Runs of Consecutive Integers Having the Same
Number of Divisors

V.-T. SPATARU

Abstract - Our objective is to provide an upper bound for the length ¢ of the longest run
of consecutive integers smaller than N which have the same number of divisors. We prove
in an elementary way that log £ < (log N loglog N)*, where A\ = 1/2. Using estimates for
the Jacobsthal function, we then improve the result to A = 1/3.
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1 Introduction

Let d(n) denote the number of positive divisors of n. The equation d(n) = d(n + k)
has been studied extensively. Spiro [I] showed that it has infinitely many solutions for
k = 5040. Subsequently, Heath-Brown [2] established the case k = 1, and Pinner [3]
ultimately proved that all values of k yield infinitely many solutions.

As d(n) is equal to d(n + 1) infinitely often, one naturally wonders how many con-
secutive integers can there be, having the same number of divisors. Erdés and Mirsky
[4] conjectured that there are arbitrarily long such runs of integers. They were not able
to provide any estimates for the length of such sequences: “A related problem consists in
the estimation of the longest run of consecutive integers < x all of which have the same
number of divisors. This problem seems to be one of exceptional difficulty, and we [Erdds
& Mirsky| have not been able to make any progress with it.”

Our principal objective is to provide an upper bound for the length /5 of the runs in
question. In Section [2| we estimate the order of magnitude of the d(n) and w(n) functions
and obtain the following estimate in an elementary manner:

Theorem 1.1 Let {y denote the length of the longest run of consecutive integers smaller
than N, having the same number of divisors. Then,

log (ny < \/logN-loglogN.

Subsequently, in Section [3, we provide a quicker proof of Theorem based on the
Prime Number Theorem. We also get the following explicit form of Theorem [I.1}

log £y < v/(1/2+ o(1))log N loglog N.
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Finally, in Section [l we prove a stronger version of Theorem using estimates of the
Jacobsthal function deduced from Brun’s sieve method. We obtain the following result:

Theorem 1.2 Let {y denote the length of the longest run of consecutive integers smaller
than N, having the same number of divisors. Then,

logln < {”/logN -loglog N.

2 An Elementary Proof of Theorem (1.1

In proving Theorem [1.1 we will make use of the following lemmas, the first being proven
in an elementary manner in [5] and the second being Mertens’ bound.

Lemma 2.1 Let n be a positive integer. Then, lem(1,2,...,n+ 1) > 2".

Lemma 2.2 The sum of the reciprocals of the prime numbers not exceeding n satisfies

1 1
Z— = loglogn + M + O (—) < loglogn.
logn

PN

Note that it suffices to prove that Theorem holds for large enough N. Assume
that there exist £ > 2 consecutive numbers smaller than /N, having the same number of
divisors. Let them be n + 1, n+ 2, ..., n+ k and write

dn+1)=dn+2)=--=dn+k) = D.

We will firstly provide an estimate for D, in terms of k. For simplicity, let K = |log, k.
As k > 2% all residues modulo 2% are among n+1, n+2, ..., n+k. Therefore, for all
1 <i < K —1, there exists some 1 < t; < k such that n +¢; = 2/ mod 2¥. Consequently,
vo(n+t;) =1, s0 i+ 1 divides d(n +t;) = D.
Hence, D is divisible by lem(1,2,..., K). Using Lemma[2.1] we infer that

D >lem(1,2,...,K) > 2571

Recall that K = [log, k| > logy k — 1, s0 D > k/4.

Let w(n) denote the number of distinct prime factors of n. Choose 1 < I < k arbitrar-
ily. Asn+1< N, it follows that v,(n + 1) < log, N < logy N for all prime numbers p.
Therefore,

D=dn+1)= H(yp(n +1)+1) < H (logy N 4 1) = (logy N 4 1)~ *0).

P p|n+l

Taking logarithms, it follows that w(n + ) > log D/log(log, N + 1). Moreover, note
that a prime number p can divide at most [k/p] < k/p + 1 numbers among n + 1, ...,
n + k. Therefore, using Lemma [2.2] it follows that

k

win+1)--(n+k)=> wh+i)—Y

i=1 p<k

E> klog D
p~ log(log, N +1)

— Chkloglog k,
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for a suitable constant C. Further, we will write log(log, N + 1) < Cyloglog N, for some
constant Cy. Recall that D > k/4, so we have

klog(k/4)

w(in+1)---(n+k)) > > Crloglog N

— Chkloglogk. (1)

Write the right-hand side of equation |l{ as k - fy(k). Clearly, if w(a) > b then a > b!.
Using this remark on equation [I] we get (n+1)---(n + k) > [k fn(k)]!. Moreover,
because N¥ > (n+1)--- (n+k), by applying the well-known inequality logt! > tlogt —t,
we have

klogN >log((n+1)---(n+k)) > log ([k- fn(k)]!)
>

k- fn(k)-log(k - fn(k)) — k- fn(k). (2)
Finally, dividing equation [2| by k we obtain
log N = fn(k) -log(k - fn(k)) — fn(k). (3)

Define the interval Iy = [exp (C} - Cs - loglog N) , 00). Using standard arguments, one
may infer that fy is increasing on Iy.

