Runs of Consecutive Integers Having the Same Number of Divisors

V.-T. Spătaru

Abstract - Our objective is to provide an upper bound for the length ℓ_N of the longest run of consecutive integers smaller than N which have the same number of divisors. We prove in an elementary way that $\log \ell_N \ll (\log N \log \log N)^{\lambda}$, where $\lambda = 1/2$. Using estimates for the Jacobsthal function, we then improve the result to $\lambda = 1/3$.

Keywords : divisor counting function; consecutive equidivisible integers

Mathematics Subject Classification (2020) : 11A25; 11N37

1 Introduction

Let d(n) denote the number of positive divisors of n. The equation d(n) = d(n + k) has been studied extensively. Spiro [1] showed that it has infinitely many solutions for k = 5040. Subsequently, Heath-Brown [2] established the case k = 1, and Pinner [3] ultimately proved that all values of k yield infinitely many solutions.

As d(n) is equal to d(n + 1) infinitely often, one naturally wonders how many consecutive integers can there be, having the same number of divisors. Erdős and Mirsky [4] conjectured that there are arbitrarily long such runs of integers. They were not able to provide any estimates for the length of such sequences: "A related problem consists in the estimation of the longest run of consecutive integers $\leq x$ all of which have the same number of divisors. This problem seems to be one of exceptional difficulty, and we [Erdős & Mirsky] have not been able to make any progress with it."

Our principal objective is to provide an upper bound for the length ℓ_N of the runs in question. In Section 2, we estimate the order of magnitude of the d(n) and $\omega(n)$ functions and obtain the following estimate in an elementary manner:

Theorem 1.1 Let ℓ_N denote the length of the longest run of consecutive integers smaller than N, having the same number of divisors. Then,

$$\log \ell_N \ll \sqrt{\log N \cdot \log \log N}.$$

Subsequently, in Section 3, we provide a quicker proof of Theorem 1.1 based on the Prime Number Theorem. We also get the following explicit form of Theorem 1.1:

$$\log \ell_N \leqslant \sqrt{(1/2 + o(1))} \log N \log \log N.$$

THE PUMP JOURNAL OF UNDERGRADUATE RESEARCH 6 (2023), 96-101

Finally, in Section 4 we prove a stronger version of Theorem 1.1 using estimates of the Jacobsthal function deduced from Brun's sieve method. We obtain the following result:

Theorem 1.2 Let ℓ_N denote the length of the longest run of consecutive integers smaller than N, having the same number of divisors. Then,

$$\log \ell_N \ll \sqrt[3]{\log N} \cdot \log \log N.$$

2 An Elementary Proof of Theorem 1.1

In proving Theorem 1.1, we will make use of the following lemmas, the first being proven in an elementary manner in [5] and the second being Mertens' bound.

Lemma 2.1 Let n be a positive integer. Then, $lcm(1, 2, ..., n+1) \ge 2^n$.

Lemma 2.2 The sum of the reciprocals of the prime numbers not exceeding n satisfies

$$\sum_{p \leqslant n} \frac{1}{p} = \log \log n + M + O\left(\frac{1}{\log n}\right) \ll \log \log n$$

Note that it suffices to prove that Theorem 1.1 holds for large enough N. Assume that there exist k > 2 consecutive numbers smaller than N, having the same number of divisors. Let them be n + 1, n + 2, ..., n + k and write

$$d(n+1) = d(n+2) = \dots = d(n+k) = D.$$

We will firstly provide an estimate for D, in terms of k. For simplicity, let $K = \lfloor \log_2 k \rfloor$.

As $k \ge 2^{K}$, all residues modulo 2^{K} are among $n+1, n+2, \ldots, n+k$. Therefore, for all $1 \le i \le K-1$, there exists some $1 \le t_i \le k$ such that $n+t_i \equiv 2^i \mod 2^K$. Consequently, $\nu_2(n+t_i) = i$, so i+1 divides $d(n+t_i) = D$.

Hence, D is divisible by lcm(1, 2, ..., K). Using Lemma 2.1, we infer that

$$D \ge \operatorname{lcm}(1, 2, \dots, K) \ge 2^{K-1}.$$

Recall that $K = \lfloor \log_2 k \rfloor \ge \log_2 k - 1$, so $D \ge k/4$.

