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Abstract - A prime labeling of a graph of order n is an assignment of the integers 1, 2, . . . , n
to the vertices such that each pair of adjacent vertices has coprime labels. For positive
integers m, k, q with k ≥ 3 and 1 ≤ q ≤ bk/2c, the uniform cycle snake graph Cm

k,q is
constructed by taking a path withm edges and replacing each edge by a k-cycle by identifying
two vertices at distance q in the cycle with the vertices of the original path edge. We
construct prime labelings for Cm

k,q for many pairs (k, q) and, in each case, all m. These
include: all cases with k ≤ 9 or k = 11; all cases with q = 2 when k ≡ 3 (mod 4); all cases
with q = 3 when k has the form 2a − 1, 3a + 1 or 3b + 3 for all a and all odd b; all cases
with q = 4 when k is even; and all cases with q = k/2 when q is a prime congruent to 1
(mod 3).
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1 Introduction

Let G be a graph of order n. A prime labeling of G is an assignment of the inte-
gers {1, 2, . . . , n} to the vertices of G such that the labels of u and v are coprime whenever
there is an edge between u and v. If a graph has a prime labeling, it is prime.

Prime graphs have been extensively studied. An introduction to the topic may be
found in [3, Chapter 4]. It is conjectured that all trees and unicyclic graphs are prime,
and this is known to hold for paths, stars, spiders, trees of order at most 50 and trees
and unicyclic graphs of sufficiently large order. Other graphs known to be prime include
cycles, fans, wheels of even order, books, complete bipartite graphs K2,n for all n and
K3,n when n 6∈ {3, 7}, and grids Pm × Pn when m is prime and 1 ≤ n ≤ p2. See Gallian’s
comprehensive dynamic survey [5] for definitions, references and further results.

The purpose of this paper is to add to the collection of graphs known to be prime. We
study the primality of “snake graphs,” particularly “uniform cycle snake graphs,” natural
families of graphs that we define below. This work combines and generalizes several results
from the existing literature, providing a more unified way of finding prime labelings for
these types of graph and signifcantly expanding the roster of graphs for which a prime
labeling is known to exist.

Let Pm+1 be the path of length m with m + 1 vertices p1, p2, . . . , pm+1 in sequence.
Let G = (G1, G2, . . . , Gm) be a sequence of graphs and let u = (u1, u2, . . . , um) and
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Figure 1: A prime labeling of C4
5,2.
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v = (v1, v2, . . . , vm) each be sequences of vertices, with ui, vi ∈ V (Gi). Then the Gu,v-
snake is the graph defined by replacing the edge (pi, pi+1) in Pm+1 by the graph Gi, with
ui identified with pi and vi identified with pi+1. We call these vertices fusion points.

If G1
∼= · · · ∼= Gm

∼= G, each of u1, u2, . . . , um correspond to the same vertex u of G
and each of v1, v2, . . . vm correspond to the same vertex v of G, then call the corresponding
Gu,v-snake uniform. That is, a uniform snake is one in which we replace each edge of the
path with the same graph in the same way. If the graph used in a uniform snake is a
cycle, then it is a uniform cycle snake. As in [1], we denote by Cm

k,q the uniform cycle
snake with m cycles, each of size k, and with q edges in a path between consecutive fusion
points. We may always take q ≤ bk/2c and we shall usually do so; however, sometimes
it is convenient to describe a general construction in such a way that q > bk/2c for some
instances.

A prime labeling of C4
5,2, the uniform cycle snake with four 5-cycles joined at distance 2,

is given in Figure 1. Note that many pairs of adjacent labels are consecutive. Two
consecutive numbers are necessarily coprime and our constructions take advantage of this
by using consecutive labels on adjacent vertices as often as possible.

Theorem 1.1 collects what is known about primality of uniform cycle snakes.

Theorem 1.1 Let m ≥ 1, k ≥ 3 and 1 ≤ q ≤ bk/2c. If k < 5, let p = 1; otherwise let p
be the smallest prime factor of k− 2 when k is odd and the smallest prime factor of k− 3
when k is even. The uniform cycle snake Cm

k,q is prime in the following cases:

• m ≤ 2, [6, reported in [5]; see also [7]],

• q = 1 [8, reported in [5]; see also [2]],

• q = 2, k is odd and m ≤ p [1],

• q = 3, k ≡ 4 (mod 6) and m < p/2 [1],
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Table 1: Existence of prime labelings for uniform cycle snakes with small cycles. An entry
in row q and column k indicates that Cm

k,q is prime for all m, where the entry indicates
the theorem number in the present paper that proves this and/or a reference to a proof
elsewhere.

q\k 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

2 [4] 2.1 4.1 3.3 6.2 6.1 4.2 3.3 · 3.4 · 3.3 · · 4.2 3.3
3 [4], 5.2 3.1 5.1 5.1 4.4 5.1 5.2 3.1 · · · 5.1 · 3.1
4 [4], 4.3 5.1 4.3 5.1 4.3 3.1 4.3 · 4.3 · 4.3 ·
5 · [1], 6.4 · · · · [1] · · ·
6 · 3.1 · · · · · ·
7 6.3 3.5 · · · 3.1
8 4.1 · 4.3 3.1
9 · 3.1

• q = 5 and k ≡ 1 (mod 5) [1],

• q = k/2 and k = 6 or k − 1 is a Mersenne prime [4].

In this paper we extend this result considerably. All of our results are for arbitrary m.
Some families we show to be prime are the uniform cycle snakes Cm

k,q in the following
cases:

• q = 2 when k ≡ 3 (mod 4) (see Theorem 3.3),

• q = 2 when k has the form 2a + 2 or ta + tb + 1 for a, b ≥ 1 and t odd (see
Theorems 3.4, 4.2),

• q = 3 when k has the form 2t−1, 3a+1 or 3a+3 for a ≥ 1 (see Theorems 3.2, 4.4, 5.2),

• q = 4 when k is even (see Theorem 4.3),

• q = (k − 1)/2 when q is prime and q + 1 has exactly one odd prime factor (see
Theorems 2.1 and 6.4),

• q = k/2 when q is prime and q ≡ 1 (mod 3) (see Theorem 6.3).

There are many further constructions that are less general, are less concise to state, or are
focused on specific small cases. Table 1 shows what is covered for k ≤ 19 and 2 ≤ q ≤ 9,
including where to find the construction in the paper. Note that this includes prime
labelings for Cm

k,q for all q and m when k ≤ 9 or k = 11.
In the next section we give some efficient notation for labelings of cycle snakes and

introduce some tools that are used throughout the paper. The constructions add labels
one cycle at a time in a repeating pattern. The bulk of the paper, Sections 3–6, gives
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Figure 2: A non-prime non-uniform cycle snake.

these constructions and their corresponding results in increasing order of the period of
the repeating pattern.

Given the success finding prime labelings for uniform cycle snakes, we propose the
following conjecture.

Conjecture 1.2 For all m ≥ 1, k ≥ 3 and q with 1 ≤ q ≤ bk/2c, the uniform cycle
snake Cm

k,q is prime.

A natural more general conjecture that all cycle snakes, regardless of uniformity, are
prime is not true. To see this, consider the cycle snake with cycles of sizes 3, 4 and 3
respectively shown in Figure 2. There are 8 vertices, 4 of which must have even labels. No
pair of even labels may be adjacent in a prime labeling and it is easy to check that there
are no four mutually non-adjacent vertices in the graph (that is, there is no “independent
set” of size 4).

