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1 Introduction

The classic isoperimetric (or equivalent iso-area) problem asks one to find, out of all simple
closed curves in the plane with fixed perimeter P , the curve that encloses the maximal
amount of area A (or equivalently, find the curve that minimizes perimeter out of al curves
that encloses fixed area). These specific problems, as well as their solution (a circle of an
appropriate area or perimeter), have been known since antiquity. Related problems (such
as the corresponding isoperimetric problem in R3) have been studied more recently, in
which solutions to an isoperimeteric problem are often called an isoperimetric region or a
“bubble” (the word is due to how soap films naturally form isoperimetric surfaces in R3).

Isoperimetric problems can be generalized in a number of ways: we can look at closed
hypersurfaces (as analogues of simple closed curves) within Rn or other manifolds; we
can look to optimize the total perimeter of multiple regions simultaneously; or we can
introduce density functions on the ambient space, affecting how perimeter and area are
measured.

Our work will examine the multibubble isoperimetric problem on R1 with a prescribed
density function of |x|. Under such a framework, individual intervals (of the form I =
[a, b]) on the real number line have weighted area (which we will call mass) M and weighted

perimeter P affected by the density function so that M(I) =
∫ b

a
|x| dx and P (I) = |a|+|b|.

Multiple regions will have their masses prescribed, and their weighted perimeter calculated
so that regions sharing an endpoint are only counted once: in this way, multiple regions
can have lower total perimeter if they share an endpoint. Using the framework above,
our question is this: suppose we are given masses 0 < M1 ≤ · · · ≤Mn, where n is 3 or 4.
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Can we find a configuration of n regions, each comprised of one or more intervals, with
the prescribed masses and with a minimal amount of total perimeter?

In this note, we are able to positively answer this question and provide a least-
perimeter solution. Our results are reported in Theorem 5.8 and Theorem 6.5. We
will also record the results for n = 1, 2 first identified in [3] (and included in this work
for completeness). The results for the first four isoperimetric problems are displayed in
Figure 1. Although we will wait to formally state the result, we note that the regions
alternate their position across the origin as they increase in weighted mass. This leads to
a natural conjecture that the pattern will continue for larger n-bubbles; this conjecture is
addressed and positively proven in forthcoming work [6].

Figure 1: Solutions for the 1-, 2-, 3-, and 4-bubble isoperimetric problem on R with
density |x|. For these masses, note that M1 ≤M2 ≤M3 ≤M4

Although studying isoperimetry with density functions is a more recent development,
much has already been said. By an argument in [4], Morgan and Pratelli showed that a
perimeter-minimizing solution will exist on Rm when using a density function that radially
increases to infinity. Bayle, Canete, Morgan, and Rosales found early isoperimetric results
for a single bubble on R1 in [5]. Additionally, a number of teams have found single- and
double-bubble solutions on R1 with density (see [1], [3]). In [3], the single- and double-
bubble solutions were found for density |x|p, extending the single-bubble result from [2]
in the 1-dimensional case. In [1], single- and double-bubble results were found for density
functions that were log-convex. In recent work, Sothanaphan [7] extended these results
to identify possible triple-bubbles.

Although working in such a low dimension reduces the complexity of our regions, there
are still complications we must deal with. For example, a priori, each region may consist
of multiple intervals which may or may not share endpoints with other regions. In [1],
it was found that the 2-bubble had either two or three intervals, and this could change
depending on the scale of the actual sizes (not just relative sizes) of the two regions in
question. An early step in our argument will be to show that we can shrink our total
perimeter by consolidating each region into, at most, two intervals. This will reduce our
n-bubble candidates to, at most, 2n total intervals. From there, we examine a number of
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tools we can use to further consolidate our number of intervals. These tools are enough
to fully prove the 3-bubble. For the 4-bubble, those tools still leave us with 5 intervals,
and so an explicit comparison is needed. A crucial element of this is a set of “optimal
arrangment” propositions that tell us the perimeter-minimizing way to order 4, 5, or 6
adjacent regions. These propositions require many cases and are included as an appendix.

2 Definitions

Definition 2.1 A weighted number line is the pair (R, f), where f : R → [0,∞) is
called the density function.

Definition 2.2 Given (R, f) and an interval [a, b], the weighted mass of the interval

with respect to the density is
∫ b

a
f . The weighted perimeter with respect to the density

is defined to be f(a) + f(b).

Note that weighted mass will often simply be called mass (and occasionally, by abuse of
language, be called area or volume), and weighted perimeter will often be called perimeter.
When looking at an interval [a, b], we will exclusively use the word length to refer to the
quantity b− a.

Definition 2.3 A region on (R, f) is a collection of disjoint intervals [ai, bi] with total
mass M and perimeter P calculated as

M =
∑
i

∫ bi

ai

f (1)

P =
∑
i

f(ai) + f(bi). (2)

We remark that, under density functions that have a positive lower bound, regions with
finite mass or finite perimeter must necessarily be made up of only finitely many intervals.
With other weighted number lines (such as (R, |x|), for example), it is possible to have a
region of finite mass consisting of infinitely many intervals. In such a scenario, a point of
zero density will act as an accumulation point for the interval endpoints.

Definition 2.4 A region R with mass M and perimeter P is said to be isoperimetric
in (R, f) (also referred to as a bubble) if, out of all possible regions with mass M , R has
the least perimeter.

We can also consider multiple regions on the same number line.

Definition 2.5 A configuration of regions R1, . . . , Rn is a set of n regions such that
each region is comprised of disjoint intervals, and two intervals from different regions are
either completely disjoint or meet at a single endpoint.

On (R, f), we can measure the mass or weighted perimeter of a single region as before.
Additionally, we can measure the total weighted perimeter of the configuration by

the pump journal of undergraduate research 6 (2023), 192–223 194



summing the perimeter of each of the regions, doing so in such a way that each endpoint
where two intervals meet is only counted once.

Definition 2.6 A configuration of n regions R1, . . . , Rn with masses M1, . . . ,Mn is said
to be isoperimetric on (R, f) (also referred to as an n-bubble) if, out of all possible
configurations of n regions with these same masses, the configuration of {R1, . . . , Rn} has
the least total perimeter.

Remark 2.7 2-bubbles and 3-bubbles are sometimes called a double bubble and triple
bubble.

The major aim of this paper is to prove a particular configuration of regions is isoperi-
metric on (R, |x|) in the case of the 3-bubble and 4-bubble.

3 Preliminaries

To start exploring isoperimetry in earnest, we begin by reducing the total number of
intervals that will appear in a perimeter-minimizing configuration of n regions. A priori,
each region could consist of one or more intervals, and that there might be “empty”
intervals that do not correspond to any particular region. However, we show that this
cannot produce an isoperimetric result by showing that perimeter is lowered by condensing
our intervals near the origin.

