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Abstract - Clumsy packing is considered an inefficient packing, meaning we find the
minimum number of objects we can pack into a space so that we can not pack any more
object. Thus, we are effectively spacing the objects as far apart as possible so that we cannot
fit another object. In this paper, we consider the clumsy packing of polyominoes in a finite
space, which must consider boundary conditions. We examine rectangle, L, T , and plus
polyominoes of various sizes.
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1 Introduction

In 1971, Sands [4] proposed the following problem: Given an n ×m checkerboard, what
is the minimum number of dominoes we can place on the board, assuming each domino
covers exactly two adjacent squares, so that no additional domino can fit? In other words,
what is the maximum number of 1× 1 ‘holes’ that can be created? Sands showed that if
nm is a multiple of 3, then the maximum number of holes is nm

3
. In 1988, Gyárfás, Lehel,

and Tuza [3] called this type of packing a clumsy packing which requires the density of
packed polyominoes to be as small as possible relative to the size of the board. They
were able to generate results for general board sizes with dominoes, which are 1 × 2
rectangular polyominoes. Goddard [1] considered a clumsy packing density for hooks (3
squares in the shape of an L), m ×m squares, and 1 ×m longs on infinite board. More
recently, Walzer ([5], [6]) considered other clumsy packings of the infinite plane for more
complicated polyominoes.

In this paper, we consider the clumsy packing of polyominoes in a finite board. The
introduction of boundary conditions leads to additional restrictions for clumsily packing
polyominoes. However, as the size of the board increases, the impact of the boundary
decreases. As an initial first step to understanding boundary conditions, we will consider
n×n boards for polyominoes which are made of n squares. Thus the board size is relative
to the size of the polyomino. We hope this will evolve into understanding boundary
conditions on any finite n×m board, but generalized boards are beyond the scope of this
paper.

∗This material is based upon work supported by the National Science Foundation under Grant DMS-
1852378.
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2 Background and Definitions

We will assume throughout that a, b, and n are positive integers. We will pack our
polyominoes on a square grid of size n× n where n is the size of the polyomino. We will
adapt more of our notation and definitions from Chapter 14 of [2], however, to help with
notation and terminology, we will make the following definitions.

2.1 The Board

The board will be a square n × n grid where we place our polyominoes. Therefore, an
8× 8 board can be visualized as a checkerboard. A 1× 1 closed square on our grid whose
sides are parallel to the coordinate axes and corners are at integer coordinates will be
called a cell and we will denote the cell in column i and row j by Ci,j. For 1 ≤ i, j ≤ n
define Xi = {Ci,j : 1 ≤ j ≤ n} and Yj = {Ci,j : 1 ≤ i ≤ n}. We will refer to Xi as column
i and Yj as row j. We will use the convention that X1 is the left column, Xn is the right
column, Y1 is the top row, and Yn is the bottom row. Thus, cell C1,1 is the cell in the first
column and first row which would be the upper left cell of the grid. The square n×n grid
will be called the board, B, so that B = {Ci,j : 1 ≤ i ≤ n and 1 ≤ j ≤ n where i, j ∈ Z}.

2.2 General Polyominoes

We will assume throughout that a, b, c, and d are all integers. A polyomino, P , is a finite
set of cells. The number of cells in a polyomino will be the size of the polyomino and
will be denoted |P|. Note that two polyominoes are considered disjoint if they do not
have any cells in common, but visually they may share edges or corners. Polyominoes will
be located on the board based on an anchor which will be a specific cell that uniquely
determines the location of the polyomino on the board. Informally, for example, for an L
polyomino (Definition 3.7) we will define the anchor as the cell located on the intersection
of the horizontal and vertical legs.

For integers c and d a shift of a polyomino P by (c, d) is a polyomino P1 so that
P1 = {Cx+c,y+d : Cx,y ∈ P}. Thus P1 is a shift of P c units horizontally and d units
vertically. We will use the notation P1 = P + (c, d) to represent a shift by (c, d).

For certain polyominoes, we will consider a clockwise rotation of our polyomino by an
integer multiple of 90◦. For any integer m, if P is a polyomino, then PRm is a rotation of
P by (m·90)◦ clockwise. This idea will become more formal for each individual polyomino.
Note that a rotation or shift may produce a polyomino which is no longer on the board.

