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1 Introduction

In [6], Zimmerman studies the following question: given an algebraically closed field F of
characteristic zero, a nonlinear polynomial f ∈ F[x], and a natural number d, how many
polynomials in F[x] of degree d commute with f under composition? That is, how many
polynomials g ∈ F[x] of degree d satisfy f ◦ g = g ◦ f? This question was motivated by
similar work by Julia [1] and Ritt [5] regarding complex rational functions.

The surprising main result of [6] is that, for every d ≥ 1, the number of polynomials
in F[x] of degree d which commute with f is constant. The arguments used to establish
this theorem rely crucially on the fact that F is algebraically closed.

Motivated by the work of Zimmerman, we investigated a similar question in a slightly
different setting. More specifically, let p be a prime, and let Fp be the finite field with
p elements. Let f ∈ Fp[x] be a linear polynomial (other than the “identity” polynomial
I(x) = x). Given d ≥ 1, we sought to determine how many polynomials in Fp[x] of degree
d commute with f . Denote this number by #Cd(f). We offer proofs of the following
results (but see § 1.1 for the history of such results).

Theorem 5.1. Let p ≥ 3 be a prime, and let f ∈ Fp[x] be a linear polynomial with
leading coefficient a 6= 1. Let d ≥ 0 be an integer, and let r = ordp(a). Then

#Cd(f) =

{
(p− 1)p

d−1
r , if d ≡ 1 mod r

0, if d 6≡ 1 mod r
.

the pump journal of undergraduate research 6 (2023), 102–114 102



Theorem 6.1. Let p ≥ 3 be a prime, let f ∈ Fp[x] be a monic linear polynomial, and
let d ≥ 0 be an integer. Then

#Cd(f) =

{
(p− 1)pk, if d = kp for some integer 0 ≤ k ≤ p

0, otherwise
.

Remark 1.1 The careful reader will observe that our arguments go through verbatim
upon replacing Fp with a finite field of order q = pm for any m ≥ 1 and replacing each
instance of p with q in the formulas given in Theorems 5.1 and 6.1.

In fact, the constructive portions of our arguments would remain valid over the alge-
braic closure of Fp, although the counting formulas would of course cease to be relevant.

1.1 Relation to Previous Work

Over a decade earlier than [6], Park [4] studied the following problem: For a finite field F
and fixed a, c ∈ F, determine which polynomials g ∈ Fpk [x] satisfy the relation g(x+ a) =
g(x) + c.

The authors were not aware of Park’s work until after writing this paper. Clearly,
taking a = c in Park’s work recovers the problem addressed by Theorem 6.1. We also
note other similarities between our own work and Park’s: the arguments in [4] exploit
explicit binomial coefficient identities modulo p, and the main result requires the degree
bound d < p2.

Nevertheless, we believe that our approach contains some significant conceptual sim-
plifications. In particular, the key insights of this paper are:

• the observations in Section 3, which allow us to focus our attention on particularly
“nice” linear polynomials f , and

• the recognition of an orderly, “scaffolded” structure, described via the orbit sets Tk
defined in Section 6, which is amenable to the application of useful mod p binomial
identities as recalled in Section 4.

Thus, despite the many similarities between the present work and [4], we believe that our
approach, discovered independently, gives a conceptually simpler and cleaner proof, while
still remaining elementary and constructive.

Remark 1.2 In fact, Zieve and Masuda published a stronger result than ours or Park’s
only a year after Zimmerman’s paper was published. Both Theorem 5.1 and Theorem 6.1
(with no upper bound on the degree) can be obtained as special cases of [3, Theorem 1.1].
The authors were unaware of [3] or [4] until after the completion of this paper.

2 Hypotheses and Notation

Throughout this paper we let p denote a fixed odd prime. Let Fp[x] denote the ring of
polynomials with coefficients in Fp. As all of our computations will take place over the
base field Fp, we will often write = instead of ≡ mod p.
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Let f, g ∈ Fp[x]. If (f ◦ g) = (g ◦ f), then we write f ∼ g. It is easy to see that this is
an equivalence relation on Fp[x].