Let $\omega(n)$ denote the number of distinct prime factors of n. Choose $1 \leq l \leq k$ arbitrarily. As $n + l \leq N$, it follows that $\nu_p(n + l) \leq \log_p N \leq \log_2 N$ for all prime numbers p. Therefore,

$$D = d(n+l) = \prod_{p} (\nu_p(n+l)+1) \leqslant \prod_{p|n+l} (\log_2 N+1) = (\log_2 N+1)^{\omega(n+l)}.$$

Taking logarithms, it follows that $\omega(n+l) \ge \log D/\log(\log_2 N+1)$. Moreover, note that a prime number p can divide at most $\lceil k/p \rceil \le k/p+1$ numbers among $n+1, \ldots, n+k$. Therefore, using Lemma 2.2, it follows that

$$\omega((n+1)\cdots(n+k)) \ge \sum_{i=1}^k \omega(n+i) - \sum_{p \le k} \frac{k}{p} \ge \frac{k \log D}{\log(\log_2 N + 1)} - C_1 k \log \log k,$$

The pump journal of undergraduate research 6 (2023), 96–101

for a suitable constant C_1 . Further, we will write $\log(\log_2 N + 1) \leq C_2 \log \log N$, for some constant C_2 . Recall that $D \geq k/4$, so we have

$$\omega((n+1)\cdots(n+k)) \geqslant \frac{k\log(k/4)}{C_2\log\log N} - C_1k\log\log k.$$
(1)

Write the right-hand side of equation 1 as $k \cdot f_N(k)$. Clearly, if $\omega(a) \ge b$ then $a \ge b!$. Using this remark on equation 1, we get $(n+1)\cdots(n+k) \ge \lceil k \cdot f_N(k) \rceil!$. Moreover, because $N^k \ge (n+1)\cdots(n+k)$, by applying the well-known inequality $\log t! \ge t \log t - t$, we have

$$k \log N \ge \log \left((n+1) \cdots (n+k) \right) \ge \log \left(\left\lceil k \cdot f_N(k) \right\rceil \right)$$

$$\ge k \cdot f_N(k) \cdot \log(k \cdot f_N(k)) - k \cdot f_N(k).$$
(2)

Finally, dividing equation 2 by k we obtain

$$\log N \ge f_N(k) \cdot \log(k \cdot f_N(k)) - f_N(k).$$
(3)

Define the interval $I_N = [\exp(C_1 \cdot C_2 \cdot \log \log N), \infty)$. Using standard arguments, one may infer that f_N is increasing on I_N .

Let us suppose, for the sake of contradiction, that $k > \exp(C\sqrt{\log N \log \log N})$, where $C > \max(\sqrt{C_2}, C_1 \cdot C_2)$. Firstly, note that since $\log N > \log \log N$ and $C > C_1 \cdot C_2$ then $\exp(C\sqrt{\log N \log \log N})$ and k are in I_N . Therefore, we have

$$f_N(k) > f_N\left(\exp\left(C\sqrt{\log N \log\log N}\right)\right)$$
$$= \frac{C}{C_2}\sqrt{\frac{\log N}{\log\log N}} - \frac{\log 4}{C_2\log\log N} - C_1\log\left(C\sqrt{\log N \log\log N}\right).$$
(4)

Viewing equation 4 as a function in N, it is evident that for large enough N (greater than some N_1) we also have $f_N(k) > e$. In what follows, we will assume that $N > N_1$.

As $f_N(k) > e$, it follows from equation 3 that $\log N \ge f_N(k) \cdot \log k$. Further, applying equation 4 and the estimate for k and isolating the term $\log N$, we get

$$\frac{C\log 4}{C_2}\sqrt{\frac{\log N}{\log\log N}} + C_1C\sqrt{\log N\log\log N}\log\left(C\sqrt{\log N\log\log N}\right) \ge \left(\frac{C^2}{C_2} - 1\right)\log N.$$

Recall that $C > \sqrt{C_2}$, so the latter inequality is absurd for large enough N (greater than some N_2), as the left-hand side is asymptotically much smaller than log N. Therefore, Theorem 1.1 holds for $N > \max(N_1, N_2)$ and $C > \max(\sqrt{C_2}, C_1 \cdot C_2)$.