Let us suppose, for the sake of contradiction, that k > exp (C’ Vlog N'loglog N), where
C > max(y/Cy, C, - Cy). Firstly, note that since log N > loglog N and C > C; - Cy then
exp (C’\/logNlog log N) and k are in Iy. Therefore, we have

In(k) > fn (exp <C’\/logNloglog N))

_C log N log 4
~ Cy\/ loglog N  Cyloglog N

— Chlog (C\/logNlog log N) : (4)

Viewing equation [4] as a function in N, it is evident that for large enough N (greater than
some N;) we also have fy(k) > e. In what follows, we will assume that N > Nj.

As fy(k) > e, it follows from equation [3|that log N > fn(k) - log k. Further, applying
equation [] and the estimate for £ and isolating the term log N, we get

Clog4 log N o2
= -~ .
Cy \/ loglog N + C1Cy/log N'loglog N log <C\/logNlog log N) > (02 1) log N

Recall that C' > /5, so the latter inequality is absurd for large enough N (greater than
some Ns), as the left-hand side is asymptotically much smaller than log N. Therefore,
Theorem holds for N > max(Ny, N3) and C' > max(1/Cy, Cy - Cs).

3 An Explicit Form of Theorem

Let Q(n) denote the number of prime factors of n, counting multiplicities. Note that
< d(n) <29 for all positive integers n. Further, we have the following estimates:
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Lemma 3.1 The product n# of the prime numbers not exceeding n satisfies logn# ~ n.
Lemma 3.2 The sum of 1/logp taken over the prime numbers not exceeding n satisfies

1 n nloglogn n
= —_— = 1 T .
> rer = s 0 (Teanp) =0 g

psn

Let M be the greatest positive integer satisfying M# < k. Then, there exists 1 <
m < k so that M+ divides n + m. Hence, for any 1 <7 < k we have

92 (n+i) >dn+i) =dn+m) > dM#) > ow(M#) _ 27r(M)7

so Qn+1i) = w(M). It follows that Q(n+ 1) +Qn+2)+---+Q(n+ k) > kx(M).
Fix a prime number p < k. Then, for every exponent ¢ < log, N there are at most

[k/p"| < k/p' + 1 numbers divisible by p* among n+ 1, n+ 2, ..., n + k. Furthermore,

if £ > log, N, then p' > N so none of n +1, n 42, ..., n+ k are divisible by p".
Following the same double-counting technique as in Legendre’s Theorem, we may infer

[log, N|

Zup(n+z’)< > (1+E)<logN+i. (5)

— P logp ~ p—1

Notice that n+ 7 has at most log; N prime factors greater than k, including multiplic-
ities. Combining this observation with equation [5] and Lemmas [2.2] and we get

log k = logp p—1

It follows from Lemma3.1]and the Prime Number Theorem that (M) ~ log k/loglog .
Further, note that kloglogk = o(1) - klog k/loglog k. Using these observations in equa-
tion [6] we get

klogk
log log k

klog N
log k

klog k
loglog k'

kr(M) < (1+o0(1)) +o(1)

Dividing through k and isolating the remaining functions in k£ on the left-hand side,
we have (log k)?/loglogk < (1 + o(1)) log N. Using standard arguments, we finally get

logk < v/(1/2+ o(1))log N loglog N.
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4 The Proof of Theorem [1.2]

We will keep the notation used in Section 2] We will require the following estimates:
Lemma 4.1 The sum of the prime numbers not exceeding n satisfies

Z _ n2 Lo n? N n2
p 2logn (log n)? 2logn’

PN

Lemma 4.2 Let n be a positive integer and Py, be its smallest prime divisor. Then,

> (p— Dypld(n)).

p

logn
lOg Pmin

Proof. Throughout the rest of the proof, the letters p and ¢ will refer strictly to prime
numbers. Note that since py;, is the smallest prime factor of n, by taking logarithms we
get

logn = Z vy(n)log q = log pmin Z vy(n). (7)
q q
Further, using the fact that m™ — 1 > n(m — 1) for all positive integers, we infer that

L — prp(kﬂ) 1> Z (prr* D) —1) > Z(p — Dk +1) (8)
p p

p

for any positive integer k. Using inequality |8 on v,(n) in equation , we further have

DRSS () = 30 S 0= D) + 1) = 3 (<p — 1) wlv(n) + 1>)

log Pmin » q

—S 0 1y, (qu(m + 1>) S - Do),

q p

giving us the desired result. 0

The proof now hinges on finding an index ¢ for which n 4 ¢ has a large minimal prime
factor. Jacobsthal [6] defines the function j(n) to be the least integer so that amongst
any j(n) consecutive integers there exists at least one relatively prime to n.

Therefore, if a positive integer M satisfies j(M#) < k, then some n+i has the minimal
prime factor larger than M. As pointed out by Erdds [7], it follows directly from Brun’s
sieve that j(n) < w(n)® for a suitable constant C, hence log j(n) < logw(n).

It follows that logj(M#) < logw(M#) = logn(M) < log M, so among our k
consecutive integers we may find one, n + ¢, whose minimal prime factor p.;, satisfies
log pmin > log k. Further, recall that every prime number not exceeding log, k£ divides
D =d(n+1). Applying Lemmas [4.1] and 4.2| we then get

log N __ log(n +1) (log, k)?
> — Dy, (D ~
log k > log Prin Z(p Jp(D) > Z P™~35 log log, k

D p<logy k

Consequently, log N > (log k)3/loglog k, from which Theorem easily follows.
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