Let f ∈ Fp[x] and let d ≥ 1 be a natural number. We write

Cd(f) = {g ∈ Fp[x] : f ∼ g and deg(g) = d}.

3 Algebraic Structure of Cd(f)

In this section, we record some useful lemmas on the algebraic structure of the sets Cd(f).
In particular, we are able to reduce the problem of determining Cd(f) for general f ∈ Fp[x]
to just two cases: f = x+ 1 and f = ax for a 6= 1.

3.1 Similar Polynomials

Let λ = αx + β ∈ Fp[x] be a linear polynomial, so in particular α ∈ F×p . We denote its
inverse by λ−1 = α−1x− α−1β ∈ Fp[x].

We will make use of the following useful notion which also plays a key role in [6].

Definition 3.1 Let f, g ∈ Fp[x]. We say f and g are similar if there exists a linear
polynomial λ ∈ Fp[x] such that

g = λ−1 ◦ f ◦ λ.

One easily checks that if f and g are similar then they have the same degree. In fact,
we have the following useful results.

Lemma 3.2 Let f = ax + b ∈ Fp[x] be a linear polynomial, so in particular a ∈ F×p .
Furthermore, if b = 0, then assume a 6= 1.

1. If a 6= 1, then f is similar to ax+ c for any c ∈ Fp.

2. If a = 1, then f is similar to x+ c for any c ∈ F×p .

Proof. To prove (1) (resp. (2)), just take λ to be x+ (c− b)(a− 1)−1 (resp. bc−1x ). �

Proposition 3.3 Let f, g ∈ Fp[x] and let d ∈ N. Suppose f is similar to g by λ. Then λ
induces an isomorphism of sets

Cd(f)
∼−→ Cd(g).

Proof. We define the map
Λ: Cd(f)→ Cd(g)

by
Λ(P ) = λ−1 ◦ P ◦ λ.
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Since this map is clearly invertible, it suffices to show that the map is well-defined. Thus,
let P ∈ Cd(f) and let Q = Λ(P ). We must show Q ∈ Cd(g). Let Q = λ−1 ◦ P ◦ λ. Then

g ◦Q = (λ−1 ◦ f ◦ λ) ◦ (λ−1 ◦ P ◦ λ)

= λ−1 ◦ (f ◦ P ) ◦ λ
= λ−1 ◦ (P ◦ f) ◦ λ since P ∈ Cd(f)

= (λ−1 ◦ P ◦ λ) ◦ (λ−1f ◦ λ)

= Q ◦ g.

Thus Q ∈ Cd(g) as desired. �

Remark 3.4 In particular, to prove our main theorems, it suffices to study Cd(x + 1)
and Cd(ax) for a /∈ {0, 1}.

3.2 Group Structure of Cd(x+ 1)

In this section, we observe that Cd(x+ 1) may be given the structure of a group. For the
rest of this section, write f = x+ 1.

Definition 3.5 Let g, h ∈ Fp[x]. Define the polynomial g ⊕ h by

(g ⊕ h)(x) = g(x) + h(x)− x.

Note that this definition does not require g and h to have the same degree.

Proposition 3.6 Let f = x+1 and let g, h ∈ Fp[x]. If f ∼ g and f ∼ h, then f ∼ (g⊕h).

Proof. We compute

[(g ⊕ h) ◦ f ](x) = g(x+ 1) + h(x+ 1)− (x+ 1)

= [g(x) + 1] + [h(x) + 1]− x− 1

= g(x) + h(x)− x+ 1

= [f ◦ (g ⊕ h)](x).

�
It is straightforward to check that this makes (Cd(x+1),⊕) into a group with identity

element x. In particular, the linear term can be seen as a “correction factor” among
polynomials of Cd(x+ 1). In contrast, the constant term is totally free.

Lemma 3.7 Suppose g ∈ Fp[x], f = x + 1, and f ∼ g. Then for any c ∈ Fp, we also
have f ∼ (g + c).
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Proof. We compute

[(g + c) ◦ f ](x) = g(x+ 1) + c

= [g(x) + 1] + c

= [g(x) + c] + 1

= [f ◦ (g + c)](x).