3 An Explicit Form of Theorem 1.1

Let $\Omega(n)$ denote the number of prime factors of n, counting multiplicities. Note that $2^{\omega(n)} \leq d(n) \leq 2^{\Omega(n)}$ for all positive integers n. Further, we have the following estimates:

The pump journal of undergraduate research 6 (2023), 96–101

Lemma 3.1 The product n# of the prime numbers not exceeding n satisfies $\log n\# \sim n$.

Lemma 3.2 The sum of $1/\log p$ taken over the prime numbers not exceeding n satisfies

$$\sum_{p \leqslant n} \frac{1}{\log p} = \frac{n}{(\log n)^2} + O\left(\frac{n \log \log n}{(\log n)^3}\right) = o(1) \cdot \frac{n}{\log n}$$

Let M be the greatest positive integer satisfying $M \# \leq k$. Then, there exists $1 \leq m \leq k$ so that M # divides n + m. Hence, for any $1 \leq i \leq k$ we have

$$2^{\Omega(n+i)} \ge d(n+i) = d(n+m) \ge d(M\#) \ge 2^{\omega(M\#)} = 2^{\pi(M)},$$

so $\Omega(n+i) \ge \pi(M)$. It follows that $\Omega(n+1) + \Omega(n+2) + \cdots + \Omega(n+k) \ge k\pi(M)$.

Fix a prime number $p \leq k$. Then, for every exponent $t \leq \log_p N$ there are at most $\lceil k/p^t \rceil \leq k/p^t + 1$ numbers divisible by p^t among $n + 1, n + 2, \ldots, n + k$. Furthermore, if $t > \log_p N$, then $p^t > N$ so none of $n + 1, n + 2, \ldots, n + k$ are divisible by p^t .

Following the same double-counting technique as in Legendre's Theorem, we may infer

$$\sum_{i=1}^{k} \nu_p(n+i) \leqslant \sum_{t=1}^{\lfloor \log_p N \rfloor} \left(1 + \frac{k}{p^t}\right) < \frac{\log N}{\log p} + \frac{k}{p-1}.$$
(5)

Notice that n + i has at most $\log_k N$ prime factors greater than k, including multiplicities. Combining this observation with equation 5 and Lemmas 2.2 and 3.2, we get

$$k\pi(M) \leqslant \sum_{i=1}^{k} \Omega(n+i) = \sum_{p>k} \sum_{i=1}^{k} \nu_p(n+i) + \sum_{p\leqslant k} \sum_{i=1}^{k} \nu_p(n+i)$$
$$\leqslant \frac{k\log N}{\log k} + \sum_{p\leqslant k} \left(\frac{\log N}{\log p} + \frac{k}{p-1}\right) = (1+o(1))\frac{k\log N}{\log k} + O(k\log\log k).$$
(6)

It follows from Lemma 3.1 and the Prime Number Theorem that $\pi(M) \sim \log k / \log \log k$. Further, note that $k \log \log k = o(1) \cdot k \log k / \log \log k$. Using these observations in equation 6 we get

$$\frac{k\log k}{\log\log k} \sim k\pi(M) \leqslant (1+o(1))\frac{k\log N}{\log k} + o(1)\frac{k\log k}{\log\log k}.$$

Dividing through k and isolating the remaining functions in k on the left-hand side, we have $(\log k)^2 / \log \log k \leq (1 + o(1)) \log N$. Using standard arguments, we finally get

$$\log k \leqslant \sqrt{(1/2 + o(1)) \log N \log \log N}.$$

The pump journal of undergraduate research 6 (2023), 96–101

4 The Proof of Theorem 1.2

We will keep the notation used in Section 2. We will require the following estimates:

Lemma 4.1 The sum of the prime numbers not exceeding n satisfies

$$\sum_{p \le n} p = \frac{n^2}{2\log n} + O\left(\frac{n^2}{(\log n)^2}\right) \sim \frac{n^2}{2\log n}$$

Lemma 4.2 Let n be a positive integer and p_{min} be its smallest prime divisor. Then,

$$\frac{\log n}{\log p_{min}} \ge \sum_{p} (p-1)\nu_p(d(n)).$$

Proof. Throughout the rest of the proof, the letters p and q will refer strictly to prime numbers. Note that since p_{\min} is the smallest prime factor of n, by taking logarithms we get

$$\log n = \sum_{q} \nu_q(n) \log q \ge \log p_{\min} \sum_{q} \nu_q(n).$$
(7)

