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Abstract - Our objective is to provide an upper bound for the length `N of the longest run
of consecutive integers smaller than N which have the same number of divisors. We prove
in an elementary way that log `N � (logN log logN)λ, where λ = 1/2. Using estimates for
the Jacobsthal function, we then improve the result to λ = 1/3.

Keywords : divisor counting function; consecutive equidivisible integers

Mathematics Subject Classification (2020) : 11A25; 11N37

1 Introduction

Let d(n) denote the number of positive divisors of n. The equation d(n) = d(n + k)
has been studied extensively. Spiro [1] showed that it has infinitely many solutions for
k = 5040. Subsequently, Heath-Brown [2] established the case k = 1, and Pinner [3]
ultimately proved that all values of k yield infinitely many solutions.

As d(n) is equal to d(n + 1) infinitely often, one naturally wonders how many con-
secutive integers can there be, having the same number of divisors. Erdős and Mirsky
[4] conjectured that there are arbitrarily long such runs of integers. They were not able
to provide any estimates for the length of such sequences: “A related problem consists in
the estimation of the longest run of consecutive integers 6 x all of which have the same
number of divisors. This problem seems to be one of exceptional difficulty, and we [Erdős
& Mirsky] have not been able to make any progress with it.”

Our principal objective is to provide an upper bound for the length `N of the runs in
question. In Section 2, we estimate the order of magnitude of the d(n) and ω(n) functions
and obtain the following estimate in an elementary manner:

Theorem 1.1 Let `N denote the length of the longest run of consecutive integers smaller
than N , having the same number of divisors. Then,

log `N �
√

logN · log logN.

Subsequently, in Section 3, we provide a quicker proof of Theorem 1.1 based on the
Prime Number Theorem. We also get the following explicit form of Theorem 1.1:

log `N 6
√

(1/2 + o(1)) logN log logN.
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Finally, in Section 4 we prove a stronger version of Theorem 1.1 using estimates of the
Jacobsthal function deduced from Brun’s sieve method. We obtain the following result:

Theorem 1.2 Let `N denote the length of the longest run of consecutive integers smaller
than N , having the same number of divisors. Then,

log `N � 3
√

logN · log logN.

2 An Elementary Proof of Theorem 1.1

In proving Theorem 1.1, we will make use of the following lemmas, the first being proven
in an elementary manner in [5] and the second being Mertens’ bound.

Lemma 2.1 Let n be a positive integer. Then, lcm(1, 2, . . . , n+ 1) > 2n.

Lemma 2.2 The sum of the reciprocals of the prime numbers not exceeding n satisfies∑
p6n

1

p
= log log n+M +O

(
1

log n

)
� log log n.

Note that it suffices to prove that Theorem 1.1 holds for large enough N . Assume
that there exist k > 2 consecutive numbers smaller than N , having the same number of
divisors. Let them be n+ 1, n+ 2, . . . , n+ k and write

d(n+ 1) = d(n+ 2) = · · · = d(n+ k) = D.

We will firstly provide an estimate for D, in terms of k. For simplicity, let K = blog2 kc.
As k > 2K , all residues modulo 2K are among n+1, n+2, . . . , n+k. Therefore, for all

1 6 i 6 K − 1, there exists some 1 6 ti 6 k such that n+ ti ≡ 2i mod 2K . Consequently,
ν2(n+ ti) = i, so i+ 1 divides d(n+ ti) = D.

Hence, D is divisible by lcm(1, 2, . . . , K). Using Lemma 2.1, we infer that

D > lcm(1, 2, . . . , K) > 2K−1.

Recall that K = blog2 kc > log2 k − 1, so D > k/4.
Let ω(n) denote the number of distinct prime factors of n. Choose 1 6 l 6 k arbitrar-

ily. As n + l 6 N , it follows that νp(n + l) 6 logpN 6 log2N for all prime numbers p.
Therefore,

D = d(n+ l) =
∏
p

(νp(n+ l) + 1) 6
∏
p|n+l

(log2N + 1) = (log2N + 1)ω(n+l).