Proposition 3.1 Let f be an increasing density function defined on [0,∞). Suppose we
have a configuration of n regions {Ri} on the nonnegative real number line, each with
prescribed masses Mi. Then there exists a configuration of n regions on [0,∞) with the
same masses Mi, arranged so that each region Ri consists of a single interval [ai, bi] and
such that the regions are adjacent to each other with no empty intervals. Furthermore,
this new configuration has total perimeter less than or equal to the original configuration,
which equality only if the configurations are identical.

Proof.
Suppose we have an arbitrary configuration on n regions, each consisting of (possibly

multiple) intervals on the non-negative axis x ≥ 0. We identify R1 to have a maximum
value (and rightmost endpoint) of b1, R2 to have a maximum value of b2, and so on,
renaming if necessary so that b1 < b2 < · · · < bn. Then we create a new configuration
of regions Ri with mass Mi, each region a single interval, created adjacent to each other
and ordered so that region Ri sits to the left of region Rj if i < j. (See Figure 2 for an
example of this.)
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Figure 2: We see how an arbitrary arrangement (on the left) can be consolidated (shown
the right) in a manner that lowers perimeter.

Because of how we have constructed these regions, it is clear that the new rightmost
endpoint b′j of the region Rj satisfies 0 < b′j ≤ bj. Since f is assumed to be increasing,
we know f(b′j) ≤ f(bj). This gives us the following inequalities for the new and original
weighted perimeter:

Pnew =
n∑

j=1

f(b′j) ≤
n∑

j=1

f(bj) ≤ Porig. (3)

Furthermore, equality will only occur if f(b′j) = f(bj) for each j. By the increasing nature
of f , this will only occur if the new and old configuration were identical. �

Corollary 3.2 Let f be a radially increasing density function defined on R. If a configu-
ration of n regions is isoperimetric on (R, f), then the configuration consists of at most 2n
adjacent intervals, with the origin contained in at least one interval (either in the interior
or as an endpoint). Furthermore, each region will consist of at most 2 intervals, and those
consisting of two intervals will have one interval on the positive side and one interval on
the negative side of the origin.

Proof. Proposition 3.1 says that perimeter can be lowered by reconfiguring regions on
each side of the origin, so that there are at most n intervals on the positive and n on
the negative side. Furthermore, as our consolidation from before occurs at the origin, it
is clear that the origin will either be between two different regions (in which case it’s an
endpoint of each), or in a single region (with some mass to be found on both the positive
and negative side). �

Remark 3.3 We will collectively use the word reconfiguration to describe exercises in
rearranging and consolidating intervals, when done in such a way that preserves weighted
masses.
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Definition 3.4 A configuration of n regions that consists of at most 2n adjacent intervals
(with at most 1 interval on the positive and 1 interval on the negative side of the origin),
with the origin contained either in an interior of an interval or at the endpoint of (at least
one) interval, is said to be a condensed configuration of n regions.

Beyond simply knowing that our regions accumulate near the origin, we also learn
that we can reorder them so that they “grow” from smallest to largest mass as we move
further out from the origin.

Proposition 3.5 On [0,∞) with an increasing density function: Consider intervals Ri =
[ai, bi] of mass Mi for i = {1, 2}. Suppose M2 < M1. Finally, suppose a2 = b1. Then we
would reduce total perimeter by switching the relative positions of R1 and R2.

Proof. Keeping the leftmost and rightmost endpoints fixed, and transposing the position
of the two regions, we see that the perimeter is lowered when the interval with less mass
is placed closer to the origin (as this configuration places the regions’ shared endpoint
closer to the origin). See Figure 3. �

Figure 3: Transposition of adjacent intervals: If we transpose R1 and R2 without changing
their global location, the lower perimeter results from placing the smaller interval closer
to the origin (as the only endpoint to move is the internal endpoint). Iterating the
transposition lemma guarantees that, on one side of the interval, regions will be ordered
(according to weighted area) from smallest to largest as we move away from the origin.

We conclude this section with an important comparison proposition. Although the
proposition is stated for the positive real number line, it is clear (due to the symmetry
of |x|) that there are equivalent statements for comparing intervals on either side of the
number line; in such a comparison, all that matters is which interval’s “inner” endpoint
is positioned closer to the origin.

Proposition 3.6 Let f be an radially increasing density function on [0,∞). Consider
two intervals R1 = [a1, b1], R2 = [a2, b2]. Suppose that each of these intervals contains
the same weighted mass (so M1 = M2), and suppose that 0 ≤ a1 < a2. Then we get the
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following two inequalities:

b1 < b2 (4)

b1 − a1 > b2 − a2. (5)

Proof. The first inequality is an immediate consequence of the two intervals enclosing
the same mass. For the second inequality, note that since our density function is increasing
as we move away from the origin, the average density of [a2, b2] will be larger than that
of [a1, b1]: since they each contain the same amount of mass, this means the length of the
interval [a2, b2] will be smaller. �

Corollary 3.7 The first inequality above continues to hold true in the cases where M2 ≥
M1. The second inequality also holds true in the cases where M2 ≤M1.

4 Modifying Regions on (R, |x|)

As the previous section shows, when our density function is radially increasing an n-
bubble must be a condensed configuration of (at most) 2n intervals. In this section, we
will develop strategies for lowering perimeter by reconfigurations that consolidate two
intervals (one on each side of the origin) into a single interval. As a corollary to our work
in this section, we will provide concise proofs for the single and double bubble results for
(R, |x|), previously proven in [3].

Proposition 4.1 On (R, |x|), suppose we have a condensed configuration of n regions.
Suppose the outermost interval on the negative side of the origin comes from a region
that also has an interval on the positive side of the origin. Then there exists a modified
configuration of the same regions, but with less perimeter, achieved by moving all mass
from this region to the negative side.

Proof. Suppose our n regions are arranged as adjacent intervals with endpoints ordered
sequentially as −L1,−L2, ...,−Ll, 0, R1, R2, ..., Rm. Suppose the interval [−Ll,−Ll−1] is
part of a region that has additional mass in another interval on the right-hand-side (RHS).

The interval we move from the RHS is of the form [Ri−1, Ri] for some i between 1 and
m. (Here, we identify R0 with the origin.) Our strategy will be to move the mass from
the RHS to adjoin it to [−Ll,−Ll−1] on the LHS, while sliding the outer intervals on the
right closer to the origin to fill the empty space.

The initial configuration will have a total perimeter of

TP = Ll + Ll−1 + ...+ L2 + L1 +R1 +R2 + ...+Rm−1 +Rm.

