Runs of Consecutive Integers Having the Same Number of Divisors

V.-T. Spătaru

Abstract

Our objective is to provide an upper bound for the length ℓ_{N} of the longest run of consecutive integers smaller than N which have the same number of divisors. We prove in an elementary way that $\log \ell_{N} \ll(\log N \log \log N)^{\lambda}$, where $\lambda=1 / 2$. Using estimates for the Jacobsthal function, we then improve the result to $\lambda=1 / 3$.

Keywords : divisor counting function; consecutive equidivisible integers
Mathematics Subject Classification (2020) : 11A25; 11N37

1 Introduction

Let $d(n)$ denote the number of positive divisors of n. The equation $d(n)=d(n+k)$ has been studied extensively. Spiro [1] showed that it has infinitely many solutions for $k=5040$. Subsequently, Heath-Brown [2] established the case $k=1$, and Pinner [3] ultimately proved that all values of k yield infinitely many solutions.

As $d(n)$ is equal to $d(n+1)$ infinitely often, one naturally wonders how many consecutive integers can there be, having the same number of divisors. Erdős and Mirsky [4] conjectured that there are arbitrarily long such runs of integers. They were not able to provide any estimates for the length of such sequences: "A related problem consists in the estimation of the longest run of consecutive integers $\leqslant x$ all of which have the same number of divisors. This problem seems to be one of exceptional difficulty, and we [Erdős \& Mirsky] have not been able to make any progress with it."

Our principal objective is to provide an upper bound for the length ℓ_{N} of the runs in question. In Section 2, we estimate the order of magnitude of the $d(n)$ and $\omega(n)$ functions and obtain the following estimate in an elementary manner:

Theorem 1.1 Let ℓ_{N} denote the length of the longest run of consecutive integers smaller than N, having the same number of divisors. Then,

$$
\log \ell_{N} \ll \sqrt{\log N \cdot \log \log N} .
$$

Subsequently, in Section 3, we provide a quicker proof of Theorem 1.1 based on the Prime Number Theorem. We also get the following explicit form of Theorem 1.1:

$$
\log \ell_{N} \leqslant \sqrt{(1 / 2+o(1)) \log N \log \log N}
$$

Finally, in Section 4 we prove a stronger version of Theorem 1.1 using estimates of the Jacobsthal function deduced from Brun's sieve method. We obtain the following result:

Theorem 1.2 Let ℓ_{N} denote the length of the longest run of consecutive integers smaller than N, having the same number of divisors. Then,

$$
\log \ell_{N} \ll \sqrt[3]{\log N \cdot \log \log N}
$$

2 An Elementary Proof of Theorem 1.1

In proving Theorem 1.1, we will make use of the following lemmas, the first being proven in an elementary manner in [5] and the second being Mertens' bound.

Lemma 2.1 Let n be a positive integer. Then, $\operatorname{lcm}(1,2, \ldots, n+1) \geqslant 2^{n}$.
Lemma 2.2 The sum of the reciprocals of the prime numbers not exceeding n satisfies

$$
\sum_{p \leqslant n} \frac{1}{p}=\log \log n+M+O\left(\frac{1}{\log n}\right) \ll \log \log n
$$

Note that it suffices to prove that Theorem 1.1 holds for large enough N. Assume that there exist $k>2$ consecutive numbers smaller than N, having the same number of divisors. Let them be $n+1, n+2, \ldots, n+k$ and write

$$
d(n+1)=d(n+2)=\cdots=d(n+k)=D
$$

We will firstly provide an estimate for D, in terms of k. For simplicity, let $K=\left\lfloor\log _{2} k\right\rfloor$.
As $k \geqslant 2^{K}$, all residues modulo 2^{K} are among $n+1, n+2, \ldots, n+k$. Therefore, for all $1 \leqslant i \leqslant K-1$, there exists some $1 \leqslant t_{i} \leqslant k$ such that $n+t_{i} \equiv 2^{i} \bmod 2^{K}$. Consequently, $\nu_{2}\left(n+t_{i}\right)=i$, so $i+1$ divides $d\left(n+t_{i}\right)=D$.