2 Notation and Tools

Describe a labeled snake by writing the labels for each cycle in turn by listing them in
the order they appear starting from adjacent to the fusion point to the previous cycle,
and separate the cycles with vertical lines. Mark the label on the fusion point to the next
cycle with a circumflex.

For example, here’s the labeling of C4
5,2 from Figure 1 in this new notation:

[1, 2, 3, 4, 5̂ | 6, 7̂, 8, 9 | 10, 1̂1, 12, 13 | 14, 17, 16, 15]

To check for the primality of a labeling in this notation, we need to compare the end
vertices of the first cycle list, compare all adjacencies within the list for each cycle, and
compare each label with a circumflex to the end vertices of the subsequent cycle list.
When checking for coprimality a frequently useful fact is that gcd(x, y) = gcd(x, y − x).

The following result, for one of the smallest open cases, illustrates several of the
methods we use through the course of the paper.
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Theorem 2.1 Every uniform cycle snake of the form Cm
5,2 is prime.

Proof. We add the labels one cycle at a time, and the pattern repeats every three cycles.
Initialize the process by labeling the first cycle | 1, 2, 3, 4, 5̂ |, where 5 is the vertex to be
used as the fusion point.

Suppose we have a prime labeling on a graph with 12x + 5 vertices. We may fuse a
5-cycle to the vertex labeled 12x+ 5 in such a way that a new vertex at distance 2 from
the fusion point has label 12x+ 7 using the pattern

| 12x+ 6, ̂12x+ 7, 12x+ 8, 12x+ 9 | .

All internal neighbors are consecutive. Where the cycle attaches to the previous one, we
have neighbors 12x+ 6, also consecutive, and 12x+ 9. We have gcd(12x+ 5, 12x+ 9) =
gcd(12x+ 5, 4) = 1.

Now suppose we have a prime labeling on a graph with 12x+ 9 vertices. We may fuse
a 5-cycle to the vertex labeled 12x+ 7 in such a way that a new vertex at distance 2 from
the fusion point has label 12x+ 11 using the pattern

| 12x+ 10, ̂12x+ 11, 12x+ 12, 12x+ 13 | .

All internal neighbors are consecutive. Where the cycle attaches to the previous one, we
have neighbors 12x+10 and 12x+13. We have gcd(12x+7, 12x+10) = gcd(12x+7, 3) = 1
and gcd(12x+ 7, 12x+ 13) = gcd(12x+ 7, 6) = 1.

Lastly, suppose we have a prime labeling on a graph with 12x+ 13 vertices. We may
fuse a 5-cycle to the vertex labeled 12x+ 11 in such a way that a new vertex at distance 2
from the fusion point has label 12x+ 17 using the pattern

| 12x+ 14, ̂12x+ 17, 12x+ 16, 12x+ 15 | .

There is one pair of non-consecutive internal vertices: 12x + 14 and 12x + 17. We have
gcd(12x+ 14, 12x+ 17) = gcd(12x+ 14, 3) = 1. Where the cycle attaches to the previous
one, we have neighbors 12x + 14 and 12x + 15. We have gcd(12x + 11, 12x + 14) =
gcd(12x+ 11, 3) = 1 and gcd(12x+ 11, 12x+ 15) = gcd(12x+ 11, 4) = 1.

To complete the proof, note that after the third pattern we have 12x+17 = 12(x+1)+5
vertices and may return to the first pattern. �

In this proof we wrote all labels in the form 12x + y. This allowed us to easily see
that the pattern repeated after three steps and, more importantly, let us ensure that the
non-consecutive adjacent labels used were indeed coprime.

In general, we shall use the number of new vertices added by the repeating pattern to
play the role of 12 and denote this by α. For any positive integer a, let ϑ(a) be the set
of prime divisors of a. We formalize how to quickly perform the coprimality checks we
require in the following lemma.

Lemma 2.2 Let α, y, z be positive integers with y < z. If

ϑ(z − y) ⊆ ϑ(α) and gcd(y, z) = 1

then gcd(αx+ y, αx+ z) = 1 for all x ≥ 0.
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Proof. Suppose p is prime and p | gcd(αx + y, αx + z). Since gcd(αx + y, αx + z) =
gcd(αx+ y, z − y) we have p | z − y. Therefore, p | α, as ϑ(z − y) ⊆ ϑ(α), and so p | αx.
As we also know that p | αx + y it must be that p | y; similarly p | z. This contradicts
that gcd(y, z) = 1, hence gcd(αx+ y, αx+ z) = 1. �

In light of this lemma, we can be more effficient in our proofs. Rather than displaying
each label as αx + y we shall just write y and obtain the true labeling by adding αx to
each element. This reduces the display of the three cycles of the proof of Theorem 2.1 to

| 6, 7̂, 8, 9 | 10, 1̂1, 12, 13 | 14, 1̂7, 16, 15 | .

As ϑ(12) = {2, 3}, the task of checking the necessary coprimalities reduces to ensuring
that when we have a pair of non-consective adjacent labels the labels are coprime and
their difference has no prime factors other than 2 or 3. The pairs to check here are

(5, 9), (7, 10), (7, 13), (14, 17), (11, 14), (11, 15),

where the (5, 9) comes from the assumption about how the first cycle is attached.
A graph with n vertices is r-coprime if it can be labeled with n consecutive integers

{r, r + 1, . . . , r + n − 1} in such a way that every pair of adjacent vertices has coprime
labels. Hence 1-coprimality is exactly the same as primality.

The following straightforward result is useful for some of our constructions.

Lemma 2.3 If a graph is 2-coprime then it is prime.

Proof. Let G be a 2-coprime graph with n vertices. Take a 2-coprime labeling of G
and replace the label n + 1 with 1. The labeling now uses the integers {1, 2 . . . , n}. All
adjacent pairs of vertices are coprime as either they are adjacent in the 2-coprime labeling
or one of them is 1, which is coprime with all other labels. �

3 Constructions with Period 1

We start with constructions with period 1; that is, those that use a single pattern repeated
on every cycle. In the notation of the last section, this means that when considering Cm

k,q

we use α = k − 1.
Theorem 3.1 covers eight specific (k, q) pairs (for all m in each case, meaning each

gives an infinite family of prime graphs) and then Theorems 3.2–3.5 give some infinite
families of (k, q) pairs (again for all m in each case).

Theorem 3.1 The uniform cycle snakes Cm
7,3, C

m
13,3, C

m
13,4, C

m
13,6, C

m
19,3, C

m
19,7, C

m
19,8 and

Cm
19,9 are prime for all m.

Proof. Consider Cm
7,3. Label the first cycle with 1, . . . , 7 in consecutive order and take

the vertex labeled 5 to be the fusion point. Let α = 6 and consider the pattern

| 8, 9, 10, 1̂1, 12, 13 | .
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All internal neighbors are adjacent and so coprime. The pairs to check where this joins the
previous pattern are (5, 8) and (5, 13). These are coprime pairs and their differences are 3
and 8, each of whose prime factors are all in ϑ(α) = {2, 3}. Hence by taking translates of
this pattern by 6x for x ≥ 0 we obtain a prime labeling for Cm

7,3.
Consider Cm

13,3. Label the first cycle with 1, . . . , 13 in consecutive order and take the
vertex labeled 13 to be the fusion point. Let α = 12 and consider the pattern

| 22, 21, 2̂5, 24, 23, 20, 19, 18, 17, 16, 15, 14 | .