The new configuration will have total perimeter of

TP = L′l + Ll−1 + ...+ L2 + L1 +R1 +R2...+Ri−1 +R′i+1 + ...+R′m.
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In this calculation, the endpoint Ll has been shifted to the left, resulting in L′l; for
j > i, the endpoints Rj have shifted to the left, resulting in R′j; and the endpoint Ri has
disappeared.

Figure 4: Configuration before joining [Ri−1, Ri] with [−Ll,−Ll−1]

Figure 5: Configuration after joining results in new interval [−L′l,−Ll−1]

There are two possibilities:

• Case 1: Ri−1 ≤ Ll. In this case, we see that that Ri − Ri−1 ≥ L′l − Ll by
Proposition 3.6. This means that Ri + Ll > L′l. Furthermore, for each j > i, we
have R′j < Rj. This is enough to tell us that our new perimeter is smaller than our
original perimeter.

• Case 2: Ri−1 > Ll. In this case, since Ll < Ri−1, we get L′l < Ri (again by
Proposition 3.6). Using reasoning similar to above, we see that the new perimeter
will again be smaller than our original perimeter.

�
We remark that the result does not depend on the relative size of the intervals involved

(although, by Proposition 3.5, it can be made so that the outer interval contains the largest
mass on its side of the origin). We also remark that choosing the negative side to move
our mass to was arbitrary, and without loss of generality an equivalent argument could
be made to enlarge the outermost region on the right side of the origin.

Proposition 4.1 immediately gives us the result for the single and double bubbles.
Previously proven in [3], we include the results here for completeness.

Theorem 4.2 (1- and 2-Bubble Theorem with Density |x|) On (R, |x|): The n-
bubble solution to the isoperimetric problem for n = 1 is a single interval with one endpoint
at the origin. For n = 2, the solution is two intervals, each with an endpoint at the origin.
These isoperimetric solutions are unique up to symmetry.
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Proof. For the single bubble: If we start with any arbitrary configuration for one
region with massM , we are starting with an arbitrary (finite or countably infinite) union of
intervals (with the only possible accumulation point for the endpoints being the origin).
We can first consolidate near the origin using Corollary 3.2, resulting in at most two
intervals: one from [−a, 0] and one from [0, b]. Then, using Proposition 4.1, this can be
converted into a single interval at [−c, 0]. Since each action we applied reduced perimeter
or kept it the same, we can conclude that an interval of the form [−c, 0] is isoperimetric.

For the double bubble: If we start with an arbitrary configuration for two regions
with masses M1 and M2, we can first consolidate to the origin, resulting in at most two
intervals on each side. We can then apply Proposition 4.1 twice (first to the negative side
of the origin, then to the positive side) to convert each region to a single interval. Doing
so cannot make the perimeter larger, and the resulting configuration places each region
entirely to one side of the origin. Thus, we can conclude that a pair of intervals of the
form [−d, 0] and [0, e] form an isoperimetric double-bubble. �

We conclude this section by remarking that, for configurations of n regions with n > 2,
we can still apply Proposition 4.1 twice (first to the negative side, then to the positive side)
to reduce the total number of intervals in our configuration. This gives us the following:

Corollary 4.3 An isoperimetric n-bubble is in condensed form, and has at most 2n− 2
adjacent intervals.

5 The First Variation Formula

Up until now, we have reconfigured our regions by moving masses around in discrete steps
and as complete intervals. In this section, we introduce the concept of continuously varying
configurations via the first variation formula. We will formulate this for a differentiable
density function f . Consider an interval of [a, x] with one fixed endpoint. We have already
seen how the weighted mass M and perimeter P are measured as

∫ x

a
f and f(a) + f(x),

respectively. An immediate consequence of this is that

dM

dx
= f(x) (6)

dP

dx
= f ′(x). (7)

Next, suppose that we let x = x(t) vary as a function of time, and with a specified velocity
x′(t). This will allow us to calculate

dM

dt
= f(x(t))x′(t) (8)

dP

dt
= f ′(x(t))x′(t). (9)

If we choose our velocity to equal 1/f(x(t)), these become
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dM

dt
= 1 (10)

dP

dt
= f ′(x(t))/f(x(t)) =

d

dx
[log(f(x(t)))] . (11)

We record this observation as follows:

Proposition 5.1 (First Variation Formula) On (R, f): Suppose we take an interval
[a, b], and suppose f is differentiable in a neighborhood of both a and b. Drag both endpoints
to the right at velocity 1/f(x). Then the weighted mass of the interval will not change,
while the perimeter’s instantaneous rate of change will be (log(f))′(a) + (log(f))′(b).

Corollary 5.2 On (R, f): Suppose we have an isoperimetric n-bubble, comprised of a
number of intervals with all endpoints of all intervals listed as x1, x2, . . . , xm. Furthermore,
assume log(f) is differentiable at each of the xi. Then

m∑
i=1

log(f)′(xi) = 0. (12)

Proof. If our region is isoperimetric, it has minimal perimeter out of all other configu-
rations that have regions with the same prescribed masses. This means, as we vary our
configuration by dragging every endpoint to the right at velocity 1/f , our masses will
stay the same and our perimeter must have been at a local/global minimum. Thus, its
instantaneous rate of change should be 0. �

We will use the first variation formula to show that configurations of intervals that
exhibit certain patterns cannot be isoperimertic. We begin by defining the patterns in
question.

Definition 5.3 Suppose we have a condensed configuration of n regions, and suppose that
there are two regions (call them A and B) that are each composed of two intervals. Call
these intervals A−, A+, B−, and B+ depending on their relative positions (so that A−

and B− will sit to the left of A+ and B+, respectively). Suppose, up to renaming, that A−

falls to the left of B−. Then there are three possibilities for the relative ordering of these
intervals:

• If their relative positions, ordered left to right, are A−, B−, A+, B+, then we say
A, B are alternating.

• If their relative ordering is A−, B−, B+, A+, then we say A, B are nested.

• If their relative ordering is A−, A+, B−, B+, then we say that A, B are ordered.

Our earlier work (specifically Corollary 3.2) guarantees that an isoperimetric configu-
ration is necessarily a condensed configuration, and therefore each side of the origin has at
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most one interval from each region. Not only does this guarantee that an ordered A and
B will not occur in an isoperimetric configuration, it also guarantees that an isoperimetric
configuration will havea A− and B− to the left of the origin, and B+, A+ to the right.

Our next lemma will guarantee that an isoperimetric region cannot have an alternating
pattern either: if such a configuration exists, we can use the first variation formula to
create a continuous movement that preserves the masses of our n regions while reducing
total perimeter.

Remark 5.4 The core idea present in the next lemma – that of simultaneous siphoning
of area from each of the inner intervals in the alternating pattern – was used in [1] to
reduce the number of possible intervals in a 2-bubble.