Taking logarithms, it follows that ω(n + l) > logD/ log(log2N + 1). Moreover, note
that a prime number p can divide at most dk/pe 6 k/p + 1 numbers among n + 1, . . . ,
n+ k. Therefore, using Lemma 2.2, it follows that

ω((n+ 1) · · · (n+ k)) >
k∑
i=1

ω(n+ i)−
∑
p6k

k

p
>

k logD

log(log2N + 1)
− C1k log log k,
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for a suitable constant C1. Further, we will write log(log2N + 1) 6 C2 log logN , for some
constant C2. Recall that D > k/4, so we have

ω((n+ 1) · · · (n+ k)) >
k log(k/4)

C2 log logN
− C1k log log k. (1)

Write the right-hand side of equation 1 as k · fN(k). Clearly, if ω(a) > b then a > b!.
Using this remark on equation 1, we get (n + 1) · · · (n + k) > dk · fN(k)e!. Moreover,
because Nk > (n+ 1) · · · (n+k), by applying the well-known inequality log t! > t log t− t,
we have

k logN > log ((n+ 1) · · · (n+ k)) > log (dk · fN(k)e!)
> k · fN(k) · log(k · fN(k))− k · fN(k). (2)

Finally, dividing equation 2 by k we obtain

logN > fN(k) · log(k · fN(k))− fN(k). (3)

Define the interval IN = [exp (C1 · C2 · log logN) ,∞). Using standard arguments, one
may infer that fN is increasing on IN .

Let us suppose, for the sake of contradiction, that k > exp
(
C
√

logN log logN
)
, where

C > max(
√
C2, C1 · C2). Firstly, note that since logN > log logN and C > C1 · C2 then

exp
(
C
√

logN log logN
)

and k are in IN . Therefore, we have

fN(k) > fN

(
exp

(
C
√

logN log logN
))

=
C

C2

√
logN

log logN
− log 4

C2 log logN
− C1 log

(
C
√

logN log logN
)
. (4)

Viewing equation 4 as a function in N , it is evident that for large enough N (greater than
some N1) we also have fN(k) > e. In what follows, we will assume that N > N1.

As fN(k) > e, it follows from equation 3 that logN > fN(k) · log k. Further, applying
equation 4 and the estimate for k and isolating the term logN , we get

C log 4

C2

√
logN

log logN
+ C1C

√
logN log logN log

(
C
√

logN log logN
)
>

(
C2

C2

− 1

)
logN.

Recall that C >
√
C2, so the latter inequality is absurd for large enough N (greater than

some N2), as the left-hand side is asymptotically much smaller than logN . Therefore,
Theorem 1.1 holds for N > max(N1, N2) and C > max(

√
C2, C1 · C2).

3 An Explicit Form of Theorem 1.1

Let Ω(n) denote the number of prime factors of n, counting multiplicities. Note that
2ω(n) 6 d(n) 6 2Ω(n) for all positive integers n. Further, we have the following estimates:
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Lemma 3.1 The product n# of the prime numbers not exceeding n satisfies log n# ∼ n.

Lemma 3.2 The sum of 1/ log p taken over the prime numbers not exceeding n satisfies∑
p6n

1

log p
=

n

(log n)2
+O

(
n log log n

(log n)3

)
= o(1) · n

log n
.

Let M be the greatest positive integer satisfying M# 6 k. Then, there exists 1 6
m 6 k so that M# divides n+m. Hence, for any 1 6 i 6 k we have

2Ω(n+i) > d(n+ i) = d(n+m) > d(M#) > 2ω(M#) = 2π(M),

so Ω(n+ i) > π(M). It follows that Ω(n+ 1) + Ω(n+ 2) + · · ·+ Ω(n+ k) > kπ(M).
Fix a prime number p 6 k. Then, for every exponent t 6 logpN there are at most

dk/pte 6 k/pt + 1 numbers divisible by pt among n + 1, n + 2, . . . , n + k. Furthermore,
if t > logpN , then pt > N so none of n+ 1, n+ 2, . . . , n+ k are divisible by pt.