The internal non-consecutive neighbors are (21, 25) and (20, 23) and the pair to check
where this joins the previous pattern is (13, 22) (and there is also the consecutive pair
(13, 14)). These are coprime pairs and their differences are 4, 3 and 9, each of whose prime
factors are in ϑ(α) = {2, 3}. Hence by taking translates of this pattern by 12x for x ≥ 0
we obtain a prime labeling for Cm

13,3.
Consider Cm

13,4. Label the first cycle with 1, . . . , 13 in consecutive order and take the
vertex labeled 13 to be the fusion point. Let α = 12 and consider the pattern

| 22, 23, 24, 2̂5, 21, 20, 19, 18, 17, 16, 15, 14 | .

The internal non-consecutive neighbors are (25, 21) and the pair to check where this joins
the previous pattern is (13, 22) (and there is also the consecutive pair (13, 14)). These
are coprime pairs and their differences are 4 and 9, each of whose prime factors are
in ϑ(α) = {2, 3}. Hence by taking translates of this pattern by 12x for x ≥ 0 we obtain
a prime labeling for Cm

13,4.
Consider Cm

13,6. Label the first cycle with 1, . . . , 13 in consecutive order and take the
vertex labeled 13 to be the fusion point. Let α = 12 and consider the pattern

| 16, 15, 14, 23, 24, 2̂5, 22, 21, 20, 19, 18, 17 | .

The internal non-consecutive neighbors are (14, 23) and (22, 25) and the pairs to check
where this joins the previous pattern are (13, 16) and (13, 17). These are coprime pairs
and their differences are 9, 3, 3 and 4, each of whose prime factors are in ϑ(α) = {2, 3}.
Hence by taking translates of this pattern by 12x for x ≥ 0 we obtain a prime labeling
for Cm

13,6.
Consider Cm

19,3. Label the first cycle with 1, . . . , 19 in consecutive order and take the
vertex labeled 19 to be the fusion point. Let α = 18 and consider the pattern

| 20, 21, 3̂7, 36, 35, 34, 33, 32, 31, 30, 29, 28, 27, 26, 25, 24, 23, 22 | .

The internal non-consecutive neighbors are (21, 37) and the pair to check where this joins
the previous pattern is (19, 22) (and there is also the consecutive pair (19, 20)). These
are coprime pairs and their differences are 16 and 3, each of whose prime factors are
in ϑ(α) = {2, 3}. Hence by taking translates of this pattern by 18x for x ≥ 0 we obtain
a prime labeling for Cm

19,3.
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Consider Cm
19,7. Label the first cycle with 1, . . . , 19 in consecutive order and take the

vertex labeled 19 to be the fusion point. Let α = 18 and consider the pattern

| 23, 24, 25, 26, 27, 28, 3̂7, 36, 35, 34, 33, 32, 29, 30, 31, 22, 21, 20 | .

The internal non-consecutive neighbors are (28, 37), (32, 29) and (31, 22) and the pair to
check where this joins the previous pattern is (19, 23) (and there is also the consecutive
pair (19, 20)). These are coprime pairs and their differences are 9, 3, 9 and 4, each of
whose prime factors are in ϑ(α) = {2, 3}. Hence by taking translates of this pattern
by 18x for x ≥ 0 we obtain a prime labeling for Cm

19,7.
Consider Cm

19,8. Label the first cycle with 1, . . . , 19 in consecutive order and take the
vertex labeled 19 to be the fusion point. Let α = 18 and consider the pattern

| 22, 23, 24, 25, 26, 27, 28, 3̂7, 36, 35, 34, 33, 32, 31, 30, 29, 20, 21 | .

The internal non-consecutive neighbors are (20, 29) and (28, 37) and the pairs where this
joins the previous pattern are (19, 21) and (19, 22). These are coprime pairs and their
differences are 9, 9, 2 and 3, each of whose prime factors are in ϑ(α) = {2, 3}. Hence by
taking translates of this pattern by 18x for x ≥ 0 we obtain a prime labeling for Cm

19,8.
Consider Cm

19,9. Label the first cycle with 1, . . . , 19 in consecutive order and take the
vertex labeled 19 to be the fusion point. Let α = 18 and consider the pattern

| 23, 24, 25, 26, 27, 28, 3̂7, 36, 35, 34, 33, 32, 29, 30, 31, 22, 21, 20 | .

The internal non-consecutive neighbors are (28, 37), (32, 29) and (31, 22) and the pair to
check where this joins the previous pattern is (19, 23) (and there is also the consecutive
pair (19, 20)). These are coprime pairs and their differences are 9, 3, 9 and 4, each of
whose prime factors are in ϑ(α) = {2, 3}. Hence by taking translates of this pattern
by 18x for x ≥ 0 we obtain a prime labeling for Cm

19,7. �
In the proof of Theorem 3.1, the simplest pattern is perhaps that used for Cm

7,3, which
takes the next α = 6 labels and uses them consecutively in the new cycle. Theorem 3.2
gives infinitely many pairs (k, q) for which this approach works.

Theorem 3.2 Let t ≥ 3 be odd. Every uniform cycle snake of the form Cm
2t−1,3 is prime.

Proof. Let α = 2t − 2. Consider the pattern

| 2t+1 − 3, 2t+1 − 4, ̂2t+1 − 5, 2t+1 − 6, . . . , 2t | .

After adding αx for some x, we shall attach this to the vertex labeled αx + 2t − 3 from
the previous cycle.

There are no non-consecutive internal adjacent pairs. From fusion point of the previous
cycle we get the pair (2t−3, 2t) and the pair (2t−3, 2t+1−3). Considering the first pair, they
are clearly coprime, as 2t − 3 is odd, and their difference is 3. As t is odd, 3 | 2t − 2 = α.
Considering the second pair, we have gcd(2t − 3, 2t+1 − 3) = gcd(2t − 3, 2t) = 1. The
difference of 2t has ϑ(2t) = {2} and 2 ∈ ϑ(α) as α is even.
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Take the first cycle to be | 1, 2, . . . , 2̂t − 3, 2t − 2, 2t − 1 | to obtain a prime labeling
for Cm

2t−1,3. �
For example, to construct a prime labeling for Cm

31,3 using the proof of Theorem 3.2,
take t = 5 and the labeling begins

[ 1, 2, . . . , 2̂9, 30, 31 | 61, 60, 5̂9, 58, . . . , 32 | 91, 90, 8̂9, 88, . . . , 62 | · · · ].

The next two results again use a long stretch of consecutive elements in the pattern,
but remove one of them (leaving two consecutive odd numbers) to use on the short path
between fusion points.

Theorem 3.3 The uniform cycle snakes Cm
4t+3,2 are prime for all m and t.

Proof. Let α = 4t+ 2. Consider the pattern

| 2t+ 2, 4̂t+ 3, 4t+ 2, 4t+ 1, . . . , 2t+ 3, 2t+ 1, 2t . . . , 2 | .

After adding αx for some x, we shall attach this to the vertex labeled αx + 1 from the
previous cycle (and note that we use 4t + 3 = α · 1 + 1 to connect to the next cycle, so
the pattern repeats successfully).