In this paper, we will not consider reflections of polyominoes that could be of particular
importance for L polyominoes. We will be working with two different types of packing,
free and fixed. For fixed packing, we will not be allowed to rotate the polyomino, we will
only be allowed to shift the polyomino. In free packing, we will be allowed to rotate and
shift the polyomino.

We will call two polyominoes P1 and P2 fixed equivalent if there is an integer pair
(c, d) so that P2 = P1 + (c, d). We will denote fixed equivalent polyominoes by P1 ≈ P2.
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For free equivalent polyominoes, we are allowed to rotate and shift the polyominoes.
We will call two polyominoes P1 and P2 free equivalent if there is a nonnegative integer m
and a pair of integers (c, d) such that P2 = P1R

m + (c, d). We will denote free equivalent
polyominoes by P1 ∼ P2.

Our objective is to pack as few copies of our polyomino on the board so that we can
not include another polyomino. To do so, we need to define how polyominoes fit onto a
board and what makes a valid arrangement.

Given a board B and a set of polyominoes P = {P1, . . . ,Pk}, we say P is a valid
arrangement if

⋃k
i=1Pi ⊆ B and if Pi ∩ Pj = ∅ for all 1 ≤ i < j ≤ k. Otherwise, we

call P an invalid arrangement. Therefore a valid arrangment simply means the set of
polyominoes is pairwise disjoint and fits onto the board.

A set of polyominoes composed of polyominoes which are free equivalent polyominoes
to P will be called a free polyomino set of P. A free polyomino set of P , denoted P,
is a free packing of P on a board B if P is a valid arrangement such that for any free
equivalent polyomino P∗ ∼ P we have that P∗ ∪ P is an invalid arrangement. Thus, we
can think of a free packing as a maximal set of P . So for a set of polyominoes to be a
free packing, they must be a valid packing and they must be maximal in the sense that
no additional polyomino can be placed onto the board without overlapping an already
placed polyomino. The number of polyominoes in the set is the free packing number of
the set which will be denoted by pnfree(P). Finally, the clumsy free packing number of
P , denoted cpfree (P) is the minimum free packing number over all free polyomino sets
of P on a board B. In essence, the clumsy free packing number is the minimum of the
maximals. Any set of polyominoes that attain this minimum will be called a clumsy free
packing.

We can easily extend the previous definitions to fixed packings. This includes fixed
polyomino set, fixed packing, fixed packing number, clumsy fixed packing number, and
clumsy fixed packing.

Unless otherwise specified, we will always consider packings (free or fixed) of a poly-
omino P on an n× n board B where n = |P|. The generalization of these results for any
finite board size would be an ideal expansion of these results by first considering square
boards and then generalizing to any n×m board. However, this generalization is beyond
the scope of this paper.

3 Results

This section will consist of subsections for rectangular polyominoes, L polyominoes, T
polyominoes, and plus polyominoes. In each section, we define the polyomino and consider
fixed and free packings.

3.1 Rectangular Polyominoes

Rectangular polyominoes are a popular polyomino to study because of their simplicity.
The classic domino is a 2 × 1 rectangular polyomino. Although they may seem simple,
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there are not many results known for clumsy packing of rectangular polyominoes. In fact,
in 1995 Goddard [1] conjectured that the clumsy packing ratio for a 1×m polyomino on
an infinite board is 2m/(m2 + 1) for any m ≥ 3 but were only able to show that the ratio
is at least 2/m + 1. Even for m = 3 the result is unknown.

Definition 3.1 The rectangular polyomino, Ra,b, is the polyomino consisting of all cells
Ci,j where 1 ≤ i ≤ a and 1 ≤ j ≤ b. Thus, Ra,b, is a rectangular polyomino of size ab.

To know the location of a rectangular polyomino, we need to define the anchor.

Definition 3.2 Given a rectangular polyomino, Ra,b, with a, b > 1, we define anchor of
the polyomino as the cell Cba

2
c,b b

2
c.

Note that if a = b = 1 then R1,1 is just an individual cell, which is a trivial case since
cpfix (R1,1) = cpfree (R1,1) = 1.

Straight polyominoes are a special case of rectangular polyominoes. We will use
straight vertical and straight horizontal polyominoes for our clumsy free packing.