�

4 Two Useful Binomial Coefficient Identities

Recall the binomial expansion

(ax+ b)n =
n∑

i=0

(
n

i

)
(ax)n−ibi.

In this section, we collect some useful identities for the binomial coefficients
(
n
i

)
modulo

p. For instance, in an elementary number theory course, one encounters the so-called
“Freshman’s Dream”

(x+ y)p ≡ xp + yp mod p,

which is equivalent to the statement that(
p

i

)
≡ 0 mod p, 1 ≤ i ≤ p− 1.

The following generalization of this fact is due to Lucas [2, Section XXI].

Theorem 4.1 (Lucas) Let p be a prime number, and let m,n be nonnegative integers.
Denote by

m =
k∑

i=0

mip
i

the base-p expansion of m, and similarly for n. Then(
m

n

)
≡

k∏
i=0

(
mi

ni

)
mod p.

In particular, ni > mi for some 1 ≤ i ≤ k if and only if
(
m
n

)
≡ 0 mod p.

At one crucial moment we will also need the following well-known identity.

Theorem 4.2 (Chu-Vandermonde Identity) Let m,n, and k be non-negative inte-
gers. Then

k∑
j=0

(
m

j

)(
n−m
k − j

)
=

(
n

k

)
.
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5 Main Results for Non-monic Linear Polynomials

In this section we will prove the following theorem.

Theorem 5.1 Let f ∈ Fp[x] be a linear polynomial with leading coefficient a 6= 1. Let
d ≥ 0 be an integer, and let r = ordp(a). Then

#Cd(f) =

{
(p− 1)p

d−1
r , if d ≡ 1 mod r

0, if d 6≡ 1 mod r
.

Recall that, by Remark 3.4, it suffices to consider the case f = ax for a 6= 1.
Proof. Let f = ax for a 6= 1, and let g ∈ Fp[x] be a polynomial of degree d. Then

f(g(x)) = a(cdx
d + cd−1x

d−1 + ...+ c0), and

g(f(x)) = cd(ax)d + cd−1(ax)d−1 + ...+ c0.

Assume f ∼ g. Then for every 0 ≤ i ≤ d, we must have

aci ≡ aici mod p. (1)

In particular, since g is degree d, we have cd 6= 0, so (1) implies that

a ≡ ad mod p. (2)

Thus, it is necessary that r = ordp(a) | d− 1, in which case (2) is satisfied for any of the
p− 1 choices of cd ∈ F×p .

Now, for any 0 ≤ i ≤ d, the same argument shows that if ci 6= 0, then r | i− 1. Since
we must have r | d− 1, there are only d−1

r
such indices for which we may have ci 6= 0, and

in each such case we have p choices for ci. This completes the proof. �

6 Main Results for Monic Linear Polynomials

We now turn our attention to the case of monic linear polynomials, where we have the
following result.

Theorem 6.1 Let p ≥ 3 be a prime, let f ∈ Fp[x] be a monic linear polynomial, and let
d ≥ 0 be an integer. Then

#Cd(f) =

{
(p− 1)pk, if d = kp for some integer 0 ≤ k ≤ p

0, otherwise
.

We begin by proving that f can only commute with a polynomial of degree kp.

Proposition 6.2 Let f be a monic linear polynomial and let g be any polynomial of
degree d that is not the identity. If f ∼ g, then d = kp for some k ∈ N.
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Proof. Recall that it suffices to consider the case where f = x+1. Assume f ∼ g. Then
comparing (d− 1)st coefficients of f(g(x)) and g(f(x)), we see

cd−1 ≡ cd−1 + dcd mod p.

This will only hold if d ≡ 0 mod p. Hence, d = kp for some k ∈ N. �
Define

T0 = {0} and Tp = {p2},
and for 0 < k < p, inductively define

Tk = {i+ 1 | i ∈ Tk−1} ∪ {kp}
= {ip+ j | i, j ≥ 0, i+ j = k}.

Then set

Rk =
k⋃

i=0

Tk and Sk = {0, 1, 2, . . . , kp} \Rk.