The non-consecutive internal adjacent pairs are (2t+ 2, 4t+ 3) and (2t+ 3, 2t+ 1). We
have gcd(2t+2, 4t+3) = gcd(2t+2, 2t+1) = 1 and gcd(2t+3, 2t+1) = gcd(2, 2t+1) = 1.
Further, the former has difference 2t+ 1 and the latter has difference 2 and ϑ(2t+ 1) and
ϑ(2) are contained in ϑ(α) as 2t+ 1 and 2 both divide α.

Adjacent to the fusion point of the previous cycle we get the consecutive pair (1, 2)
and the pair (1, 2t+2). The latter is clearly coprime and the difference 2t+1 is acceptable
as shown in the previous paragraph.

Consider the first “cycle” to be the single vertex labeled 1, and we may use the pattern
from there. Hence Cm

4t+3,2 is prime. �
For example, when t = 3 we get a prime labeling for Cm

15,2. Here are the first three
cycles:

[ 8, 1̂5, 14, 13, . . . , 9, 7, 6, . . . 2, 1 | 22, 2̂9, 28, . . . , 23, 21, 20, . . . , 16 |

36, 4̂3, 42, . . . , 37, 35, 34, . . . , 30 | · · · ].

Theorem 3.4 Let t be odd and take a, b ≥ 1. The uniform cycle snakes Cm
k,2 are prime

for k = ta + tb + 1 and all m.

Proof. Let α = ta + tb. Consider the following pattern, which is very similar to that of
the proof of Theorem 3.3:

| ta + 1, ̂ta + tb + 1, ta + tb, . . . , ta + 2, ta, . . . , 2 | .

After adding αx for some x, we shall attach this to the vertex labeled αx + 1 from the
previous cycle.
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The non-consecutive internal adjacent pairs are (ta + 1, ta + tb + 1) and (ta + 2, ta).
Consider the former first. We have gcd(ta + 1, ta + tb + 1) = gcd(ta + 1, tb), which is 1 as
any prime p that divides tb must also divide t and ta + 1 ≡ 1 (mod p). Also, any prime
that divides the difference tb divides ta + tb = α. The latter two are coprime, as they are
consecutive odd numbers, and have difference 2, which divides α.

Adjacent to the fusion point of the previous cycle we get the consecutive pair (1, 2)
and the pair (1, ta + 1). The latter is clearly coprime and the difference ta is acceptable
for the same reasons that tb is.

Consider the first “cycle” to be the single vertex labeled 1, and we may use the pattern
from there. Hence Cm

ta+tb+1,2
is prime. �

The smallest case that falls to Theorem 3.4 but not Theorem 3.3 is Cm
13,2, using 13 =

3 + 32 + 1. In this case the labeling starts

[ 4, 1̂3, 12, . . . , 5, 3, 2, 1 | 16, 2̂5, 24, . . . , 17, 15, 14 | 28, 3̂7, 36, . . . , 29, 27, 26 | · · · ].

Other relatively small values of k with k ≡ 1 (mod 4) for which Theorem 3.4 is successful
include 7 + 72 + 1 = 57, 3 + 34 + 1 = 85 and 11 + 112 + 1 = 133.

The last result for this section uses the labeling method of [1], called a “cyclic labeling”
there, and we see that it applies to many cases not covered in that paper. It generalizes
the pattern used for Cm

19,3 in Theorem 3.1.

Theorem 3.5 Let t be odd and a such that t | 2a − 1. The uniform cycle snakes Cm
2a+t,t

are prime for all m. In particular, Cm
2a+1−1,2a−1 is prime for all a and m.

Proof. Let α = 2a + t− 1. Consider the pattern

| 2, 3, . . . , t, 2̂a + t, 2a + t− 1, . . . , t+ 1 | .

After adding αx for some x, we shall attach this to the vertex labeled αx + 1 from
the previous cycle. There is one pair of non-adjacent vertices within the cycle: (2a + t, t).
The difference is 2a and 2 ∈ ϑ(α) as α is even. We have gcd(2a + t, t) = 1.

Adjacent to the fusion point of the previous cycle we get the consecutive pair (1, 2)
and the pair (1, t + 1). The latter is clearly coprime and the difference t divides 2a − 1
and hence also divides α = 2a + t− 1. So Cm

2a+t,t is prime for all m.
To see the last part of the statement, set t = 2a − 1. �
Some smaller examples covered by Theorem 3.5 are Cm

15,7, C
m
21,5, C

m
31,15, C

m
63,31 C

m
71,7 and

Cm
73,9.

4 Constructions with Period 2

The constructions for Cm
k,q of the previous section all had k odd. In this section we

see our first constructions for even k. We start with a result for Cm
6,2 and Cm

16,8. These
constructions are generalized in two different ways in Theorem 4.2, which gives more
constructions with k even and q = 2, and Theorem 4.3, which gives more constructions
with q a power of 2. Finally in this section, Theorem 4.4 shows that Cm

ta+1,t is prime
when a ≥ 2 and t is odd.
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Theorem 4.1 The uniform cycle snakes Cm
6,2 and Cm

16,8 are prime for all m.

Proof. Consider Cm
6,2. We construct a 2-coprime labeling and apply Lemma 2.3. Let α =

10. Consider the pair of patterns

| 8, 9̂, 10, 11, 12 | 13, 1̂7, 16, 15, 14 | .

After adding αx to each element we attach the first to a vertex labeled αx + 7. The
adjacent label pairs at fusion points and non-consecutive pairs within a cycle are

(7, 8), (7, 12), (9, 13), (9, 14), (13, 17).

Each pair is coprime; the differences are 1, 5, 4, 5 and 4 respectively and the prime factors
of each are in ϑ(10) = {2, 5}.

We may attach the above patterns to the first cycle | 2, 3, 4, 5, 6, 7̂ | to see that Cm
6,2 is

2-coprime and hence prime.
Consider Cm

16,8. We construct a 2-coprime labeling and apply Lemma 2.3. Let α = 30.
Consider the pair of patterns

| 18, 23, 24, 25, 22, 21, 20, 1̂9, 28, 27, 26, 29, 30, 31, 32 |

and
| 35, 36, 37, 38, 33, 34, 39, 4̂7, 42, 41, 40, 43, 46, 45, 44 | .

After adding αx to each element we attach the first to a vertex labeled αx + 17. The
adjacent label pairs at fusion points and non-consecutive pairs within a cycle are

(17, 32), (18, 23), (19, 28), (22, 25), (26, 29), (19, 35), (19, 44),

(33, 38), (34, 39), (39, 47), (40, 43), (42, 47), (43, 46).

Each pair is coprime; the differences are 15, 5, 9, 3, 3, 16, 25, 5, 5, 8, 3 and 5 respectively
and the prime factors of each are in ϑ(30) = {2, 3, 5}.

We may attach the above patterns to first cycle | 2, 3, . . . , 1̂7 | to see that Cm
16,8 is

2-coprime and hence prime. �
For example, from the proof of Theorem 4.1 we obtain the following prime labeling

of C6
6,2:

[ 2, 3, 4, 5, 6, 7̂ | 8, 9̂, 10, 11, 12 | 13, 1̂7, 16, 15, 14 |

18, 1̂9, 20, 21, 22 | 23, 2̂7, 26, 25, 24 | 28, 29, 30, 31, 1 ].

The next two results generalize Theorem 4.1, the first keeping q = 2 and the second
covering larger powers of 2.