Definition 3.3 For n > 1, the straight vertical polyomino, SVn, is the rectangular poly-
omino R1,n. We will define the anchor as C1,bn

2
c.

Definition 3.4 For n > 1, the straight horizontal polyomino, SHn, is the rectangular
polyomino Rn,1. We will define the anchor as Cbn

2
c,1

The following theorem shows clumsy packing number for fixed and free straight poly-
ominoes. The proof is very straightforward and is therefore omitted.

Theorem 3.5 For any n ≥ 1,

cpfree (SVn) = cpfree (SHn) = cpfix (SVn) = cpfix (SHn) = n.

The following theorem finds the clumsy fixed packing number for rectangular poly-
ominoes of size at least 2× 2.

Theorem 3.6 For any rectangular polyomino, Ra,b with a, b ≥ 2, the clumsy fixed packing
is cpfix (Ra,b) =

⌈
ab−a+1
2a−1

⌉ ⌈
ab−b+1
2b−1

⌉
.

Proof. Note that n = ab. In order to find the clumsy fixed packing number for
rectangular polyominoes, we will first show that there exists a fixed packing of a set of
Ra,b, P, so that pnfixed(P) =

⌈
ab−a+1
2a−1

⌉ ⌈
ab−b+1
2b−1

⌉
.

Consider tiling the board by having b − 1 empty rows, Y1 through Yb−1 and a − 1
empty columns, X1 through Xa−1. Then place Ra,b polyominoes at centers Cx,y where

x = min{a − 1 + (k − 1)(2a − 1) +
⌊
a
2

⌋
, ab −

⌈
a
2

⌉
} for 1 ≤ k ≤

⌈
ab−(a−1)

2a−1

⌉
and y =

min{b− 1 + (l − 1)(2b− 1) +
⌊
b
2

⌋
, ab−

⌈
b
2

⌉
} for 1 ≤ l ≤

⌈
ab−(b−1)

2b−1

⌉
. See Figure 1.

the pump journal of undergraduate research 7 (2024), 51–68 54



Figure 1: This figure depicts a general example of a clumsy fixed packing of some Ra,b.
The shaded areas are the polyominoes. The hatched region represents the area that may
or may not include an additional row or column of polyominoes.

The number of polyominoes placed along a non-empty row will be
⌈
ab−(a−1)

2a−1

⌉
. The

number of polyominoes placed along a non-empty column will be
⌈
ab−(b−1)

2b−1

⌉
. So the total

number of polyominoes in this particular tiling will be
⌈
ab−a+1
2a−1

⌉ ⌈
ab−b+1
2b−1

⌉
. Therefore

cpfix (Ra,b) ≤ pnfixed(P) =

⌈
ab− a + 1

2a− 1

⌉⌈
ab− b + 1

2b− 1

⌉
.

Now we will show that this is also a lower bound for cpfix (Ra,b) and we will do this
based on the parity of a and b.

Even/Odd Case: Assume we have a clumsy fixed packing of Ra,b, where a, b ≥ 2
and a = 2k and b = 2l + 1 for non-negative integers k and l.

It is easy to see that there must be an anchor in the top 3l + 1 rows and the bottom
3l + 1 rows and every 4l + 1 rows in between. Similarly, there must also be an anchor in
the left 3k− 1 column, the right 3k columns, and every 4k− 1 columns in between. Note
that every region of 4l + 1 rows and 4k − 1 columns must contain an anchor. Otherwise,
in any region of such size without an anchor, we can fit an additional polyomino fixed
equivalent to Ra,b. This is demonstrated in Figure 2 across the top edge of the board.

Therefore, there are 2+
⌊
ab−2(3l+1)

4l+1

⌋
= 2+

⌊
ab−(3b−1)

2b−1

⌋
pairwise disjoint sets of rows, each of
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Figure 2: Even/Odd Case: This shows that a (4k− 1)× (3l+ 1) rectangular region along
the top of the board must contain an anchor which are represented by the black cells. If
not, there is a (2k)× (2l + 1) region which can contain another polyomino.

which must contain an anchor in each of the 2 +
⌊
ab−(3k−1+3k)

4k−1

⌋
= 2 +

⌊
ab−(3a−1)

2a−1

⌋
pairwise

disjoint sets of columns. This leaves us with a total of
⌊
2 + ab−(3b−1)

2b−1

⌋ ⌊
2 + ab−(3a−1)

2a−1

⌋
disjoint regions on the board, each of which must contain an anchor.

