, 5, 6), (6, 7, 3, 4, 5), (6, 7, 3, 2, 1)} ⊆ H1

S2 = {(1, 2, 3, 4, 5, 6), (2, 8, 5, 4, 3), (2, 8, 5, 6, 1)} ⊆ H2

S3 = {(1, 2, 3, 4, 5, 6), (1, 9, 4, 3, 2), (1, 9, 4, 5, 6)} ⊆ H3

Note that each Hi contains the cycle C = (1, 2, 3, 4, 5, 6) and notice that by Böhme’s
lemma each of the cycles in S1∪S2∪S3 can be simultaneously paneled so each Si determines
a sphere for i = 1, 2, 3 with, for i ̸= j, the sphere determined by Si intersecting the sphere
determined by Sj only along C and its corresponding paneling disk. From here, the proof
follows analogously to the proof for K6.

2.7 P10

Figure 7: A spatial embedding of the Petersen graph.

Suppose by way of contradiction that G = P10 has a flat embedding. Consider the
induced subgraphs formed by each set of vertices below, where labels are from Figure 7.

H1 = G[{1, 2, 3, 4, 5, 6, 9}]
H2 = G[{1, 2, 3, 4, 5, 7, 10}]
H3 = G[{1, 2, 3, 4, 5, 6, 8}]
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Consider a flat embedding of P10. Then by Böhme’s lemma, each 5-cycle and 6-cycle in
H1, H2, and H3 can simultaneously bound disks to form three spheres, corresponding to
each Hi. Note that the cycle C = (1, 2, 3, 4, 5) is in each Hi.

By the Jordan-Brouwer Theorem, since vertex 7 is connected to vertex 10 by an edge,
they must both be outside or both be inside of the sphere formed by H1. Without loss
of generality, assume both vertices are outside. Then the sphere created by H2 is in the
closure of the region outside of the sphere created by H1. Since vertex 8 is connected to
both 6 and 10 by an edge, vertex 8 must be between the sphere created by H2 and the
sphere created by H1. Thus the sphere formed by H3 is sandwiched between the sphere
created by H2 and the sphere created by H1 (that is, it lies in the closure of the outer
region formed by H2 and in the closure of the inner region formed by H1). But now since
7 is connected to 9 by an edge, and 7 is in H2 and 9 is in H1, the sphere formed by H3

intersects the edge connecting 7 to 9. Hence a paneled disk must have been punctured
by edge 79, contradicting flatness. In Figure 7, the paneled cycle (2, 3, 4, 10, 8) from H3

would be punctured. Therefore P10 has no flat embedding.
We note that the P10 case was similar to the earlier cases, except we needed a shared

cycle C and 5 additional vertices, and H1 and H3 shared the vertex 6, in addition to the
cycle C. The spheres they formed shared the base cycle (and disk) as well as the edge
5, 6. Instead of having a triangle or Y connecting the extra vertices, here we have edges
8, 10 and 7, 9. Since 6 lies in both H1 and H3 but not in H2; H1 and H3 must be on the
same side of H2. Even with a swap of positions of H1 and H3 from our original proof, the
edge 8, 10 would have intersected the Böhme sphere formed by H1.

We could have alternatively done a ∆− Y exchange on P9, on triangle (7, 8, 9), to get
P10 with the same Böhme system we used on P9 and the proof details analogous to those
used on P9.

3 Concluding Note

As the proofs we presented were inspired by proofs of nonplanarity, we wonder if there
are other analogs of nonplanarity that can be brought to light via Böhme’s lemma.
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