Theorem 4.2 Suppose t = 2a + 1 for some a. Then the uniform cycle snake Cm
2t,2 is

prime for all m.
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Proof. As in the proof of Theorem 4.1, we first show that the graph is 2-coprime.
Let α = 4t− 2. Consider the pair of patterns

| 4t, 4̂t− 1, 4t− 2, . . . , 2t+ 2 | 6t− 2, 6̂t− 1, 4t+ 1, 4t+ 2, . . . , 6t− 3 | .

All of the adjacent pairs within the first pattern are consecutive. We join it to the
label 2t + 1, which gives the adjacent consecutive pair (2t + 1, 2t + 2) and also the pair
(2t + 1, 4t). We have gcd(2t + 1, 4t) = gcd(2t + 1, 2t − 1) = 1 and the difference 2t − 1
divides α = 4t− 2.

Internally to the second pattern, there is one non-consecutive adjacent pair: (6t −
1, 4t + 1). We have gcd(6t − 1, 4t + 1) = gcd(2t − 2, 4t + 1) = 1, as 2t − 2 = 2a+1

and 4t + 1 is odd. The difference 2t − 2 is a power of 2 and 2 divides α = 4t − 2.
Where the second patttern connects to the first, we have the pairs (4t − 1, 6t − 2) and
(4t − 1, 6t − 3). We have gcd(4t − 1, 6t − 2) = gcd(4t − 1, 2t − 1) = gcd(2t, 2t − 1) = 1
and gcd(4t − 1, 6t − 3) = gcd(4t − 1, 2t − 2) = 1 as we again have a power of 2 and an
odd number. The difference of the first pair is 2t− 1 which divides α and the difference
of the second pair is 2t− 2 = 2a+1 and 2 ∈ ϑ(α).

We may attach the above patterns to first cycle | 2, 3, . . . , 2̂t+ 1 | to see that Cm
2t,2 is

2-coprime and so prime by Lemma 2.3. �

Theorem 4.3 Let s, t be such that 2t > 2s ≥ 4 and gcd(2s − 3, 2t − 1) = 1. Then the
uniform cycle snake Cm

2t,2s is prime for all m. In particular, Cm
2t,4 is prime for all t and m.

Proof. We show that Cm
2t,2s is 2-coprime and apply Lemma 2.3. Let α = 4t− 2. There

are two patterns that repeat. The first, which shall connect to a vertex labeled αx+2t+1
for some x, is as follows:

| 4t, 4t− 1. . . . , ̂4t− 2s + 1, . . . , 2t+ 2 | .

All internal adjacent labels are consecutive and there is one non-adjacent pair at the
fusion point: 2t + 1 and 4t. We have gcd(2t + 1, 4t) = gcd(2t + 1, 2t − 1) = 1 and the
difference 2t− 1 divides α.

The second pattern is

| 6t− 2s, 6t− 2s + 1, . . . , 6̂t− 1, 6t− 2s − 1, . . . , 4t+ 1 | .

Both labels adjacent to the existing fusion point, 6t−2s and 4t+1, are not consecutive with
the fusion point label 4t−2s+1. We have gcd(4t−2s+1, 6t−2s) = gcd(4t−2s+1, 2t−1) =
gcd(2t−2s +2, 2t−1) = gcd(2s−3, 2t−1), which is 1 by hypothesis. The difference 2t−1
divides α. For the second point, we have gcd(4t− 2s + 1, 4t+ 1) = gcd(4t+ 1, 2s) = 1 and
the difference 2s has ϑ(2s) = {2} ⊆ ϑ(α).

There is one internal non-consecutive pair of adjacent labels: 6t − 1 and 6t − 2s − 1.
We have gcd(6t− 1, 6t− 2s − 1) = gcd(6t− 1, 2s) = 1 and the difference 2s is acceptable
for the same reasons as the previous paragraph.

If we take the first cycle to be | 2, 3, . . . 2̂t+ 1 | we obtain a 2-coprime labeling and
hence a prime labeling by Lemma 2.3. �
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For example, the prime labeling for C4
12,4 given by the proof of Theorem 4.3 is:

[ 2, . . . , 1̂3 | 24, 23, 22, 2̂1, 20, . . . , 14 | 32, 33, 34, 3̂5, 31, . . . , 25 | 1, 45, 44, 4̂3, 42, . . . , 36].

Lastly for this section we give a period 2 construction with q odd.

Theorem 4.4 Let t be odd and a ≥ 2. The uniform cycle snake Cm
ta+1,t is prime for

all m.

Proof. Let α = 2ta. Consider the pair of patterns

| 2ta + 1, 2ta, . . . , ̂2ta − t+ 2, . . . , ta + 2 |

and
| 3ta − t+ 2, 3ta − t+ 3, . . . , 3̂ta + 1, 3ta − t+ 1, 3ta − t, . . . , 2ta + 2 | .

The internal neighbors of the former are all consecutive. It will be joined to label ta+1.
This introduces neighbors ta + 2, which is again consecutive, and 2ta + 1. We have
gcd(ta + 1, 2ta + 1) = gcd(ta + 1, ta) = 1 and the difference ta divides α.

For the latter pattern, we have one instance of non-consective neighbors: 3ta + 1 and
3ta − t + 1. We have gcd(3ta + 1, 3ta − t + 1) = gcd(3ta + 1, t) = 1 and the difference t
divides α.

Where the second pattern joins the first we introduce two pairs of neighbors that need
checking. First consider 2ta− t+ 2 and 3ta− t+ 2. We have gcd(2ta− t+ 2, 3ta− t+ 2) =
gcd(2ta − t + 2, ta) and for any necessarily-odd prime p dividing ta we have that p also
divides t and so p - 2ta − t + 2. Hence these neighbors are coprime. The difference ta

divides α. The second pair of neighbors introduced is 2ta − t + 2 and 2ta + 2. Here,
gcd(2ta − t+ 2, 2ta + 2) = gcd(t, 2ta − 2) = 1 as t is odd. The difference t divides α.

Using initial cycle |1, 2, . . . , t̂a + 1|, we conclude that Cm
ta+1,t is prime for all m. �

Some smaller examples covered by Theorem 4.4 are Cm
10,3, C

m
26,5, C

m
28,3, C

m
50,7, C

m
82,3 and

Cm
82,9. The prime labeling for Cm

10,3 begins

[ 1, 2, . . . , 1̂0 | 19, 18, 1̂7, 16, . . . , 11 | 26, 27, 2̂8, 25, 24, . . . , 20 | · · · ].

5 Constructions with Period 3

As the period increases, it seems that more specific cases become possible but that they
become harder to generalize. The first result in this section gives six specific cases for
inclusion in Table 1. The second is an infinite family for q = 3.

Theorem 5.1 The uniform cycle snakes Cm
8,3, C

m
9,3, C

m
9,4, C

m
11,3, C

m
11,4, and C

m
17,3 are prime

for all m.

Proof. Consider Cm
8,3. Let α = 21. Take the triple of patterns

| 15, 14, 1̂3, 12, 11, 10, 9 | 22, 21, 2̂0, 19, 18, 17, 16 | 27, 28, 2̂9, 26, 25, 24, 23 | .
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After adding αx to each element we attach the first to a vertex labeled αx + 8. The
adjacent label pairs at fusion points and non-consecutive pairs within a cycle are

(8, 15), (13, 16), (13, 22), (20, 23), (20, 27), (26, 29).