(Note that if ab−2(3l+1)
4l+1

< 0, then the top 3l + 1 rows and the bottom 3l + 1 rows
are not disjoint, so we can place an anchor that will be in the top 3l + 1 rows and the
bottom 3l + 1 rows. Also, notice that since a ≥ 2 we know ab ≥ 2l + 1 which implies
ab−2(3l+1)

4l+1
≥ −1. Similarly for columns.)

This shows that for the even/odd case we have

cpfix (Ra,b) ≥
⌊

2 +
ab− (3b− 1)

2b− 1

⌋⌊
2 +

ab− (3a− 1)

2a− 1

⌋
.

Even/Even Case: Assume a, b ≥ 2 and a = 2k and b = 2l. Following a similar logic
as above, we can see that there must be an anchor in the top 3l − 1 rows, bottom 3l
rows, and every 4l − 1 rows in between. There must also be an anchor in the left 3k − 1
columns, the right 3k columns, and every 4k − 1 columns in between. Note that every
region of 4k − 1 columns and 4l − 1 rows must contain an anchor.

Therefore, there are 2 +
⌊
ab−(3l−1)−3l

4l−1

⌋
= 2 +

⌊
ab−(3b−1)

2b−1

⌋
pairwise disjoint sets of rows,

each of which must contain an anchor in each of the 2 +
⌊
ab−3k−(3k−1)

4k−1

⌋
= 2 +

⌊
ab−(3a−1)

2a−1

⌋
pairwise disjoint sets of columns. This leaves a total of

⌊
2 + ab−(3b−1)

2b−1

⌋ ⌊
2 + ab−(3a−1)

2a−1

⌋
disjoint regions on the board, each of which must contain an anchor. Notice that this is
the same as in the even/odd case.

Odd/Odd Case: Assume a, b ≥ 2 and a = 2k+ 1 and b = 2l+ 1. Following a similar
logic as above, we can see that there must be an anchor in the top 3l + 1 rows, bottom
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3l + 1 rows, and every 4l + 1 rows in between. There must also be an anchor in the left
3k + 1 columns, the right 3k + 1 columns, and every 4k + 1 columns in between. Note
that every region of 4k + 1 columns and 4l + 1 rows must contain an anchor.

Therefore, there are 2+
⌊
ab−(3l+1)−(3l+1)

4l+1

⌋
= 2+

⌊
ab−(3b−1)

2b−1

⌋
pairwise disjoint sets of rows,

each of which must contain an anchor in each of the 2+
⌊
ab−(3k+1)−(3k+1)

4k+1

⌋
= 2+

⌊
ab−(3a−1)

2a−1

⌋
pairwise disjoint sets of columns. This leaves a total of

⌊
2 + ab−(3b−1)

2b−1

⌋ ⌊
2 + ab−(3a−1)

2a−1

⌋
disjoint regions on the board, each of which must contain an anchor. Notice this is the
same as in the previous two cases.

Since all three cases give the same inequality, we will now proceed independently of
the parity of a and b.

Now we need to show the equality of our upper and lower bounds on the clumsy fixed
packing number.

To accomplish this, we call upon a well-known equality for floor and ceiling functions:⌈
T

B

⌉
=

⌊
T + B − 1

B

⌋
.

From this we can easily show that⌈
T

B

⌉
=

⌊
T − 1−B

B

⌋
+ 2.

With this we are able to see

⌈
ab− a + 1

2a− 1

⌉
=

⌊
(ab− a + 1)− 1− (2a− 1)

2a− 1

⌋
+ 2

=

⌊
ab− (3a− 1)

2a− 1

⌋
+ 2

and similarly ⌈
ab− b + 1

2b− 1

⌉
=

⌊
ab− (3b− 1)

2b− 1

⌋
+ 2.

Thus we are able to justify that

cpfix (Ra,b) ≥
⌈
ab− a + 1

2a− 1

⌉⌈
ab− b + 1

2b− 1

⌉
.