Thus, when 0 ≤ k ≤ p, any polynomial g of degree kp may be written in the form

g(x) =
∑
I∈Rk

cIx
I +

∑
J∈Sk

cJx
J .

Remark 6.3 From the second description of Tk above, we may identify each element of
Tk with an ordered pair (i, j).

Example 6.4 If p = 5, the sets obtained in this fashion are shown in the following table.

k Tk Rk Sk

0 {0} {0}
1 {1,5} {0,1,5} {2,3,4}
2 {2,6,10} {0,1,2,5,6,10} {3,4,7,8,9}
3 {3,7,11,15} {0,1,2,3,5,6,7,10,11,15} {4,8,9,12,13,14}
4 {4,8,12,16,20} {0,1,2,3,4,5,6,7,8,10,11,12,15,16,20} {9,13,14,17,18,19}
5 {25} {0,1,2,3,4,5,6,7,8,10,11,12,15,16,20,25} {9,13,14,17,18,19,21,22,23,24}

For any integer k ≥ 0, let [kp] denote the set of integers between (k − 1)p and kp,
inclusive. Set R̃k = Rk ∩ [kp] and S̃k = Sk ∩ [kp]. Then we see that

R̃k =

{
{(k − 1)p, (k − 1)p+ 1, kp} if p - k
{(k − 1)p, kp} if p | k

(3)

and

S̃k =

{
{(k − 1)p+ i | 2 ≤ i ≤ p− 1} if p - k
{(k − 1)p+ i | 1 ≤ i ≤ p− 1} if p | k

. (4)

The following lemma sheds light on the definitions above, and it is crucial to our
approach.
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Lemma 6.5 Let k ≥ 0 be an integer. Let r ∈ Rk and s ∈ Sk. Then(
r

s− 1

)
= 0.

Proof. We may assume without loss of generality that s ∈ S̃k, i.e. that (k − 1)p ≤
s− 1 ≤ kp− 2. Since the conclusion of the lemma is trivial if r < s− 1, we may assume
r > s− 1, so by (3) we must have r = kp. The result now follows from Theorem 4.1. �

As a corollary, we obtain the following important description of polynomials in Ckp(x+
1).

Lemma 6.6 Let g ∈ Ckp(x+ 1). Then g is of the form

g(x) =
∑
I∈Rk

cIx
I .

That is, cJ = 0 for each J ∈ Sk.

Proof. Write
g(x) =

∑
I∈Rk

cIx
I +

∑
J∈Sk

cJx
J

and suppose n is the largest value in Sk for which cn 6= 0. Since g ∈ Ckp(x+ 1), we have

g(x) + 1 = g(x+ 1). (5)

The coefficient of xn−1 on the left-hand side is clearly cn−1. Let us also determine this
coefficient on the right-hand side.

Only terms of index greater than or equal to n− 1 will contribute to this coefficient.
If m > n, then cm 6= 0 implies m ∈ Rk, and so the coefficient of xn−1 in the expansion of
cm(x + 1)m vanishes by Lemma 6.5. Thus, the coefficient of xn−1 on the right-hand side
of (5) is

cn−1 + ncn.

Since n ∈ Sk, we know by (4) that n 6≡ 0 mod p, so this implies that cn = 0. This
contradicts our choice of n, hence

g(x) =
∑
i∈Rk

cix
i (6)

as desired. �
We will prove Theorem 6.1 by determining the dependencies between the various

coefficients of g. To begin with, we have the following very simple lemma.

Lemma 6.7 If g ∈ Cd(x+ 1) then g + c ∈ Cd(x+ 1) for any c ∈ Fp.
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Proof. If g(x) + 1 = g(x+ 1), then

g(x+ 1) + c = [g(x) + 1] + c = [g(x) + c] + 1.