Proposition 5.5 On (R, |x|): Suppose there exists a condensed configuration of n regions
Ri, each with mass Mi. Furthermore, suppose there are two specific regions (identified as
regions A and B) that are of an alternating pattern (with ordering A−, B−, A+, B+). Then
we can create a new configuration of n regions, with identical masses Mi and with lower
total perimeter, by eliminating one of the interior intervals (B− or A+).

Proof. With an initial configuration described as above: Identify the right endpoint of
A−, the left endpoint of B−, and each endpoint of an interval that falls these two. Note
that each of these endpoints will sit to the left of the origin, and we collectively call these
endpoints {rj}. Similarly, identify the right endpoint of A+, the left endpoint of B+, and
all interval endpoints between these two. These endpoints will all sit to the right of the
origin, and we collectively call them {rj}.

We create a variation by moving each of the endpoints {lj} in the positive direction at
velocity 1/|x|, while simultaneously moving each of the {rj} to the left at velocity 1/|x|.
(This process is illustrated in Figure 6.) We claim that this variation does not change
the weighted masses of any of our regions. Indeed, regions for which both endpoints are
moving will not change mass by Proposition 5.1. Additionally, the mass contained in A
and B are not changing: the rate of change for the mass being lost by A+ is identical to
the rate of change of the mass being gained by A− (similarly for B−, B+). Because our
density function is |x| and our endpoints are all moving towards the origin, this variation
reduces total weighted perimeter. Since no moving endpoint is in danger of reaching the
origin, this process can continue without risk of f becoming nondifferentiable. Therefore,
this variation continues until either B− or A+ has shrunk entirely to size 0. We see that
perimeter was made to decrease throughout this process, and continued to decrease until
one of the central intervals in the alternating pattern completely disappears. �
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Figure 6: Over these three images, we see the interior intervals B− and A+ shrink while
the exterior intervals grow. This is done in a manner that reduces total perimeter and
leaves total mass of A and B unchanged. In the final image, A+ has completely vanished.
At this point, the sliding is done and the alternating pattern has been eliminated.

Next, using a similar argument as above, we show that two intervals cannot be nested
directly around the origin in an isoperimetric region.

Proposition 5.6 On (R, |x|): Suppose there exists a condensed configuration of n regions
(not necessarily isoperimetric). Furthermore, suppose two specific regions (identified as
regions A and B) are nested such that the origin sits in the interior of region B, and
region B is immediately surrounded by region A. Then we can create a reconfiguration
with lower perimeter by using a variation that moves region B entirely to the right.

Proof. Identify our regions of interest as A− = [−a,−b], B = B− ∪B+ = [−b, 0]∪ [0, c],
and A+ = [c, d]. We focus on the perimeter contributed by a, b, c, and d, noting that
there might be other interval endpoints in our configuration that correspond to regions
other than A and B.

Create a variation that moves the endpoints −b and c to the right with velocity 1/|x|.
The weighted mass A− will grow at exactly the same rate for which A+ shrinks, leaving
the total mass of region A unchanged. Similarly, the weighted mass of region B remains
unchanged. We continue this until one of two things happens:

• The A+ region completely disappears, and the endpoint c collides with the endpoint
d. This will occur if, initially, A+ has less weighted mass than B−. The result
is a new configuration with perimeter points of −a, −b′, 0, and d (c has been
eliminated since it collided with d). Noting that b′ < b, we can conclude that this
new configuration has less total perimeter.

• The B− interval completely disappears, and the endpoint b collides with the origin.
This will occur if the weighted mass of A+ is initially larger than the weighted mass
of B−. The result is a new configuration with perimeter points of −a, 0, c′, and d.
Although the c endpoint has grown, we can guarantee that c′ contributes less total
perimeter than c+ b did. Indeed, comparing our original region B (with perimeter
points −b and c) to our new region B (with perimeter points 0 and c′) is equivalent
to applying the 1-bubble results of Theorem 4.2 and of [3] to the region B. Thus,
this new configuration has less total perimeter.
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Regardless, we see that total perimeter has been reduced, the weighted masses in A and
B have remained the same, and our nested intervals adjacent to the origin are gone. This
completes the proof. �

Our next proposition also works to adjust the position of the regions around the origin.
Note that this argument, which allows for all interval endpoints to shift simultaneously,
is specific for our |x| density function.

Proposition 5.7 On (R, |x|): Suppose we have n regions in a condensed configuration,
and suppose that the origin lands in the interior of one interval. Then, by creating a
variation that slides all intervals and regions in one direction (either the left or the right),
we can lower perimeter and position the origin as a boundary point between two intervals.

Proof. Given a condensed configuration of regions, suppose the origin sits in the interior
of a region A. By the nature of condensed configurations, this means A can be split into
two intervals directly adjacent to the origin, A = A− ∪A+ = [−a1, 0] ∪ [0, a2]. Denote all
other endpoints of other regions as xi’s.

Consider a variation that takes all endpoints except the origin and slides them to the
right at velocity 1/f = 1/|x|. According to the first variation formula for enclosed mass,
this results in movement that keeps the weighted mass of each region constant (with A’s
mass staying constant because A− loses mass at the same rate A+ gains mass). By the
first variation formula for perimeter, we know that a twice-differentiable density function
will have total perimeter changing at rates of

dP

dt
=

∑
f ′(x(t))/f(x(t)) (13)

d2P

dt2
=

∑ f(x(t))f ′′(x(t))− [f ′(x(t))]2

[f(x(t))]3
(14)

where f is the density function, and the the summation is taken over all perimeter points
that are moving. When f(x) = |x|, this simplifies to

dP

dt
=

∑
1/x (15)

d2P

dt2
=

∑
−1/|x|3 (16)

provided that the origin is not a perimeter point (so x 6= 0 in the equation above).
Notably, we can observe that the second derivative of perimeter is negative for f(x) = |x|.
There are two possibilities:

• If perimeter is decreasing under this variation (so P ′ < 0 initially), it will continue
to decrease. We can therefore continue applying this variation until the endpoint a1
has been dragged to collide with the origin.
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• If perimeter is increasing under this variation, we reverse the variation and drag
each of our endpoints to the left with velocity 1/|x| instead. This will keep the
masses the same; will change the sign of P ′; and will leave P ′′ negative. The result
is that perimeter will decrease, and will continue to decrease until the endpoint a2
collides with the origin.

Thus, we see that we can drag endpoints in a manner that decreases perimeter until
either A− or A+ disappears. Either way, we are left with the entirety of region A on one
side of the origin. �

Using Proposition 5.7, we are ready to identify the isoperimetric configuration for
three regions.

Theorem 5.8 (3-Bubble Theorem) On R with density |x|: The n-bubble solution to
the isoperimetric problem for n = 3 is a condensed configuration of three intervals. If
the three regions have masses M1 ≤ M2 ≤ M3, then the regions of mass M1 and M2 are
adjacent to the origin, with M3 positioned to be adjacent to M1.