�
Clumsy free packing for general rectangular polyominoes turned out to be more dif-

ficult due to the edge effects. For example, a packing of R3,6 using no rotations shows
cpfree (R3,6) ≤ cpfix (R3,6) ≤ 8 and we think these are equality. However, a similar pack-
ing shows cpfree (R3,9) ≤ cpfix (R3,9) ≤ 10 but we have constructed a different packing so
that cpfree (R3,9) ≤ 9 which keeps 7× 8 rectangular regions empty in the four corners.
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3.2 L Polyominoes

As noted in the introduction, previous work has been completed for hooks which is a
special case of an L polyomino.

Definition 3.7 An L polyomino, La,b, is a polyomino where 0 < a ≤ b such that La,b =
{Ci,1 : 1 ≤ i ≤ a+ 1}∪{C1,j : 1 < j ≤ b+ 1}. We will define the anchor of the polyomino
to be the cell C1,1. Notice that |La,b| = a + b + 1.

Thus, L polyominoes have legs of length a + 1 and b + 1 and have size a + b + 1.
We will define LRa,b, LR

2
a,b, and LR3

a,b to be a 90◦, 180◦, and 270◦ clockwise rotation
of La,b respectively. So we have:

• LRa,b = {Ci,1 : 1 ≤ i ≤ b + 1} ∪ {Cb+1,j : 1 ≤ j ≤ a + 1} which will have anchor at
cell Cb+1,1,

• LR2
a,b = {Ci,b+1 : 1 ≤ i ≤ a + 1} ∪ {Ca+1,j : 1 ≤ j ≤ b + 1} which will have anchor

at cell Ca+1,b+1, and

• LR3
a,b = {Ci,a+1 : 1 ≤ i ≤ b + 1} ∪ {C1,j : 1 ≤ j ≤ a + 1} which will have anchor at

cell C1,a+1.

An example of an L polyomino rotated is provided in Figure 3.

Figure 3: This figure demonstrates L1,2, LR1,2, LR
2
1,2, and LR3

1,2. The shaded cell is the
anchor.

For simplicity, we will use La,b, LRa,b, etc. to describe the size and orientation of the
polyomino and use the anchor to describe its location, which is just a shift of La,b, LRa,b,
etc.

The packing of L polyominoes may seem straight forward, but there are some intrica-
cies that we must consider. The case where a = b is a special case, as seen in Theorem
3.8 for clumsy fixed packing and Theorem 3.10 for clumsy free packing.

Theorem 3.8 For an L polyomino, La,a, cpfix (La,a) = 1.

Proof. Place the L polyomino so that the anchor is in the cell Ca+1,1 as seen in Figure
4. Notice that if we want to include another L polyomino, we must have the anchor in

the pump journal of undergraduate research 7 (2024), 51–68 58



Figure 4: This figures shows the size of the empty regions after placing the anchor of La,a

in Ca+1,1.

the first a rows and a columns. However, we must have at least a + 1 consecutive empty
horizontal cells which does not happen in the first a rows.

�
Notice that cpfix (La,b) could be small, as in the case where a = b. However when a

and b are dramatically different, for example a = 1 and b � a, then every set of three
adjacent columns must contain an anchor. So our clumsy fixed packing number is at least
b b
3
c.
Now, we turn our attention to free packing. We provide bounds for La,b as well as

show that cpfree (La,a) = 2.

Lemma 3.9 For an L polyomino, La,b, cp
free (La,b) ≥ 2.

Proof. Notice a single L-polyomino cannot intersect the first and last columns. Similarly,
an L-polyomino cannot intersect the top and bottom rows. Therefore, if we put L-
polyominoes with anchors in the corners of the board, we cannot intersect more than
three of these with any one polyomino and the result follows.

�

Theorem 3.10 For an L polyomino, La,a, cpfree (La,a) = 2.

Proof. By Lemma 3.9, cpfree (La,a) ≥ 2. Consider placing an L polyomino La,a, call
it L1, with an anchor in the cell Ca+1,a+1. Place another L polyomino La,a, call it L2,
with anchor at cell Ca,1. Notice that to the left of L1 and L2 there are at most a empty
columns, which is not enough for another L polyomino. Similarly, notice to the right of
L1 and L2, there are two regions and each has at most a consecutive rows which is not
enough for another L polyomino. As seen in Figure 5.