�
In the argument that follows, we say that coefficients (identified by their indices)

occupy the same orbit if the choice of one determines the values of the others. So for
instance, by Lemma 6.7 we always have the singleton orbit {0}, while Example 6.8 below
will establish that in degree p we have an additional orbit {1, p}. Every orbit gives rise to
p possible choices (or p − 1 for the orbit of the top-degree term), so determining how to
partition Rk into orbits gives us the size of Ckp(x + 1): namely, if Rk can be partitioned
into ` + 1 orbits, then #Ckp(x1) = (p − 1)p`. We will show that the orbits at degree kp
are precisely the sets T0, . . . , Tk, from which Theorem 6.1 follows.

Since we have an addition operation on Ckp as described in Section 3, it suffices to show
that we may construct an element of Ckp(x+1) whose only nonzero coefficients come from
Tk plus a linear term (which, in light of Section 3, can be viewed as a correction term),
and that these coefficients are all determined by the choice of the leading coefficient.

Before proving this last claim, let us illustrate our argument in the cases k = 1 and
k = 2.

Example 6.8 Case k = 1
By Lemma 6.6, if g ∈ Cp(x + 1), it may only have nonzero coefficients at the degrees

in R1 = {0, 1, p}. By Lemma 6.7, it suffices to consider

g(x) = cpx
p + c1x.

Then

g(x+ 1) = cpx
p + c1x+ (c1 + cp)

= g(x) + (c1 + cp),

which shows that we are free to pick any value for cp, and then choosing c1 = 1− cp yields
an element of Cp(x+1). There are p choices for c0 and p−1 nonzero choices for cp, giving
(p− 1)p polynomials in Cp(x+ 1).

Example 6.9 Case k = 2
By Lemma 6.6, if g ∈ C2p(x+ 1), it may only have nonzero coefficients at the degrees

in R2 = {0, 1, p, 2, p + 1, 2p}. The degrees which were not present in the case k = 1 are
precisely those in T2 = {2, p+ 1, 2p}. Any polynomial we can construct from just T2 may
be added (in the sense of Definition 3.5) to polynomials constructed from T0 and T1 to
yield more polynomials in C2p. So let us determine how many such polynomials we can
build.

Suppose
g(x) = c2px

2p + cp+1x
p+1 + c2x

2 + x.
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Then

g(x+ 1) = g(x) + (2c2p + cp+1)x
p + (cp+1 + 2c2)x+ (c2p + cp+1 + c2 + 1).

Thus, upon choosing a value for c2p, we must have cp+1 = −2cp and c2 = c2p, and then
the constant term in the displayed equation is identically 1, as desired. Thus, the indices
in T2 form a new, distinct orbit.

Excluding zero, there are (p − 1) choices for c2p, so there are (p − 1) choices of g(x)
as above. Under our addition law for Cd(x+ 1) [g1 ⊕ g2 = g1 + g2 − x], we may combine
these choices of g(x) with those of degree p. Since we may now allow cp = 0, there
are p2 polynomials in C2p(x + 1) with which to combine, so these combinations give us
#C2p(x+ 1) = (p− 1)p2 polynomials in C2p(x+ 1).

As our arguments above have explained, it suffices to show that for each k we can
construct a polynomial in Ckp using only indices from Tk. We do this now.

Suppose

g(x) = x+
∑
I∈Tk

cIx
I .

Using Theorem 4.1, we find that g(x+ 1) = g(x) + h(x) where

h(x) = (1 +
∑
I∈Tk

cI) +
∑

t∈Rk−1

(∑
I∈Tk

(
I

t

)
cI

)
xt. (7)

We now make a sequence of observations about the coefficients appearing on the right-
hand side of (7) in order to show that, for each choice of value for ckp, there is a unique
choice of value for each other cI , I ∈ Tk which makes h(x) identically zero.

First note that the case k = p is special, since one immediately checks that xp
2

commutes with x+ 1. Thus, [p2] is its own orbit. We now consider k < p.
Since k < p, we have

Tk = {ip+ j | i, j ≥ 0, i+ j = k}.