Following the same double-counting technique as in Legendre’s Theorem, we may infer

k∑
i=1

νp(n+ i) 6

blogpNc∑
t=1

(
1 +

k

pt

)
<

logN

log p
+

k

p− 1
. (5)

Notice that n+ i has at most logkN prime factors greater than k, including multiplic-
ities. Combining this observation with equation 5 and Lemmas 2.2 and 3.2, we get

kπ(M) 6
k∑
i=1

Ω(n+ i) =
∑
p>k

k∑
i=1

νp(n+ i) +
∑
p6k

k∑
i=1

νp(n+ i)

6
k logN

log k
+
∑
p6k

(
logN

log p
+

k

p− 1

)
= (1 + o(1))

k logN

log k
+O(k log log k). (6)

It follows from Lemma 3.1 and the Prime Number Theorem that π(M) ∼ log k/ log log k.
Further, note that k log log k = o(1) · k log k/ log log k. Using these observations in equa-
tion 6 we get

k log k

log log k
∼ kπ(M) 6 (1 + o(1))

k logN

log k
+ o(1)

k log k

log log k
.

Dividing through k and isolating the remaining functions in k on the left-hand side,
we have (log k)2/ log log k 6 (1 + o(1)) logN. Using standard arguments, we finally get

log k 6
√

(1/2 + o(1)) logN log logN.
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4 The Proof of Theorem 1.2

We will keep the notation used in Section 2. We will require the following estimates:

Lemma 4.1 The sum of the prime numbers not exceeding n satisfies∑
p6n

p =
n2

2 log n
+O

(
n2

(log n)2

)
∼ n2

2 log n
.

Lemma 4.2 Let n be a positive integer and pmin be its smallest prime divisor. Then,

log n

log pmin

>
∑
p

(p− 1)νp(d(n)).

Proof. Throughout the rest of the proof, the letters p and q will refer strictly to prime
numbers. Note that since pmin is the smallest prime factor of n, by taking logarithms we
get

log n =
∑
q

νq(n) log q > log pmin

∑
q

νq(n). (7)

Further, using the fact that mn − 1 > n(m− 1) for all positive integers, we infer that

k =
∏
p

pνp(k+1) − 1 >
∑
p

(
pνp(k+1) − 1

)
>
∑
p

(p− 1)νp(k + 1) (8)

for any positive integer k. Using inequality 8 on νq(n) in equation 7, we further have

log n

log pmin

>
∑
q

νq(n) >
∑
q

∑
p

(p− 1)νp(νq(n) + 1) =
∑
p

(
(p− 1)

∑
q

νp(νq(n) + 1)

)

=
∑
p

(p− 1)νp

(∏
q

(νq(n) + 1)

)
=
∑
p

(p− 1)νp(d(n)),

giving us the desired result. �
The proof now hinges on finding an index i for which n+ i has a large minimal prime

factor. Jacobsthal [6] defines the function j(n) to be the least integer so that amongst
any j(n) consecutive integers there exists at least one relatively prime to n.

Therefore, if a positive integer M satisfies j(M#) 6 k, then some n+i has the minimal
prime factor larger than M . As pointed out by Erdős [7], it follows directly from Brun’s
sieve that j(n)� ω(n)C for a suitable constant C, hence log j(n)� logω(n).

It follows that log j(M#) � logω(M#) = log π(M) � logM , so among our k
consecutive integers we may find one, n + i, whose minimal prime factor pmin satisfies
log pmin � log k. Further, recall that every prime number not exceeding log2 k divides
D = d(n+ i). Applying Lemmas 4.1 and 4.2 we then get

logN

log k
� log(n+ i)

log pmin

>
∑
p

(p− 1)νp(D)�
∑

p6log2 k

p ∼ (log2 k)2

2 log log2 k
.

Consequently, logN � (log k)3/ log log k, from which Theorem 1.2 easily follows.
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[6] E.E. Jacobsthal, Über Sequenzen ganzer Zahlen: von denen keine zu n teilerfremd ist, Norske Vid.
Selsk. Forhdl., 33 (1960), 117–124.
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