�
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Figure 5: Free packing showing cpfree (La,a) = 2.

For a general L polyomino, there exists a free packing of five L polyominoes, however
this may not be a clumsy packing.

Theorem 3.11 For an L polyomino, La,b, 2 ≤ cpfree (La,b) ≤ 5.

Proof. By Lemma 3.9, 2 ≤ cpfree (La,b). A valid arrangement of five L polyominoes can
always be constructed in the manner shown in Figure 6, where the four L polyominoes on
the left are embedded into a square of side length b + 2. Thus, there cannot be another
L polyomino in the center of these four L polyominoes. The bottom a− 1 rows and right
a − 1 columns will be empty. However, placing an LR2

a,b with anchor in Ca+b+1,b+3 will

create free packing since a ≤ b. Therefore, 2 ≤ cpfree (La,b) ≤ 5.
�

We know that the clumsy free packing number is often less than the upper bound. For
example, consider a = 3, b = 6 and n = 10. We can place three copies L3,6 with anchor at
C2,1, C3,4, and C7,4 (see Figure 7) This creates a free packing of L3,6 whose packing number
is 3. We can also find a free packing of L2,7 whose packing number is 4 (see Figure 8). We
conjecture that these are the clumsy free packing numbers for L3,6 and L2,7 respectively.

Corollary 3.12 For an L polyomino, L1,b, 2 ≤ cpfree (L1,b) ≤ 4.

Proof. Note that if a = b = 1 then cpfree (L1,1) = 2 via Theorem 3.10. Given 1 6= b,
a free packing of four L polyominoes can always be constructed in the manner shown in
Figure 9, which has at most b consecutive empty horizontal cells and b consecutive vertical
empty cells. Therefore, 2 ≤ cpfree (L1,b) ≤ 4.

�
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Figure 6: General pattern to show cpfree (La,b) ≤ 5.

Figure 7: Shows cpfree (L3,6) ≤ 3.

3.3 T Polyominoes

A T polyomino is a natural extension of the L polyomino.

Definition 3.13 A T polyomino, Ta,b, is a polyomino such that Ta,b = {Ci,1 : 1 ≤ i ≤
2a + 1} ∪ {Ca+1,j : 2 ≤ j ≤ b + 1}. Notice that |Ta,b| = 2a + b + 1. We define the anchor
of the polyomino as the cell Ca+1,1.

We will define TRa,b, TR
2
a,b, and TR3

a,b as a clockwise rotation of 90◦, 180◦, and 270◦

respectively. So we have:

• TRa,b = {Cb+1,i : 1 ≤ i ≤ 2a + 1 and (j, a + 1) : 1 ≤ j ≤ b} which will have anchor
at cell Cb+1,a+1,
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Figure 8: Shows cpfree (L2,7) ≤ 4.

Figure 9: Shows cpfree (L1,b) ≤ 4.

• TR2
a,b = {Ci,b+1 : 1 ≤ i ≤ 2a + 1 and (a + 1, j) : 1 ≤ j ≤ b} which will have anchor

at cell Ca+1,b+1, and

• TR3
a,b = {C1,i : 1 ≤ i ≤ 2a + 1 and (j, a + 1) : 2 ≤ j ≤ b + 1} that will have an

anchor in cell C1,a+1.

As before, we will use Ta,b, TRa,b, etc. to describe the size and orientation of the polyomino
and use the anchor to describe its location, which is just a shift of Ta,b, TRa,b, etc.

To proceed, we consider two cases for fixed T polyominoes. The first case, b ≤ 2a,
implies that the T polyomino is as wide or wider than it is tall. The second case, b > 2a
implies that the T polyomino is taller than it is wide.
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Theorem 3.14 For a T polyomino, Ta,b, if b ≤ 2a then

cpfix (Ta,b) =

⌈
2a + 1

2b + 1

⌉
.