Hence, D is divisible by $\operatorname{lcm}(1,2, \ldots, K)$. Using Lemma 2.1, we infer that

$$
D \geqslant \operatorname{lcm}(1,2, \ldots, K) \geqslant 2^{K-1}
$$

Recall that $K=\left\lfloor\log _{2} k\right\rfloor \geqslant \log _{2} k-1$, so $D \geqslant k / 4$.
Let $\omega(n)$ denote the number of distinct prime factors of n. Choose $1 \leqslant l \leqslant k$ arbitrarily. As $n+l \leqslant N$, it follows that $\nu_{p}(n+l) \leqslant \log _{p} N \leqslant \log _{2} N$ for all prime numbers p. Therefore,

$$
D=d(n+l)=\prod_{p}\left(\nu_{p}(n+l)+1\right) \leqslant \prod_{p \mid n+l}\left(\log _{2} N+1\right)=\left(\log _{2} N+1\right)^{\omega(n+l)} .
$$

Taking logarithms, it follows that $\omega(n+l) \geqslant \log D / \log \left(\log _{2} N+1\right)$. Moreover, note that a prime number p can divide at most $\lceil k / p\rceil \leqslant k / p+1$ numbers among $n+1, \ldots$, $n+k$. Therefore, using Lemma 2.2, it follows that

$$
\omega((n+1) \cdots(n+k)) \geqslant \sum_{i=1}^{k} \omega(n+i)-\sum_{p \leqslant k} \frac{k}{p} \geqslant \frac{k \log D}{\log \left(\log _{2} N+1\right)}-C_{1} k \log \log k
$$

for a suitable constant C_{1}. Further, we will write $\log \left(\log _{2} N+1\right) \leqslant C_{2} \log \log N$, for some constant C_{2}. Recall that $D \geqslant k / 4$, so we have

$$
\begin{equation*}
\omega((n+1) \cdots(n+k)) \geqslant \frac{k \log (k / 4)}{C_{2} \log \log N}-C_{1} k \log \log k \tag{1}
\end{equation*}
$$

Write the right-hand side of equation 1 as $k \cdot f_{N}(k)$. Clearly, if $\omega(a) \geqslant b$ then $a \geqslant b$!. Using this remark on equation 1, we get $(n+1) \cdots(n+k) \geqslant\left\lceil k \cdot f_{N}(k)\right\rceil$!. Moreover, because $N^{k} \geqslant(n+1) \cdots(n+k)$, by applying the well-known inequality $\log t!\geqslant t \log t-t$, we have

$$
\begin{align*}
k \log N & \geqslant \log ((n+1) \cdots(n+k)) \geqslant \log \left(\left\lceil k \cdot f_{N}(k)\right\rceil!\right) \\
& \geqslant k \cdot f_{N}(k) \cdot \log \left(k \cdot f_{N}(k)\right)-k \cdot f_{N}(k) \tag{2}
\end{align*}
$$

Finally, dividing equation 2 by k we obtain

$$
\begin{equation*}
\log N \geqslant f_{N}(k) \cdot \log \left(k \cdot f_{N}(k)\right)-f_{N}(k) \tag{3}
\end{equation*}
$$

Define the interval $I_{N}=\left[\exp \left(C_{1} \cdot C_{2} \cdot \log \log N\right), \infty\right)$. Using standard arguments, one may infer that f_{N} is increasing on I_{N}.

Let us suppose, for the sake of contradiction, that $k>\exp (C \sqrt{\log N \log \log N})$, where $C>\max \left(\sqrt{C_{2}}, C_{1} \cdot C_{2}\right)$. Firstly, note that since $\log N>\log \log N$ and $C>C_{1} \cdot C_{2}$ then $\exp (C \sqrt{\log N \log \log N})$ and k are in I_{N}. Therefore, we have

$$
\begin{align*}
f_{N}(k) & >f_{N}(\exp (C \sqrt{\log N \log \log N})) \\
& =\frac{C}{C_{2}} \sqrt{\frac{\log N}{\log \log N}}-\frac{\log 4}{C_{2} \log \log N}-C_{1} \log (C \sqrt{\log N \log \log N}) \tag{4}
\end{align*}
$$

Viewing equation 4 as a function in N, it is evident that for large enough N (greater than some N_{1}) we also have $f_{N}(k)>e$. In what follows, we will assume that $N>N_{1}$.

As $f_{N}(k)>e$, it follows from equation 3 that $\log N \geqslant f_{N}(k) \cdot \log k$. Further, applying equation 4 and the estimate for k and isolating the term $\log N$, we get

$$
\frac{C \log 4}{C_{2}} \sqrt{\frac{\log N}{\log \log N}}+C_{1} C \sqrt{\log N \log \log N} \log (C \sqrt{\log N \log \log N}) \geqslant\left(\frac{C^{2}}{C_{2}}-1\right) \log N
$$

Recall that $C>\sqrt{C_{2}}$, so the latter inequality is absurd for large enough N (greater than some N_{2}), as the left-hand side is asymptotically much smaller than $\log N$. Therefore, Theorem 1.1 holds for $N>\max \left(N_{1}, N_{2}\right)$ and $C>\max \left(\sqrt{C_{2}}, C_{1} \cdot C_{2}\right)$.