Figure 7: Solution to the triple-bubble problem with density |x|

Proof. By condensing our configuration and applying Proposition 4.1 twice, we know
our configuration has exactly three adjacent intervals. By applying Proposition 5.7, we
know the middle interval cannot contain the origin in its interior. Therefore, we have
exactly three intervals, with the origin acting as an endpoint shared by two of them. A
direct computation tells us the correct ordering is with M1 and M3 on the same side of
the origin, with M2 on the opposite side. Proposition 3.5 confirms the ordering of M1 and
M3. This completes the proof. �

6 Proof of the 4-Bubble Theorem

In this section, we identify the isoperimetric configuration of 4 distinct regions on the real
number line with density |x|. From our earlier work, we know that such a configuration
is condensed into at most 6 intervals (first by condensing into 8 intervals using Corollary
3.2, and then by applying Proposition 4.1 to condense the outer interval on each side of
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the origin). Before we state and prove the 4-bubble theorem, we state a lemma which
tells us that isoperimetric configurations of 4 regions that also have exactly 4 intervals
must have two intervals on each side of the origin.

Theorem 6.1 (4-Bubble Lemma) On (R, |x|): If a configuration of four regions is
isoperimetric, and if each region consists of a single interval, then there must be exactly
two intervals on each side of the origin.

Proof. Using Proposition 5.7, we know that the origin will not appear in the interior of
one of the intervals. If 4 intervals are on one side of the origin, we can simply move the
outermost interval to the other side of the origin. This will clearly result in a configuration
with less perimeter. We are left exploring the configuration with 3 intervals on one side
of the origin, and 1 interval on the other. In this case, we identify the interval of smallest
mass as S. There are several possibilities:

Case 1: If S is on the side with 1 interval, then it is there alone. Without loss
of generality, suppose our four intervals have endpoints given by −a < −b < −c < 0 < d
(so that S = [0, d] in this framework). We reconfigure by moving the region defined by
[−a,−b] to the other side of the origin. Our original figure had total perimeter a+b+c+d,
compared to our new perimeter of b+ c+ d+ e′. (See Figure 8) Because −a was further
from the origin than e′, this new configuration will have less total perimeter.

Figure 8: Case 1: Moving the outermost interval over.

Case 2: If S is on the side with 3 intervals, we name the lone interval on the
other side of the origin L, and name the remaining two intervals X1 and X2. (See Figure
9.)

Figure 9: Our naming convention for the rest of this proof.

Proposition 3.5 guarantees that our masses will be ordered as S ≤ X1 ≤ X2. However,
we do not know the relative size of L. We have two cases to consider:
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Case 2.1: If X1 ≤ L, then we will want to position our smallest region S across
the origin. This will result in endpoints −a and −b moving closer to the origin, with
endpoint d moving further away from the origin. The initial and final configurations are
shown in Figure 10. Our original perimeter was a + b + c + d, while our new perimeter
is a′ + b′ + c′ + d′. By assumption, X1 ≤ L, and so d ≥ b′. This will mean that [d, d′]
is narrower than (or the same length as) [−b,−b′] by Proposition 3.6. We can conclude
that d′ − d ≤ b− b′, and therefore that d′ + b′ ≤ b+ d. Since a′ < a, we get that our new
configuration has less perimeter than our original one.

Figure 10: Case 2: Moving the smallest region across the origin.

Case 2.2: If L < X1, we can move region X2 over to the other side of the origin.
We see this in Figure 11. Our old perimeter was a + b + c + d, which we must compare
to b + c + d + e′. However, since L < x1, it is clear that −b is further from the origin
than d is, and therefore we get that −a is further from the origin than e′. Thus, this new
configuration will have less total perimeter.

Figure 11: Case 3: Moving the largest region over.

This exhausts all of our possible cases. We conclude that, if we know our 4-bubble
has exactly four intervals, then it must have two intervals on each side of the origin. �

Next we state several results that display the appropriate way to order intervals of
different masses if we know, a priori, that we have a fixed number of intervals on each
side of the origin.

Proposition 6.2 (Alternating 4-interval framework) On R with density |x|: Sup-
pose we have four regions, condensed so that each region consists of a single interval,
and organized so that there are two intervals on each side of the origin. Then the least-
perimeter way to meet these specifications is to have intervals alternate back and forth
across the origin as they increase from smallest mass to largest. This means that the
masses can be ordered, up to reflection, as R3R1.R2R4 (where the masses of region Ri

satisfy M1 ≤M2 ≤M3 ≤M4).
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Proposition 6.3 (Alternating 5-interval framework) On R with density |x|: Sup-
pose we have five regions, condensed so that each region consists of a single interval, and
organized so that one side of the origin has two intervals while the other side has three.
Then the least-perimeter way to meet these specifications is to order the masses, up to
reflection, as R5R3R1.R2R4 (where the masses of region Ri satisfy M1 ≤ · · · ≤M5).

Proposition 6.4 (Alternating 6-interval framework) On R with density |x|: Sup-
pose we have six regions, condensed so that each region consists of a single interval, and
organized so that there are three intervals on each side of the origin. Then the least-
perimeter way to meet these specifications is to have intervals alternate back and forth
across the origin as they increase from smallest mass to largest. This means that the
masses can be ordered, up to reflection, as R5R3R1.R2R4R6 (where the masses of region
Ri satisfy M1 ≤ · · · ≤M6).

These propositions are proved by cases, and their proofs are left for the appendix.

Theorem 6.5 (4-Bubble Theorem) On R with density |x|: The n-bubble solution to
the isoperimetric problem for n = 4 is a condensed configuration of four regions, with each
region consisting of a single interval, and with two intervals on each side of the origin. If
the four regions have masses M1 ≤M2 ≤M3 ≤M4, then the regions of mass M1 and M2

are adjacent to the origin; M3 is positioned to be adjacent to M1; and M4 is positioned to
be adjacent to M2.

Figure 12: Solution to the 4-bubble problem with density |x|

Proof. Based on Corollary 3.2, we know an isoperimetric 4-bubble can be made up of at
most 8 intervals. Applying Proposition 4.1 twice, we can reduce this maximum number
to 6. Additionally, Proposition 4.1 guarantees that the outermost interval on each side of
the origin is the only interval of its respective region. Thus, if we do have 6 total intervals,
we have two regions of a single interval (the outermost intervals of the configuration) and
two regions of two intervals (positioned on the interior of the configuration).