Proof. Place T polyominoes, Ta,b, with anchors Cb b2c+a+1,y, where y = b + 1 (mod 2b +

1). In addition, if n mod (2b + 1) ≥ b + 1, add another T polyomino with center
Cb b2c+a+1,n−(b+1). Note that this will put T polyominoes, centered horizontally, so that

the centers have exactly 2b rows between them, with the exception being at the bottom
of the board where the centers may have less than 2b rows between them. If there are
at least 2b+ 1 rows below the bottommost anchor, then we include another T polyomino
with anchor Cb b2c+a+1,n−(b+1). See Figure 10.

Figure 10: Pattern for cpfix (Ta,b) when b ≤ 2a.

Therefore, the number of polyominoes that we now have in our arrangement is
⌈

n−b
2b+1

⌉
=⌈

2a+1
2b+1

⌉
. This shows

cpfix (Ta,b) ≤
⌈

2a + 1

2b + 1

⌉
.

To show that this is optimal, notice that we must have an anchor in the top b + 1
rows, Otherwise we can include another T polyomino with an anchor in the top row.
Next, notice that, for every 2b + 1 rows thereafter, we must have an anchor. If not, we
will have at least b+ 1 consecutive empty rows. Therefore, the number of T polyominoes
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must be at least

cpfix (Ta,b) ≥
⌊
n− (b + 1)

2b + 1

⌋
+ 1

=

⌈
n− b

2b + 1

⌉
.

The last equality follows since if x and y are positive integers then
⌊
x
y

⌋
=
⌈
x−y+1

y

⌉
. �

Theorem 3.15 For a fixed T polyomino, Ta,b, if b > 2a, then

cpfix (Ta,b) =

⌈
b + 1

2a + 1

⌉
.

Proof. The proof here is similar to the proof of Theorem 3.14 above, but consider
anchors in columns rather than rows. �

For free T polyominoes, we can find an exact value when a = b and the bounds for
Ta,b.

Theorem 3.16 For a free T polyomino, Ta,b, if a = b, then

cpfree (Ta,a) = 2.

Proof. Assume a = b. Consider placing a T polyomino with anchor Ca+1,a+1 and another
TR polyomino with anchor C2a+2,2a+1. See Figure 11

Notice that this creates three pairwise disjoint regions which cannot contain another
T polyomino. Therefore cpfree (Ta,a) ≤ 2.

Assume by way of contradiction that cpfree (Ta,a) = 1. Note that X1 or Xn must
be empty if cpfree (Ta,a) = 1. Assume, without loss of generality, a single T polyomino,
unrotated, is placed on the board so that Xn is empty. If our single T polyomino does not
intersect Yn, then we can place another TR2 polyomino with anchor Cn,2a+1. If our single
T polyomino does intersect Xn, then we can place another T polyomino with anchor
C1,a+1 since there are 2a consecutive empty rows above T . Therefore cpfree (Ta,a) ≥ 2
which completes the proof. �

Theorem 3.17 For a free T polyomino, Ta,b, 2 ≤ cpfree (Ta,b) ≤ 4.

Proof. Assume by way of contradiction that cpfree (Ta,b) = 1. Since Xn or X1 (the left
or right column) must be empty, we will assume without loss of generality a single T
polyomino, unrotated, is placed on the board with anchor Cx,y, so that Xn is empty.

If Yn (the bottom row) is empty, then we can place a TR2 polyomino on the board with
anchor Cx+1,n. Therefore, the T polyomino must intersect Yn and therefore the anchor
must be in row y = 2a + 1. Since Xn is empty, we can place a polyomino TR with an
anchor Cn,a+1. This implies cpfree (Ta,b) ≥ 2.
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Figure 11: Shows cpfree (Ta,a) = 2.

Let c = min{a, b}. Consider placing the following four T polyominoes on the board:
Ta,b with anchor Ca+1,c, TRa,b with anchor Cn−c+1,a+1, TR

2
a,b with anchor Cn−a,n−c+1, and

TR3
a,b with anchor Cc,n−a.
Case 1: Assume a < b. Note that T and TR will always be adjacent. This is

because T would occupy cells {Cx,y : 1 ≤ x ≤ 2a + 1, y = a} and TR would occupy cells
{Cx,y : a + 2 ≤ x ≤ n− a, y = a + 1}. This implies that the four polyominoes will create
five disjoint empty regions, four along the outside of the board and one on the interior of
the board. The empty interior region will be a square with side length b−1, and therefore
we cannot fit another T polyomino in the region. Each empty region on the outside of the
board will be subsets of a a× n rectangle and therefore cannot fit another T polyomino.
Thus, we have a clumsy packing with four T polyominoes. See Figure 12.