3 An Explicit Form of Theorem 1.1

Let $\Omega(n)$ denote the number of prime factors of n, counting multiplicities. Note that $2^{\omega(n)} \leqslant d(n) \leqslant 2^{\Omega(n)}$ for all positive integers n. Further, we have the following estimates:

Lemma 3.1 The product $n \#$ of the prime numbers not exceeding n satisfies $\log n \# \sim n$.
Lemma 3.2 The sum of $1 / \log p$ taken over the prime numbers not exceeding n satisfies

$$
\sum_{p \leqslant n} \frac{1}{\log p}=\frac{n}{(\log n)^{2}}+O\left(\frac{n \log \log n}{(\log n)^{3}}\right)=o(1) \cdot \frac{n}{\log n}
$$

Let M be the greatest positive integer satisfying $M \# \leqslant k$. Then, there exists $1 \leqslant$ $m \leqslant k$ so that M \# divides $n+m$. Hence, for any $1 \leqslant i \leqslant k$ we have

$$
2^{\Omega(n+i)} \geqslant d(n+i)=d(n+m) \geqslant d(M \#) \geqslant 2^{\omega(M \#)}=2^{\pi(M)}
$$

so $\Omega(n+i) \geqslant \pi(M)$. It follows that $\Omega(n+1)+\Omega(n+2)+\cdots+\Omega(n+k) \geqslant k \pi(M)$.
Fix a prime number $p \leqslant k$. Then, for every exponent $t \leqslant \log _{p} N$ there are at most $\left\lceil k / p^{t}\right\rceil \leqslant k / p^{t}+1$ numbers divisible by p^{t} among $n+1, n+2, \ldots, n+k$. Furthermore, if $t>\log _{p} N$, then $p^{t}>N$ so none of $n+1, n+2, \ldots, n+k$ are divisible by p^{t}.

Following the same double-counting technique as in Legendre's Theorem, we may infer

$$
\begin{equation*}
\sum_{i=1}^{k} \nu_{p}(n+i) \leqslant \sum_{t=1}^{\left\lfloor\log _{p} N\right\rfloor}\left(1+\frac{k}{p^{t}}\right)<\frac{\log N}{\log p}+\frac{k}{p-1} \tag{5}
\end{equation*}
$$

Notice that $n+i$ has at $\operatorname{most} \log _{k} N$ prime factors greater than k, including multiplicities. Combining this observation with equation 5 and Lemmas 2.2 and 3.2, we get

$$
\begin{align*}
k \pi(M) & \leqslant \sum_{i=1}^{k} \Omega(n+i)=\sum_{p>k} \sum_{i=1}^{k} \nu_{p}(n+i)+\sum_{p \leqslant k} \sum_{i=1}^{k} \nu_{p}(n+i) \\
& \leqslant \frac{k \log N}{\log k}+\sum_{p \leqslant k}\left(\frac{\log N}{\log p}+\frac{k}{p-1}\right)=(1+o(1)) \frac{k \log N}{\log k}+O(k \log \log k) . \tag{6}
\end{align*}
$$

It follows from Lemma 3.1 and the Prime Number Theorem that $\pi(M) \sim \log k / \log \log k$. Further, note that $k \log \log k=o(1) \cdot k \log k / \log \log k$. Using these observations in equation 6 we get

$$
\frac{k \log k}{\log \log k} \sim k \pi(M) \leqslant(1+o(1)) \frac{k \log N}{\log k}+o(1) \frac{k \log k}{\log \log k}
$$

Dividing through k and isolating the remaining functions in k on the left-hand side, we have $(\log k)^{2} / \log \log k \leqslant(1+o(1)) \log N$. Using standard arguments, we finally get

$$
\log k \leqslant \sqrt{(1 / 2+o(1)) \log N \log \log N} .
$$

4 The Proof of Theorem 1.2

We will keep the notation used in Section 2. We will require the following estimates:
Lemma 4.1 The sum of the prime numbers not exceeding n satisfies

$$
\sum_{p \leqslant n} p=\frac{n^{2}}{2 \log n}+O\left(\frac{n^{2}}{(\log n)^{2}}\right) \sim \frac{n^{2}}{2 \log n}
$$

Lemma 4.2 Let n be a positive integer and $p_{\min }$ be its smallest prime divisor. Then,

$$
\frac{\log n}{\log p_{\min }} \geqslant \sum_{p}(p-1) \nu_{p}(d(n)) .
$$

Proof. Throughout the rest of the proof, the letters p and q will refer strictly to prime numbers. Note that since $p_{\min }$ is the smallest prime factor of n, by taking logarithms we get

$$
\begin{equation*}
\log n=\sum_{q} \nu_{q}(n) \log q \geqslant \log p_{\min } \sum_{q} \nu_{q}(n) . \tag{7}
\end{equation*}
$$