Using the language of Definition 5.3, there are two possible scenarios when there are
six intervals: the innermost intervals are either alternating, or they are nested directly
adjacent to the origin. Based on how these inner intervals are configured, we can apply
either Proposition 5.5 (for the alternating configuration) or Proposition 5.6 (for the nested
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configuration) to eliminate one more interval. Finally, we can apply Proposition 5.7 (if
necessary) to give us a configuration with at most five distinct intervals, and with the
origin between two of these intervals in the interior.

We have shown that a non-isoperimetric configuration of more than 5 intervals can be
reconfigured to have 5 intervals, lowering perimeter at every intermediate reconfiguration.
Therefore, for a configuration of 4 regions to be isoperimetric, it must have no more than
5 intervals in total. If it has 4 intervals, every region is made up of a single interval and
Proposition 7.1 will prove the theorem for us. This leaves us with a five interval scenario.
In such a case, we know that a single region (which we identify as A = A− ∪ A+) is split
into two intervals, one on each side of the origin. The other regions we will label as Ri,
with mass Mi. Throughout this proof, we will abuse notation by conflating regions Ri

with their mass size Mi, and will use the understanding that M1 ≤M2 ≤M3. Because of
the Proposition 4.1, we know neither A+ nor A− is part of an outermost interval on either
side. At the same time, Proposition 5.7 allows us to conclude that A+ and A− cannot
both be directly adjacent to the origin. Therefore, our configuration (up to reflection)
must look like Figure 13. Due to Proposition 7.2 in the appendix, we know that the
relative sizes of these masses is R1 ≤ A− ≤ A+ ≤ R2 ≤ R3.

Figure 13: Initial arbitrary 4 bubble configuration of 5 intervals

To show this 5-interval configuration is not isoperimetric, we will want to show that
we can reduce perimeter by creating a consolidated configuration (with A− and A+ joined
into a single interval which we identify as A). There are four possible scenarios we have
to consider, depending on how the size of A fits into the relative sizes of R1, R2, and R3.

Case 1: A ≤ R1. This is impossible, as it would mean A+ and A− were each
individually smaller than R1, and therefore R1 would not be directly adjacent to the
origin.

Case 2: R1 < A ≤ R2. First, we will consolidate A by bringing A+ to the left side
of the origin and adjoining it to A− . This intermediate step gives the new arrangement
(a) with new endpoints −a′, −b′, and e′. The next step (b) is to switch the position R2

and R3. This gives us our final position with new endpoints −a′′ and e′′ and, therefore,
the new total perimeter a′′+ b′+ c+ e′′. We will show this new perimeter is less than our
starting perimeter.
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Figure 14: Case 2: Initial rearrangements

We keep track of the changes that have been made with Figure 15, where we introduce
δx = R3 − R2 and δx1 = R2 − A+. The appropriate masses have been identified in the
figure.

Figure 15: Case 2: Endpoints and masses labeled

We want to show that a′′ + b′ + c+ e′′ ≤ a+ b+ c+ d+ e. To start, notice in Figure
15 that [−b′,−b] and [c, d] both have mass of A+. However, because −b is farther away
from the origin than c, Proposition 3.6 guarantees that b′ − b < d− c. By some algebra,
we have that b′ < b + d − c < b + d. Additionally, notice that [−a′′,−a] has mass δx
and [e′′, e] has a greater mass of (δx + A+). Also note that −a is farther from the origin
than e′′ because R3 + δx1 + A > δx1 + R1. Therefore, we are able to say a′′ − a < e− e′′
(again by Proposition 3.6) and thus a′′ + e′′ < e + a. Taking these inequalities together,
we conclude that there is less total perimeter in this new arrangement.

Case 3: R2 < A ≤ R3. First, we will again consolidate the region A. However, this
time we will move A− to the positive side of the origin, adjoining it to A+ and shifting
R3 to the right. Then, we move R3 to the negative side of the origin (further away
from the origin than R2). Note that this will end with our intervals in our hypothesized
isoperimetric configuration.
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Figure 16: Case 3: Initial rearrangements

To keep track of our old and new endpoints, we have the following figure. Note that
the new total perimeter will consist of a′′ + a′ + c + d′. Also, note that we are defining
new masses δx2 = R3 − A− and δx3 = R2 − A−.

Figure 17: Case 3: Masses and endpoints labeled

We want to examine the relationship between the new and old perimeter points. First,
note that because A ≥ R2, we have the following two inequalities.

R1 + A ≥ R2 (17)

R1 + A+ ≥ R2 − A− (18)

There are two sub-cases to consider:

1. R1 + A+ ≤ R2:

[−a′′,−a] and [d′, e] have mass R3 − A−. However, in this case, a′ > d, so a > d′.
This implies that [−a′′,−a] is narrower than [d′, e] by Proposition 3.6, giving us
a′′ − a ≤ e − d′, and therefore a′′ + d′ ≤ e + a. By (18), [0, d] contains more mass
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than [−a′,−b]. In addition, [0, d] has an inner endpoint that is closer to the origin
than [−a′,−b], meaning [−a′,−b] is narrower than [0, d]. This allows us to conclude
that a′ − b < d− 0 and therefore, a′ < b+ d.

2. R1 + A+ > R2:

[−a,−a′] and [d, d′] both have mass A−. In this case d > a′, so [−a,−a′] is not as
narrow as [d, d′]. Again using Proposition 3.6, we can say that d′−d ≤ a−a′, which
gives that a′ + d′ ≤ a + d. Additionally, [a′′,−b] has mass no greater than [0, e]
(which is true since R2−A− ≤ R1 +A+ by (18)), giving us that [a′′,−b] is narrower.
This allows us to conclude that a′′ − b ≤ e− 0, and therefore that a′′ < b+ e.

In each sub-case, our new endpoints contribute less perimeter than before, yielding an
isoperimetric arrangement of four intervals.

Case 4: A > R3. As before, we consolidate A into a single interval. This time, we do
so on the negative side of the origin. Then, we transpose the A and the R2 interval. The
final arrangement has a new total perimeter of a′ + b′′ + c+ e′, which we compare to the
old perimeter of a+ b+ c+ d+ e.

Figure 18: Case 4: Initial rearrangements

Like before, we can keep track of all of the changes we have made with Figure 19,
which has all endpoints and masses identified. As part of this image, we continue to let
δx3 = R2 − A− introduce mass δx4 = R3 − A+.
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Figure 19: Case 4: Masses and endpoints labeled

There are two sub-cases to consider:

1. R2 + A− ≥ R1 +R3:

The interval [−a′,−a] has mass A+ and is separated from the origin by an interval
of mass R2 + A−. [e′, e] has mass A+ as well, but is separated from the origin by
an interval of mass R1 +R3 away from the origin. We conclude a′ − a ≤ e− e′ and
therefore that a′ + e′ ≤ e+ a.