Each pair is coprime; the differences are 7, 3, 9, 3,7 and 3 respectively and the prime
factors of each are in ϑ(21) = {3, 7}.

Consider Cm
9,3. Let α = 24. Take the triple of patterns

| 15, 16, 1̂7, 14, . . . , 10 | 25, 24, 2̂3, 22, . . . , 18 | 32, 33, 3̂1, 30, . . . , 26 | .

After adding αx to each element we attach the first to a vertex labeled αx + 7. The
adjacent label pairs at fusion points and non-consecutive pairs within a cycle are

(7, 10), (7, 15), (14, 17), (17, 25), (23, 26), (23, 32), (31, 33).

Each pair is coprime; the differences are 3, 8, 3, 8, 3, 9 and 2 respectively and the prime
factors of each are in ϑ(24) = {2, 3}.

Consider Cm
9,4. Let α = 24. Take the triple of patterns

| 16, 15, 14, 1̂7, 13, . . . , 10 | 20, 23, 24, 2̂5, 22, . . . , 18 | 26, 27, 28, 3̂1, 30, 29, 32, 33 | .

After adding αx to each element we attach the first to a vertex labeled αx + 7. The
adjacent label pairs at fusion points and non-consecutive pairs within a cycle are

(7, 10),(7, 16),(13, 17),(14, 17),(17, 20),(20, 23),(19, 21),(22, 25),(25, 33),(28, 31),(29, 32).

Each pair is coprime; the differences are 3, 9, 4, 3, 3, 3, 2, 3, 8, 3 and 3 respectively and
the prime factors of each are in ϑ(24) = {2, 3}.

Consider Cm
11,3. Let α = 30. Take the triple of patterns

| 17, 18, 1̂9, 20, 21, 16, . . . , 12 | 27, 28, 2̂9, 30, 31, 26, . . . , 22 | 38, 39, 4̂1, 40, 37, . . . , 32 | .

After adding αx to each element we attach the first to a vertex labeled αx + 11. The
adjacent label pairs at fusion points and non-consecutive pairs within a cycle are

(11, 17), (16, 21), (19, 22), (19, 27), (26, 31), (29, 32), (29, 38), (37, 40), (39, 41).

Each pair is coprime; the differences are 6, 5, 3, 8, 5, 3, 9, 3 and 2 respectively and the
prime factors of each are in ϑ(30) = {2, 3, 5}.

Consider Cm
11,4. Let α = 30. Take the triple of patterns

| 14, 15, 16, 1̂9, 18, 17, 20, 21, 13, 12 | 28, 29, 30, 3̂1, 22, . . . , 27 | 34, 33, 32, 4̂1, 40, . . . , 35 | .

After adding αx to each element we attach the first to a vertex labeled αx + 11. The
adjacent label pairs at fusion points and non-consecutive pairs within a cycle are

(11, 14), (13, 21), (16, 19), (17, 20), (19, 27), (19, 28), (22, 31), (31, 34), (31, 35), (32, 41).
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Each pair is coprime; the differences are 3, 8, 3, 3, 8, 9, 9, 3, 4 and 9 respectively and the
prime factors of each are in ϑ(30) = {2, 3, 5}.

Consider Cm
17,3. Let α = 48. Take the triple of patterns

| 33, 32, 3̂1, 30, . . . , 18 | 49, 48, 4̂7, 46, . . . , 34 | 63, 64, 6̂5, 62, . . . , 50 | .

After adding αx to each element we attach the first to a vertex labeled αx + 17. The
adjacent label pairs at fusion points and non-consecutive pairs within a cycle are

(17, 33), (31, 34), (31, 49), (47, 50), (47, 63), (62, 65).

Each pair is coprime; the differences are 16, 3, 18, 3, 16 and 3 respectively and the prime
factors of each are in ϑ(48) = {2, 3}. �

Theorem 5.2 Let 2t = 3a + 3 for some a ≥ 1. The uniform cycle snakes Cm
2t,3 are prime

for all m.

Proof. Let α = 3(2t− 1) = 6t− 3. For the first pattern, take

| 2t, 2t− 1, 2̂t− 2, 2t− 3, . . . , 2 |

attached to a label of 1 from the previous pattern. All internal adjacent labels are con-
secutive and there is one non-consecutive pair at the join: 1 and 2t. These are coprime
and the difference 2t− 1 divides α.

For the second pattern take

| 4t− 3, 4t− 2, 4̂t− 1, 4t− 4, . . . , 2t+ 1 | .

At the join we have pairs (2t−2, 4t−3) and (2t−2, 2t+1). We have gcd(2t−2, 4t−3) =
gcd(2t−2, 2t−1) = 1 and the difference 2t−1 divides α. We also have gcd(2t−2, 2t+1) =
gcd(2t − 2, 3) = 1, as 2t − 2 ≡ 1 (mod 3), and the difference 3 divides α. There is one
non-consecutive internal adjacent pair: (4t − 4, 4t − 1). We have gcd(4t − 4, 4t − 1) =
gcd(4t− 1, 3) = 1, as 4t− 1 ≡ 2 (mod 3), and the difference 3 divides α.

For the third pattern take

| 6t− 4, 6t− 3, 6̂t− 2, 6t− 5, . . . , 4t | .

There is one non-consective adjacent pair of labels introduced at the join: 4t−1 and 6t−4.
We have gcd(4t − 1, 6t − 4) = gcd(4t − 1, 2t − 3) = 1, as 2t − 3 = 3a and 4t − 1 ≡ 2
(mod 3), and the difference 2t− 3 = 3a has only the prime factor 3, which is in ϑ(α).

Considering the first “cycle” to be the single vertex labeled 1, we have a prime labeling
of Cm

2t,3. �
The smallest instances covered by Theorem 5.2 are Cm

6,3, C
m
12,3, C

m
30,3 and Cm

84,3. For
example, the labeling for Cm

12,3 starts

[ 12, 11, 1̂0 . . . , 1 | 21, 22, 2̂3, 20, . . . , 13 | 32, 33, 3̂4, 31, . . . , 24 | 45, 44, 4̂3 . . . , 35 | · · · ].
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6 Constructions with Period 4 or More

There are four constructions in this section. The first two are for specific additions to
Table 1—Cm

9,2 and Cm
8,2—and require repeating patterns of period 15 and 30 respectively.

The third has a repeating pattern period that depends on q to give one of the more
general results of the paper: Cm

2p,p is prime for all m and all odd primes p ≡ 1 (mod 3).
The fourth and final construction uses similar ideas to the third to find a prime labeling
for Cm

2p+1,p for all m when p is an odd prime such that ϑ(p + 1) = {2, r} for some odd
prime r.

Theorem 6.1 The uniform cycle snakes Cm
9,2 are prime for all m.

Proof. Let α = 120. We construct a fifteen pattern sequence; we describe, and check,
three at a time. The first attaches to a vertex labeled 9:

| 10, 1̂1, 12, . . . , 17 | 20, 1̂9, 18, 23, 24, 25, 22, 21 | 28, 3̂3, 32, . . . , 29, 26, 27 |

The non-consecutive adjacent label pairs at fusion points and within a cycle are

(9, 17), (11, 20), (11, 21), (18, 23), (22, 25), (19, 27), (19, 28), (26, 29), (28, 33).

Each pair is coprime and their differences are 8, 9, 10, 5, 3, 8, 9, 3, and 5 respectively,
each of whose prime factors are in ϑ(120) = {2, 3, 5}.