Further, using the fact that $m^n - 1 \ge n(m-1)$ for all positive integers, we infer that

$$k = \prod_{p} p^{\nu_p(k+1)} - 1 \ge \sum_{p} \left(p^{\nu_p(k+1)} - 1 \right) \ge \sum_{p} (p-1)\nu_p(k+1)$$
(8)

for any positive integer k. Using inequality 8 on $\nu_q(n)$ in equation 7, we further have

$$\frac{\log n}{\log p_{\min}} \ge \sum_{q} \nu_q(n) \ge \sum_{q} \sum_{p} (p-1)\nu_p(\nu_q(n)+1) = \sum_{p} \left((p-1)\sum_{q} \nu_p(\nu_q(n)+1) \right)$$
$$= \sum_{p} (p-1)\nu_p\left(\prod_{q} (\nu_q(n)+1)\right) = \sum_{p} (p-1)\nu_p(d(n)),$$

giving us the desired result.

The proof now hinges on finding an index i for which n + i has a large minimal prime factor. Jacobsthal [6] defines the function j(n) to be the least integer so that amongst any j(n) consecutive integers there exists at least one relatively prime to n.

Therefore, if a positive integer M satisfies $j(M\#) \leq k$, then some n+i has the minimal prime factor larger than M. As pointed out by Erdős [7], it follows directly from Brun's sieve that $j(n) \ll \omega(n)^C$ for a suitable constant C, hence $\log j(n) \ll \log \omega(n)$.

It follows that $\log j(M\#) \ll \log \omega(M\#) = \log \pi(M) \ll \log M$, so among our k consecutive integers we may find one, n + i, whose minimal prime factor p_{\min} satisfies $\log p_{\min} \gg \log k$. Further, recall that every prime number not exceeding $\log_2 k$ divides D = d(n + i). Applying Lemmas 4.1 and 4.2 we then get

$$\frac{\log N}{\log k} \gg \frac{\log(n+i)}{\log p_{\min}} \geqslant \sum_{p} (p-1)\nu_p(D) \gg \sum_{p \leqslant \log_2 k} p \sim \frac{(\log_2 k)^2}{2\log\log_2 k}$$

Consequently, $\log N \gg (\log k)^3 / \log \log k$, from which Theorem 1.2 easily follows.

The pump journal of undergraduate research 6 (2023), 96–101

Acknowledgments

I would like to express my deep gratitude to Andrew Granville, for his support and for his contribution [8] with the material presented throughout Sections 3 and 4. Additionally, I would like to thank Alexandru Gica for his constant guidance, his insightful comments, and for proofreading my paper.

References

- [1] C.A. Spiro, The Frequency with Which an Integral-Valued, Prime-Independent, Multiplicative or Additive Function of n Divides a Polynomial Function of n, Ph.D. thesis, University of Illinois at Urbana-Champaign, 1981.
- [2] D.R. Heath-Brown, The Divisor Function at Consecutive Integers, Mathematika, 31 (1984), 141–149.
- [3] C.G. Pinner, Repeated Values of the Divisor Function, Q. J. Math., 48 (1997), 499–502.
- [4] P. Erdős, L. Mirsky, The Distribution of Values of the Divisor Function d(n), Proc. London Math. Soc. (2), 3 (1952), 257–271.
- [5] B. Farhi, An Identity Involving the Least Common Multiple of Binomial Coefficients and Its Application, Amer. Math. Monthly, 116 (2009), 836–839.
- [6] E.E. Jacobsthal, Über Sequenzen ganzer Zahlen: von denen keine zu n teilerfremd ist, Norske Vid. Selsk. Forhdl., 33 (1960), 117–124.
- [7] P. Erdős, On the Integers Relatively Prime to n and on a Number-Theoretic Function Considered by Jacobshtal, Math. Scand., 10 (1962), 163–170.
- [8] A.J. Granville, private communication, 2023.

Vlad-Titus Spătaru Liceul Teoretic Internațional de Informatică București Str. Balta Albina nr. 9, Bucharest, Romania E-mail: vtspataru@gmail.com

Received: December 18, 2022 Accepted: February 2, 2023 Communicated by Kevin J. McGown