Next, we want to show that b′′ < b+d. Now, because it is true that A ≥ R3 ≥ R2 ≥
R1, we see that A− + A+ > R2 − R1 is certainly true. Rearranging, we can have
R1+A+ > R2−A−. This is important because [−b′′,−b] has mass R2−A− and [0, d]
has mass R1 + A+. The interval [−b′′,−b] has a smaller mass and is farther away
from the origin, so by Proposition 3.6 we have that b′′ − b < d − 0, and therefore
b′′ < d+ b.

Thus, there is less total perimeter in this new configuration.

2. R2 + A− < R1 +R3:

The interval [d, e′] has mass R3−A+ and is separated from the origin by an interval
of mass R1 + A+. At the same time, [−a,−b′′] has mass A− and is separated from
the origin by an interval of mass R2. We know that A ≥ R3 ≥ R2 ≥ R1, and
therefore A− ≥ R3 − A+. Thus, the interval [−a,−b′′] has less mass than [d, e′].
Additionally, b′′ is closer to the origin than d. Applying Proposition 3.6 once more
gives us a < e′ and that a− b′′ > e′ − d, and therefore that a+ d > b′′ + e′.
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Lastly, we want to examine the endpoint a′. We begin by noting that the interval
[−a′,−b] has a mass of R2 +A+ while [0, e] has mass R1 +R3 +A+. By the relative
size of our masses, we know R2 +A+ ≤ R1 +R3 +A+. So, not only does [0, e] have
the larger mass than [−a′,−b], but it is also closer to the origin. Therefore, we can
say that a′ − b ≤ e− 0 and thus a′ ≤ e+ b.

Taking these earlier inequalities together, we see that in this case the new configu-
ration has less total perimeter.

We observe that, in any possible case or sub-case, our configuration of 4 intervals uses
less perimeter than any possible candidate with five intervals. Therefore, our proposed
4-interval solution is the perimeter-minimizing way to arrange four regions on R with
density |x|. �

7 Appendix: The Ordering Propositions

In this appendix, we collect theorems that identify appropriate orderings of intervals.
Specifically, we establish the ordering of n-interval frameworks, for n = 4, 5, 6, where the
masses come from distinct intervals and have masses M1 ≤ · · · ≤ Mn. It turns out that
the n = 4 and n = 5 cases can be seen as corollaries of the n = 6 case, in the specific
situation where one (or two) of the intervals have size 0. Thus, in this appendix we prove
the 6-interval framework and state the 4- and 5-interval propositions as corollaries.

Proposition 7.1 (Alternating 4-interval framework) On R with density |x|: Sup-
pose we have four regions, condensed so that each region consists of a single interval,
and organized so that there are two intervals on each side of the origin. Then the least-
perimeter way to meet these specifications is to have intervals alternate back and forth
across the origin as they increase from smallest mass to largest. This means that the
masses can be ordered, up to reflection, as R3R1.R2R4 (where the masses of region Ri

satisfy M1 ≤M2 ≤M3 ≤M4).

Proposition 7.2 (Alternating 5-interval framework) On R with density |x|: Sup-
pose we have five regions, condensed so that each region consists of a single interval, and
organized so that there are two intervals on one side of the origin and three on the other
side. Then the least-perimeter way to meet these specifications is to have intervals al-
ternate back and forth across the origin as they increase from smallest mass to largest.
This means that the masses can be ordered, up to reflection, as R5R3R1.R2R4 (where the
masses of region Ri satisfy M1 ≤M2 ≤M3 ≤M4 ≤M5).

As said above, these are corollaries of the 6-interval framework proposition, which we
state and prove below.

Proposition 7.3 (Alternating 6-interval framework) On R with density |x|: Sup-
pose we have six regions, condensed so that each region consists of a single interval, and
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organized so that there are three intervals on each side of the origin. Then the least-
perimeter way to meet these specifications is to have intervals alternate back and forth
across the origin as they increase from smallest mass to largest. This means that the
masses can be ordered, up to reflection, as R5R3R1.R2R4R6 (where the masses of region
Ri satisfy M1 ≤ · · · ≤M6).

Proof. [Proof of Proposition 6.3]
This is a proof of exhaustion. Proposition 3.5 tells us that each side of the origin will be

ordered from smallest to largest mass (as we move away from the origin). We will identify
the regions of smallest mass and second-smallest mass as “S” and “M” throughout this
proof.

Without loss of generality, we can assume that S, appears directly adjacent to the
origin on the negative side. The major dividing line in our cases is whether or not M ,
appears on the same side of the origin as S. In the case where M appears on the opposite
side of the origin, we will label our other regions as having masses L1, L2, X1, and X2,
and consider the relative sizes of the Li and Xi. We can use Figure 20 as a reference.

Figure 20: The figure we use as an initial configuration when the second-smallest mass,
M , is on the opposite side of the origin as S.

We can assume (by Proposition 3.5) that L1 < X1 and L2 < X2, but there are still
many possible cases to consider.

• Case 0: S ≤M ≤ L1 ≤ L2 ≤ X1 ≤ X2. This is the case we are claiming is optimal.

• Case 1: S ≤ M ≤ L1 ≤ L2 ≤ X2 ≤ X1. In this case, we can further reduce
perimeter by flipping the positions of the Xi’s. The process is shown in the image
below.

Figure 21: Case 1: Xi’s have flipped their positions.
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Figure 22: Case 1: all endpoints and masses identified.

Specifically, we can define δ = X1 − X2. Note that the original configuration has
perimeter a2 + a1 + b+ c+ d1 + d2, while the modified configuration has perimeter
a′2 + a1 + b + c + d1 + d′2. Because S ≤ M and L1 ≤ L2, see that the mass in
[−a′2, 0] is less than the mass in [0, d2]. This tells us that a′2 < d2. This, in turn,
implies that the interval [−a2,−a′2] is not as narrow as the interval [d2, d

′
2] since

both contain the same mass δ. We conclude that d′2 − d2 < a2 − a′2, and therefore
that a′2 + d′2 < a2 + d2. Thus, our new configuration has less total perimeter than
our old configuration. This returns us to a framework that is identical to Case 0.

• Case 2: S ≤ M ≤ L2 ≤ L1 ≤ X2 ≤ X1. In this case, we can further reduce
perimeter by flipping the positions of the X’s and L’s simultaneously. The process
is shown in the picture below.

Figure 23: Case 2: X’s and L’s have flipped position.

Figure 24: Case 2: all endpoints and masses identified.
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Specifically, we can define δL = L1 − L2 and δX = X1 −X2. Note that the original
configuration has perimeter a2+a1+b+c+d1+d2, while the modified configuration
has perimeter a′2 + a′1 + b+ c+ d′1 + d′2. The second figure shows all endpoints and
masses calculated. We can see that, because S ≤ M , we get that a′1 ≤ d1 and
therefore the interval [−a1,−a′1] is no narrower than the interval [d1, d

′
1]. In other

words, d′1− d1 ≤ a1− a′1, and so a′1 + d′1 ≤ a1 + d1. A similar argument tells us that
a′2 + d′2 ≤ a2 + d2, and we can conclude that this reconfiguration did not increase
the total perimeter. This returns us to a framework that is identical to Case 0.