Further, using the fact that $m^{n}-1 \geqslant n(m-1)$ for all positive integers, we infer that

$$
\begin{equation*}
k=\prod_{p} p^{\nu_{p}(k+1)}-1 \geqslant \sum_{p}\left(p^{\nu_{p}(k+1)}-1\right) \geqslant \sum_{p}(p-1) \nu_{p}(k+1) \tag{8}
\end{equation*}
$$

for any positive integer k. Using inequality 8 on $\nu_{q}(n)$ in equation 7 , we further have

$$
\begin{aligned}
\frac{\log n}{\log p_{\min }} & \geqslant \sum_{q} \nu_{q}(n) \geqslant \sum_{q} \sum_{p}(p-1) \nu_{p}\left(\nu_{q}(n)+1\right)=\sum_{p}\left((p-1) \sum_{q} \nu_{p}\left(\nu_{q}(n)+1\right)\right) \\
& =\sum_{p}(p-1) \nu_{p}\left(\prod_{q}\left(\nu_{q}(n)+1\right)\right)=\sum_{p}(p-1) \nu_{p}(d(n)),
\end{aligned}
$$

giving us the desired result.
The proof now hinges on finding an index i for which $n+i$ has a large minimal prime factor. Jacobsthal [6] defines the function $j(n)$ to be the least integer so that amongst any $j(n)$ consecutive integers there exists at least one relatively prime to n.

Therefore, if a positive integer M satisfies $j(M \#) \leqslant k$, then some $n+i$ has the minimal prime factor larger than M. As pointed out by Erdős [7], it follows directly from Brun's sieve that $j(n) \ll \omega(n)^{C}$ for a suitable constant C, hence $\log j(n) \ll \log \omega(n)$.

It follows that $\log j(M \#) \ll \log \omega(M \#)=\log \pi(M) \ll \log M$, so among our k consecutive integers we may find one, $n+i$, whose minimal prime factor $p_{\min }$ satisfies $\log p_{\min } \gg \log k$. Further, recall that every prime number not exceeding $\log _{2} k$ divides $D=d(n+i)$. Applying Lemmas 4.1 and 4.2 we then get

$$
\frac{\log N}{\log k} \gg \frac{\log (n+i)}{\log p_{\min }} \geqslant \sum_{p}(p-1) \nu_{p}(D) \gg \sum_{p \leqslant \log _{2} k} p \sim \frac{\left(\log _{2} k\right)^{2}}{2 \log \log _{2} k}
$$

Consequently, $\log N \gg(\log k)^{3} / \log \log k$, from which Theorem 1.2 easily follows.

Acknowledgments

I would like to express my deep gratitude to Andrew Granville, for his support and for his contribution [8] with the material presented throughout Sections 3 and 4. Additionally, I would like to thank Alexandru Gica for his constant guidance, his insightful comments, and for proofreading my paper.

References

[1] C.A. Spiro, The Frequency with Which an Integral-Valued, Prime-Independent, Multiplicative or Additive Function of n Divides a Polynomial Function of n, Ph.D. thesis, University of Illinois at Urbana-Champaign, 1981.
[2] D.R. Heath-Brown, The Divisor Function at Consecutive Integers, Mathematika, 31 (1984), 141-149.
[3] C.G. Pinner, Repeated Values of the Divisor Function, Q. J. Math., 48 (1997), 499-502.
[4] P. Erdős, L. Mirsky, The Distribution of Values of the Divisor Function d(n), Proc. London Math. Soc. (2), 3 (1952), 257-271.
[5] B. Farhi, An Identity Involving the Least Common Multiple of Binomial Coefficients and Its Application, Amer. Math. Monthly, 116 (2009), 836-839.
[6] E.E. Jacobsthal, Über Sequenzen ganzer Zahlen: von denen keine zu n teilerfremd ist, Norske Vid. Selsk. Forhdl., 33 (1960), 117-124.
[7] P. Erdős, On the Integers Relatively Prime to n and on a Number-Theoretic Function Considered by Jacobshtal, Math. Scand., 10 (1962), 163-170.
[8] A.J. Granville, private communication, 2023.

Vlad-Titus Spătaru
Liceul Teoretic Internaţional de Informatică Bucureşti
Str. Balta Albina nr. 9, Bucharest, Romania
E-mail: vtspataru@gmail.com

Received: December 18, 2022 Accepted: February 2, 2023
Communicated by Kevin J. McGown