The second batch of three patterns:

| 38, 4̂1, 40, 39, 37, . . . , 34 | 42, 4̂3, 44, . . . , 49 | 52, 5̂7, 56, 51, 50, 53, 54, 55 |

The non-consecutive adjacent label pairs at fusion points and within a cycle are

(33, 38), (37, 39), (38, 41), (41, 49), (43, 52), (43, 55), (50, 53), (51, 56), (52, 57).

Each pair is coprime and their differences are 5, 2, 3, 8, 9, 12, 3, 5 and 5 respectively,
each of whose prime factors are in ϑ(120) = {2, 3, 5}.

The third batch of three patterns:

| 58, 6̂1, 60, 59, 62, . . . , 65 | 66, 7̂1, 72, 73, 70, . . . , 67 | 76, 8̂1, 80, . . . , 77, 74, 75 |

The non-consecutive adjacent label pairs at fusion points and within a cycle are

(57, 65), (58, 61), (59, 62), (61, 66), (61, 67), (66, 71),

(70, 73), (71, 75), (71, 76), (74, 77), (76, 81).

Each pair is coprime and their differences are 8, 3, 3, 5, 6, 5, 3, 4, 5, 3 and 5 respectively,
each of whose prime factors are in ϑ(120) = {2, 3, 5}.

The fourth batch of three patterns:

| 86, 8̂9, 88, 87, 85, . . . , 82 | 92, 9̂7, 96, . . . , 93, 91, 90 | 98, 1̂03, 102, . . . , 99, 104, 105 |
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The non-consecutive adjacent label pairs at fusion points and within a cycle are

(81, 86), (85, 87), (86, 89), (89, 92), (91, 93), (92, 97), (97, 105), (98, 103), (99, 104).

Each pair is coprime and their differences are 5, 2, 3, 3, 2, 5, 8, 5 and 5 respectively, each
of whose prime factors are in ϑ(120) = {2, 3, 5}.

The fifth and final batch of three patterns:

| 106, 1̂07, 108, 109, 110, 113, 112, 111 | 116, 1̂15, 114, 119, 120, 121, 118, 117 |

| 124, 1̂29, 128, 123, 122, 125, 126, 127 | .

The non-consecutive adjacent label pairs at fusion points and within a cycle are

(103, 106), (103, 111), (110, 113), (107, 116), (107, 117), (114, 119),

(118, 121), (115, 124), (115, 127), (122, 125), (123, 128), (124, 129).

Each pair is coprime and their differences are 3, 8, 3, 9, 10, 5, 3, 9, 12, 3, 5 and 5
respectively, each of whose prime factors are in ϑ(120) = {2, 3, 5}.

To start the labeling, label the first cycle in consecutive order, using 9 on the fusion
point. �

Theorem 6.2 The uniform cycle snakes Cm
8,2 are prime for all m.

Proof. Let α = 210. We construct a thirty pattern sequence. Unlike the previous proof,
we give the full collection of patterns in one go and then describe how three fundamental
types of pattern function successfully to cover all of the patterns used.

| 12, 1̂3, 11, 10, 9, 14, 15 | 16, 2̂1, 20, 19, 18, 17, 22 | 26, 2̂9, 28, 27, 25, 24, 23 |

| 36, 3̂5, 34, 33, 32, 31, 30 | 38, 4̂3, 42, 41, 40, 39, 37 | 50, 4̂9, 48, 47, 46, 45, 44 |

| 52, 5̂7, 56, 55, 54, 53, 51 | 64, 6̂3, 62, 61, 60, 59, 58 | 68, 7̂1, 70, 69, 67, 66, 65 |

| 78, 7̂7, 76, 75, 74, 73, 72 | 82, 8̂5, 84, 83, 81, 80, 79 | 92, 9̂1, 90, 89, 88, 87, 86 |

| 94, 9̂9, 98, 97, 96, 95, 93 | 100, 1̂01, 102, 103, 104, 105, 106 |

| 107, 1̂13, 112, 111, 110, 109, 108 | 120, 1̂19, 118, 117, 116, 115, 114 |

| 122, 1̂27, 126, 125, 124, 123, 121 | 134, 1̂33, 132, 131, 130, 129, 128 |

| 138, 1̂41, 140, 139, 137, 136, 135 | 148, 1̂47, 146, 145, 144, 143, 142 |

| 152, 1̂55, 154, 153, 151, 150, 149 | 162, 1̂61, 160, 159, 158, 157, 156 |

| 166, 1̂69, 168, 167, 165, 164, 163 | 176, 1̂75, 174, 173, 172, 171, 170 |

| 178, 1̂83, 182, 181, 180, 179, 177 | 190, 1̂89, 188, 187, 186, 185, 184 |

| 194, 1̂97, 196, 195, 193, 192, 191 | 204, 2̂03, 202, 201, 200, 199, 198 |

the pump journal of undergraduate research 6 (2023), 151–171 167



| 206, 2̂11, 210, 209, 208, 207, 205 | 218, 2̂17, 216, 215, 214, 213, 212 |
As far as possible, the patterns put the highest odd label on the fusion point. When

this is the highest label, the next cycle is all consecutive; consider, for example, the
6th cycle. The only non-consecutive pair to consider is (43, 50); these labels are coprime
and differ by 7, a divisor of α. There are 14 such cycles and they are successful by similar
reasoning (including the 14th cycle, which has this structure but lists the vertices in the
opposite order, not putting the highest odd label on the fusion point).

When the highest odd label is the second highest label, the next cycle has a structure
exemplified by the 7th cycle. The non-consecutive pair at the fusion point is (49, 52)
and 52 is also non-consecutive with the next fusion label, giving the pair (52, 57). Both
pairs are coprime and the differences 3 and 5 divide α. The remaining adjacent pairs are
either consecutive or odd and differ by 2. There are 13 cycles with this structure.

The remaining cycles are the 1st, 2nd and 15th. The non-consecutive pairs from these
cycles (including where they attach to the previous cycle, with the 1st attaching to label 7)
are

(7, 12), (7, 15), (9, 14), (11, 13), (13, 16), (13, 22),

(16, 21), (17, 22), (101, 107), (101, 108), (107, 113).

Each pair is coprime and the differences 5, 8, 5, 2, 3, 9, 5, 5, 6, 7 and 6 each have their
prime factors contained in ϑ(α) = {2, 3, 5, 7}.

Attach the first pattern to | 1, 2, . . . , 7̂, 8 | and note that the last pattern connects
successfully to the first (after adding 210). Hence we have a prime labeling for Cm

8,2. �

Theorem 6.3 Let p be a prime with p ≡ 1 (mod 3). The uniform cycle snakes Cm
2p,p are

prime for all m.

Proof. For this construction the number of cycles depends on p: the repeating pattern
has period p. Let α = p(2p− 1).

The ith pattern, for 1 ≤ i ≤ p− 1 has the form

| i(2p− 1) + 2, . . . , i(2p− 1) + p, ̂i(2p− 1) + 2p, . . . , i(2p− 1) + p+ 1 | .

The pth pattern has the form

| p(2p− 1) + 2, . . . , ̂p(2p− 1) + p+ 1, . . . , p(2p− 1) + 2p | .