• Case 3: S ≤ M ≤ L2 ≤ L1 ≤ X1 ≤ X2. In this case, we can switch the roles of the
L’s, leaving the X’s in their current position.The process is shown in the picture
below.

Figure 25: Case 3: Flip the L’s, leaving the X’s where they are.

Figure 26: Case 3: All endpoints and masses identified.

Specifically, we can define δL = L1 − L2. The initial configuration has perimeter
a2 +a1 + b+ c+d1 +d2, while the modified configuration has perimeter a′2 +a′1 + b+
c + d′1 + d′2. In the figure above, we see all endpoints and masses calculated. Note
that similar reasoning to that used in Case 2 shows us that d′1 − d1 ≤ a1 − a′1, and
also that d′2 − d2 ≤ a2 − a′2. Taken together, this gives us that the new modified
configuration will never have more perimeter than the old configuration. Applying
this rearrangement returns us to a framework that is identical to Case 0.

• Case 4: S ≤ M ≤ L1 ≤ X1 ≤ L2 ≤ X2. In this case we can transpose the L2 and
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the X1 regions, leaving the others in their current spots. The process is shown in
the picture below.

Figure 27: Case 4: transpose the locations of X1 and L2.

Figure 28: Case 4: all endpoints and masses identified.

Specifically, we can define δ = L2 − X1. Note that X1 + L1 + S ≥ X1 + M , and
therefore the interval [−a′2,−a2] cannot be wider than the interval [d′1, d1]. This tells
us that a′2 − a2 ≤ d1 − d′1, which implies that a′2 + d′1 ≤ a2 + d1. Similarly, we can
immediately see that d′2 ≤ d2. Taken together, this means that the perimeter of the
new configuration is necessarily not greater than the perimeter of the original con-
figuration. Applying this rearrangement returns us to a framework that is identical
to Case 0.

• Case 5: S ≤M ≤ L2 ≤ X2 ≤ L1 ≤ X1. In this case, we can transpose the positions
of L1 and L2, and simultaneously transpose the positions of X1 and X2. The result
is depicted in the picture below.

Figure 29: Case 5: transpose the locations of the Li and the Xi simultaneously.
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Figure 30: Case 5: all endpoints and masses identified.

By setting δX = X1 − X2 and δL = L1 − L2 and reasoning as in previous cases,
we can observe that this move will lower overall perimeter. The rearrangment will
leave us in a framework that is identical to Case 4.

Next, we must consider what happens if the second-smallest mass is on the same side
of the origin as the smallest mass. We claim that this is not optimal, and that we can
rearrange our masses to move the second-smallest mass across the perimeter, lowering
perimeter in the process. To begin, let’s rename our regions as in Figure 31

Figure 31: New cases, in which the second smallest mass (M) is on the same side of the
origin as the smallest mass (S).

We already know that S ≤ M ≤ L and that R1 ≤ R2 ≤ R3, and that M < R1. The
only question that remains is what the size of L is relative to the Ri. There are four cases:

• Case 6: L ≤ R1 ≤ R2 ≤ R3. In this case we can transpose L and R1, leaving the
others in their current spots. The process is shown in the picture below;
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Figure 32: Case 6: transpose the locations of R1 and L.

Figure 33: Case 6: all endpoints and masses identified.

Specifically, we can let δ = R1 − L. The figures above show both the original
configuration (with perimeter a + b + c + d + e + f) and the new configuration
(with perimeter a′+ b+ c+ d′+ e′+ f ′). The final figure identifies all endpoints and
corresponding masses. We can make the observation that, as endpoints, a > d′. This
implies that the interval [−a′,−a] is narrower than the interval [d′, d] which contains
the same mass. Therefore, we can conclude that a′ − a < d− d′ and therefore that
a′+d′ < a+d. Additionally, we can see that e′ < e and f ′ < f . Taken together, these
inequalities imply that after reconfiguration we have successfully lowered perimeter.
The rearrangment will leave us in a framework that is identical to Case 7.

• Case 7: R1 ≤ L ≤ R2 ≤ R3. In this case we can transpose M and R1 and,
simultaneously, transpose L and R2. The process is shown in the picture below.

Figure 34: Case 7: transpose R1 with M , and also R2 with L.
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Figure 35: Case 7: all endpoints and masses identified.

Specifically, we can let δ1 = R1 −M and let δ2 = R2 − L. In the figures above, we
see the original configuration (with perimeter a + b + c + d + e + f) as well as the
new configuration (with perimeter a′ + b′c+ d′ + e′ + f ′).

Since b > 0 and [−b,−c] has the same mass as [0, d], can conclude that b > d′. This
implies that b′ − b < d − d′, and therefore that b′ + d′ < b + d. Similarly, we can
conclude that a > e′, leading to a′ − a < e − e′ and a′ + e′ < a + e. Finally, we
can conclude that f ′ < f automatically. Taking these inequalities together, we can
conclude that our total perimeter has decreased after our reconfiguration. Applying
this rearrangement returns us to a framework that is identical to Case 0.

• Case 8: R1 ≤ R2 ≤ L ≤ R3. In this case we can transpose M and R1, leaving the
others in their current spots. The process is shown in the picture below.

Figure 36: Case 8: transpose R1 with M .

Figure 37: Case 8: all endpoints and masses identified.
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Specifically, we can let δ = R1 − M . The figures above show both the original
configuration (with perimeter a+ b+ c+ d+ e+ f) as well as the new configuration
(with perimeter a′+ b′+ c+ d′+ e′+ f ′). Since S ≥ 0 and the intervals [−b,−c] and
[0, d′] have the same mass, we know that b ≥ d′. This allows us to conclude that
the interval [−b′,−b] is narrower than (or the same size as) the interval [d′, d], as
both contain the same mass. We conclude that b′ − b ≤ d − d′, and therefore that
b′ + d′ ≤ b+ d. Using similar reasoning (and the fact that L > R2), we can deduce
that a′ + e′ < a + e. Finally, we can identify that f ′ < f . Taken together, we can
conclude that the total perimeter is smaller after moving to the new configuration.
Applying this rearrangement returns us to a framework that is identical to Case 0.

• Case 9: R1 ≤ R2 ≤ R3 ≤ L. In this case we can transpose L and R1, leaving the
others in their current spots. The associated picture and proof are identical to that
of Case 8: however, after considering the new ordering of intervals, we can conclude
that have reconfigured into Case 1 rather than Case 0.
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