Figure 12: Pattern for cpfree (Ta,b) when a < b.
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Case 2: Assume b ≤ a. Note that T and TR will always be adjacent. This is
because T would occupy cells {Cx,y : 1 ≤ x ≤ 2a + 1, y = b} and TR would occupy cells
{Cx,y : x = n− c + 1 = 2a + 2, 1 ≤ y ≤ 2a + 1}. This implies that the four poloyominoes
will create five disjoint empty regions, four along the outside of the board and one on the
interior of the board. The empty interior region will be a subset of a square with side
length n− 2b = 2a + 1− b ≤ 2a and therefore we can not fit another T polyomino in the
region. Each empty region on the outside of the board will be subsets of a (b−1)×2a+ 1
rectangle and therefore cannot fit another T polyomino. Thus, we have a clumsy packing
with four T polyominoes. See Figure 13.

Figure 13: Pattern for cpfree (Ta,b) when b ≤ a.

�
Note that these are not always optimal packings. For example, Theorem 3.16 shows

that cpfree (Ta,a) = 2. Also, consider a = 4 and b = 3. This can be packed using only
three T4,3 polyominoes, specifically two T4,3 polyominoes with centers C5,4 and C5,9 as well
as TR4,3 with center C10,8. See Figure 14 for more details.

3.4 Plus Polyominoes

Our last polyomino is a plus polyomino.

Definition 3.18 A plus polyomino, Pa, is a polyomino such that Pa = {Ci,a+1 : 1 ≤ i ≤
2a + 1} ∪ {Ca+1,j : 1 ≤ j ≤ 2a + 1}. The |Pa| = 4a + 1. We will define the anchor of the
polyomino to be the cell Ca+1,a+1.

A plus polyomino when rotated by an integer multiple of 90 deg remains the same
polyomino. Thus, a free, and fixed, polyominoes are indistinguishable. Therefore, we will
use cp (Pa) to denote the clumsy packing number, since cpfix (Pa) = cpfree (Pa)

Theorem 3.19 For a plus polyomino, Pa, cp(Pa) = 1.
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Figure 14: Shows cpfree (T4,3) ≤ 3.

Proof. Let Pa denote a plus polyomino. Note that no polyomino can have an anchor in
the left a columns, right a columns, top a rows, or bottom a rows. Place the polyomino Pa

on the board with anchor at cell C2a+1,2a+1 and call this polyomino P . To place another
plus polyomino anchor at the board we must have at least 2a+ 1 consecutive empty cells
in a single column. This only happens in the left a columns and the right a columns that
cannot contain an anchor. Therefore cp (Pa) = 1.

�
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[3] A. Gyárfás, J. Lehel, Z. Tuza, Clumsy packing of dominoes, Discrete Math., 71 (1988), 33–46.

[4] B. Sands, The Gunport Problem, Math. Mag., 44 (1971), 193–196.

[5] S. Walzer, Clumsy packings in the grid, Karlsruhe Institute of Technology, Institute for Algebra and
Geometry Institute of Theoretical Informatics, Bachelor’s Thesis, 2012.

[6] S. Walzer, M. Axenovich, T. Ueckerdt, Packing polyominoes clumsily, Computational Geometry, 47
(2014), 52–60.

Emma Miller
Moravian University
1200 Main Street
Bethlehem, PA 18018
E-mail: miller08@moravian.edu

the pump journal of undergraduate research 7 (2024), 51–68 67



Mitchel O’Connor
Whitman College
345 Boyer Ave
Walla Walla, WA 99362
E-mail: oconnoml@whitman.edu

Nathan Shank
Moravian University
1200 Main Street
Bethlehem, PA 18018
E-mail: shankn@moravian.edu

Received: January 31, 2023 Accepted: December 20, 2023
Communicated by Steven J. Miller

the pump journal of undergraduate research 7 (2024), 51–68 68


	Introduction
	Background and Definitions
	The Board
	General Polyominoes

	Results
	Rectangular Polyominoes
	L Polyominoes
	T Polyominoes
	Plus Polyominoes