There is one internal adjacent non-consecutive pair in each of the first i patterns, i(2p−
1) + p and i(2p− 1) + 2p, and none in the pth pattern. We have

gcd(i(2p− 1) + p, i(2p− 1) + 2p) = gcd(i(2p− 1) + p, p) = gcd(i(2p− 1), p).

This is 1 as the prime p does not divide either i or 2p− 1. The difference p divides α.
When i = 1 the ith pattern is attached to the label p + 1. This is non-consecutive

with both of the new labels, (2p − 1) + 2 = 2p + 1 and (2p − 1) + p + 1 = 3p. For the
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former gcd(p + 1, 2p + 1) = gcd(p + 1, p) = 1 and the difference p divides α. For the
latter gcd(p + 1, 3p) = gcd(p − 2, p + 1) = gcd(p − 2, 3) = 1, as p ≡ 1 (mod 3), and the
difference 2p− 1 divides α.

When 1 < i < p the ith pattern is attached to the label i(2p − 1) + 1. This is
non-consecutive with one of the new neighbors, i(2p − 1) + p + 1. We have gcd(i(2p −
1) + 1, i(2p − 1) + p + 1) = gcd(i(2p − 1) + 1, p). As 2p − 1 ≡ −1 (mod p) we have
i(2p− 1) + 1 ≡ −i+ 1 6≡ 0 (mod p) as 1 < i < p, and hence the labels are coprime. The
difference p divides α.

The pth pattern is attached to the label (p− 1)(2p− 1) + 2p. This is non-consecutive
with one of the new neighbors, p(2p− 1) + 2p. We have

gcd((p−1)(2p−1)+2p, p(2p−1)+2p) = gcd(2p−1, p(2p−1)+2p) = gcd(2p−1, 2p) = 1.

The difference 2p− 1 divides α.
Take the first cycle to be | 1̂, . . . , 2p | to give a prime labeling for Cm

2p,2 for all m. �
For example, the labeling given by Theorem 6.3 for Cm

14,7 begins

[ 1̂, . . . , 14 | 15, . . . 20, 2̂7, 26, . . . 21 | 28, . . . 33, 4̂0, 39, . . . , 34 |

| 41, . . . , 46, 5̂3, 52, . . . , 47 | 54, . . . , 59, 6̂6, 65, . . . , 60 | 67, . . . , 72, 7̂9, 78, . . . , 73 |

| 80, . . . 85, 9̂2, 91, . . . , 86 | 93, . . . , 9̂9, . . . , 105 | 106, . . . , 111, 1̂18, 117, . . . , 112 | · · · ].

Theorem 6.4 Let p be an odd prime such that ϑ(p + 1) = {2, r} for some odd prime r.
Then Cm

2p+1,p is prime for all m.

Proof. Although the idea of this proof is similar to the previous one, it has a feature
that makes a slightly different approach preferable: each pattern puts the largest element
on the fusion point. It thus has much in common with the period 1 constructions of
Section 3 and we take α = 2p.

Let y ∈ {p, p+ 1} and consider the pattern

| 2, 3, . . . , y, 2̂p+ 1, 2p, . . . , y + 1 | .

The two choices of y each correspond to a shortest path between fusion points of p, one via
the first portion and one via the second. We are attaching to a label of 1, so coprimality is
immediate at the join with the previous pattern. We still need to consider the difference.
The non-consecutive difference here is y. If y = p then y divides α and we have coprime
labels. If y = p + 1 then we might or might not have coprime labels depending on the
value of x when adding αx to each element of the pattern. We return to this case shortly.

There is one internal non-consecutive pair: y and 2p + 1. When y = p + 1 we have
gcd(y, 2p + 1) = gcd(p + 1, p) = 1. The difference of p divides α, so choosing y = p + 1
gives coprime labels here. If y = p then, again, the coprimality depends on the value of x
when adding αx to each element of the pattern.

In each of the potentially problematic situations we have a difference of p + 1. The
labels in question that are not on fusion points are αx + p and αx + p + 2 and we need
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only one to give rise to a coprime pair. As these differ by 2, at least one is not divisible
by r. As the difference in each calculation is p + 1, the greatest common divisor of the
pair must be divisible by 2 or r, and so we can always make a choice in the construction
that gives coprime labels.

Initialize the process by taking labeling the first cycle | 1, . . . , 2̂p+ 1 |. Hence Cm
2p+1,p

is prime for all m. �
The primes p < 100 that satisfy the hypothesis of Theorem 6.4 that ϑ(p+ 1) = {2, r}

for some prime r are

5, 11, 13, 17, 19, 23, 37, 43, 47, 53, 61, 67, 71, 73, 79, 97.

For example, when p = 5, the construction might give the following four cycles to
start the labeling:

[ 1, . . . , 1̂1 | 12, . . . , 16, 2̂1, 20, . . . , 17 |

| 22, . . . , 25, 3̂1, 30, . . . , 26 | 32, . . . , 35, 4̂1, 40, . . . , 36 | · · · ].

Observe that the label of 21 on the fusion point connecting the second and third cycles
forces the choice of these two cycles as 3 (which is r) divdes 21. However, either choice is
possible for the fourth cycle and so it is permissible to use | 32, . . . , 36, 4̂1, 40, . . . , 37 | in
place of the given one.

Acknowledgments

This work was completed via a co-curricular research program in the School of Commu-
nications at Emerson College. We are grateful for the comments of anonymous referees
on both this and an earlier submission.

References

[1] A. Bigham, E.A. Donovan, J. Pack, J. Turley, L.W. Wiglesworth. Prime labelings of snake graphs,
PUMP J. Undergrad. Res., 2 (2019), 1083–1089.

[2] K. Carlson, Generalized books and Cm-snakes are prime graphs, Ars Combin., 80 (2006), 215–221.

[3] G. Chartrand, C. Egan, P. Zhang, How to Label a Graph, Springer International Publishing (2019).

[4] N. Diefenderfer, D.C. Ernst, M.G. Hastings, L.N. Heath, H. Prawzinsky, B. Preston, J. Rushall,
E. White, A. Whittemore, Prime vertex labelings of several families of graphs, Involve, 9 (2016),
667–688.

[5] J.A. Gallian. A dynamic survey of graph labeling, Electron. J. Combin., DS6 (2000, updated 2021),
576pp.

[6] S.M. Lee, I. Wui, J. Yeh, On the amalgamation of prime graphs, Bull. Malaysian Math. Soc. (Second
Series), 11 (1988), 59–67.

[7] S.K. Patel and J. Vasava, On prime labeling of some union graphs, Kragujevac J. Math., 42 (2018),
441–452.

[8] M.A. Seoud and M.Z. Youssef, On prime labelings of graphs, Congr. Numer., 141 (1999), 203–215.

the pump journal of undergraduate research 6 (2023), 151–171 170



Agam Bedi
Emerson College
120 Boylston Street
Boston, MA 02116
E-mail: agam bedi@emerson.edu

Matt Ollis
Emerson College
120 Boylston Street
Boston, MA 02116
E-mail: matt ollis@emerson.edu

Samiksha Ramesh
Emerson College
120 Boylston Street
Boston, MA 02116
E-mail: samiksha ramesh@emerson.edu

Received: January 22, 2023 Accepted: March 20, 2023
Communicated by Mike Krebs

the pump journal of undergraduate research 6 (2023), 151–171 171


	Introduction
	Notation and Tools
	Constructions with Period 1
	Constructions with Period 2
	Constructions with Period 3
	Constructions with Period 4 or More