We identify the element ip+ j ∈ Tk with the ordered pair (i, j).
Let t ∈ Tk−1, so that t = i′p+ j′ where i′ + j′ = k − 1. Then from (7), the coefficient

of xt is ∑
I=(i,j)∈Tk

(
I

t

)
cI =

∑
i,j≥0
i+j=k

(
ip+ j

i′p+ j′

)
c(i,j)

=
∑
i,j≥0
i+j=k

(
i

i′

)(
j

j′

)
c(i,j) by Theorem 4.1.
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Applying Theorem 4.1 again, we see that the only binomial coefficients in the sum above
which are not zero in Fp are(

i′ + 1

i′

)(
j′

j′

)
= i′ + 1 and

(
i′

i′

)(
j′ + 1

j′

)
= j′ + 1.

Thus, the coefficient of xt is

(i′ + 1)c(i′+1,j′) + (j′ + 1)c(i′,j′+1),

and if g ∼ f then this coefficient must be zero. This produces a chain of dependencies
between the cI for I ∈ Tk:

(k)c(k,0) = −c(k−1,1)
(k − 1)c(k−1,1) = −2c(k−2,2)

(k − 2)c(k−2,2) = −3c(k−3,3)
...

c(1,k−1) = −kc(0,k).

In particular, choosing a value for c(k,0) = ckp determines the values for the rest of the cI
for I ∈ Tk, and these choices are consistent with the requirement from the constant term
in (7) that

∑
I∈Tk

cI = 0.
The only thing left to check is that the conditions imposed by the coefficients of xt

for t ∈ Rk−2 do not contradict the ones we just found. Let 1 ≤ k′ ≤ k − 2. Using the
same style of computation as above, the coefficient of xt for each t ∈ Tk′ yields a linear
dependence equation between the cI for I ∈ Tk. Rather than write these individually,
consider the sum of these linear dependence equations. In this sum, the coefficient of c(i,j)
is ∑

i′,j′≥0
i′+j′=k′

(
ip+ j

i′p+ j′

)
=

∑
i′,j′≥0
i′+j′=k′

(
i

i′

)(
j

j′

)

=

(
k

k′

)
by Theorem 4.2.

Since this is true for every I ∈ Tk, we see that the linear dependence conditions imposed
by Rk−2 are also consistent with the condition imposed by the linear term in (7). This
completes the proof.

7 Some Numerical Examples

We now provide examples which illustrate the methods in Section 6.
Example #1:
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Let p = 3 and k = 2. By Theorem 6.1, we calculate 18 polynomials that commute
with x+ 1. We will now show why this is the case in this particular example. By Lemma
6.3, we know that this polynomial will take the form c6x

6 + c4x
4 + c3x

3 + c2x
2 + c1x+ c0.

We also know that our orbits will be [0], [1, 3], [2, 4, 6].

determined degree c6 c4 c3 c2 c1 c0
c6=1 c6=1 c4=1 c2=1
c6=2 c6=2 c4=2 c2=2
c3=0 c3=0 c1=1
c3=1 c3=1 c1=0
c3=2 c3=2 c1=2
c0 = 0 c0 = 0
c0 = 1 c0 = 1
c0 = 2 c0 = 2

We can see from the table that there are 18 possible polynomials of degree 6 that commute
with x + 1. We can build these polynomials by selecting one choice for c6, c3 and c0 and
combining the three. Some examples of these polynomials are

• x6 + x4 + x2

• 2x6 + 2x4 + x3 + 2x2 + 1

• x6 + x4 + 2x3 + x2 + 2x+ 2

Example #2:
Let p = 5 and k = 5. By using our method for finding degrees that can show up in g,

we see that degrees 0,1,2,3,4,5,6,7,8,10,11,12,15,16,20,25 can appear in g, while all other
degrees 0 ≤ d ≤ 25 cannot.

Then we can see that our orbits have the following structure:

k new degrees orbits
1 0,1,5 [0],[1,5]
2 2,6,10 [0],[1,5],[2,6,10]
3 3,7,11,15 [0],[1,5],[2,6,10],[3,7,11,15]
4 4,8,12,16,20 [0],[1,5],[2,6,10],[3,7,11,15],[4,8,12,16,20]
5 25 [0],[1,5],[2,6,10],[3,7,11,15],[4,8,12,16,20],[25]
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