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Abstract - Suppose a large group of people, such as a university faculty, traditionally makes
decisions by meeting together and voting. Because of the COVID-19 pandemic, however,
large group meetings have become impractical. Having a relatively small subset of the group
meet and take votes would be safer and easier to organize. The purpose of this research is
to use probability theory to choose a size for this subset which guarantees that the subset
has a high probability of voting the same way as the entire group. Our research involves the
study of the hypergeometric probability distribution and leads to a computer algorithm for
determining the subset size.
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1 Introduction

At some colleges and universities, such as Drury University, the faculty vote on issues at
regular meetings of the full faculty. Such meetings can be challenging to schedule. Also
the COVID pandemic has made society rethink the number of people allowed in a room.

In this work, we explore how to reduce a voting body’s size while maintaining a high
probability that the smaller group will make the same decision as the full voting body.
We consider sets of voters whose members choose between two options, usually ‘yes’ or
‘no’. We also assume that the entire voting body always chooses the winning option by a
large majority. At Drury University, for example, the full faculty often votes unanimously.
Even on controversial matters, more than 60% of faculty members vote for the winning
option.

If we have historical data on a voting body, it is possible to allow only a subset of
voters to vote while remaining confident that the resulting decisions reflect the views of
the entire voting body. First, we will determine a subset size that guarantees the same
voting outcome as that of the large group. Then we will look at smaller subsets where
the probabilities for the winning option to be the same are high. Throughout this paper,
we assume that an individual voter will make the same decision if they are voting as part
of a large group or a smaller group.
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2 Notation

We first need to define some notation. Suppose a voting body G votes ‘yes’ or ‘no’ on a
proposal V . Here, a proposal could be a positive statement such as “the faculty handbook
should be amended” or a negative statement such as “the faculty handbook should not
be amended.” Assume that everyone in G votes and that the only options are to vote
‘yes’ or ‘no.’ The symbol A denotes the subset containing people in G who vote ‘yes’, and
Ã is the subset of those who vote ‘no.’ We let a = |A|, where |A| represents the number
of people in A. Similarly, we define ã = |Ã| and g = |G|. The assumptions that everyone
votes and that there are only two voting options imply that A ∪ Ã = G and a + ã = g.
The probability p of a randomly-selected member of G voting ‘yes’ is then

p =
a

g
.

In this paper, we will assume that a majority of the members of G vote ‘yes’. Thus
a > ã and 0.5 < p ≤ 1. In the numerical calculations that appear in a later section, we
will use values of p much larger than 0.5.

3 Choosing Subsets With a High Probability of Voting for V

Let S be a subset of G with size s. Then the members of S will vote for proposal V if less
than half of the members of S come from Ã, the set of members of G who vote against
V . Since S can contain at most ã members who vote against V , S is guaranteed to vote
for V if

s ≥ 2ã + 1. (1)

Demanding that a subset S vote the same as G 100% of the time may produce a
subset that is still quite large. For example, suppose G has 100 members, and, based on
historical voting patterns, we expect that at least 70% of the members of G will vote for
V . Inequality (1) says that S needs at least 61 members to guarantee that S will also
vote for V .

Rather than requiring the subset to always vote for V , we will instead look for the
minimum subset size that guarantees a high probability that the subset will vote for V .
To find this size, we must be able to calculate the probability that a randomly-selected
subset of a given size votes for V .

Let n be a nonnegative integer, and suppose k is a nonegative integer such that k ≤ n.
We use

(
n
k

)
to denote the number of ways of choosing without replacement a subset of

size k from a set of size n. As is well-known from combinatorics,(
n

k

)
=

n!

(n− k)!k!
.

If a subset S has size s, what is the probability this subgroup will vote for V ? We will
first examine the question with some examples.
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Suppose the entire voting body has g = 10 members, of which 7 will vote for V . If a
subset has size s = 3, its members will vote for V if at least 2 members are selected from
the 7 that will vote for V . The number of subsets of size 3 where exactly 2 members vote
for V is (

7

2

)(
3

1

)
= 63.

The number of subsets of size 3 where exactly 3 members vote for V is(
7

3

)(
3

0

)
= 35.

So the number of subsets of size 3 that will choose V is(
7

2

)(
3

1

)
+

(
7

3

)(
3

0

)
= 98.

The probability of choosing a subset of size 3 that votes for V equals the number of
subsets that vote for V divided by the number of all possible subsets of size 3:(

7
2

)(
3
1

)
+
(
7
3

)(
3
0

)(
10
3

) =
98

120
= .82.

That means 82% of subsets of size 3 will choose V .
One might suspect that choosing a larger subset size will always give a higher prob-

ability. This is not true, though. Consider a subset where s = 4. The subset will vote
for V if at least 3 members are selected from the 7 that will vote for V . The number of
subsets of size 4 where exactly 3 members vote for V is(

7

3

)(
3

1

)
= 105,

and the number of subsets of size 4 where exactly 4 members vote for V is(
7

4

)(
3

0

)
= 35.

So the number of subsets that will choose V is(
7

3

)(
3

1

)
+

(
7

4

)(
3

0

)
= 140.

The probability of choosing a subset of size 4 that votes for V equals the number of
subsets that vote for V divided by all the possible subsets of size 4:(

7
3

)(
3
1

)
+
(
7
4

)(
4
0

)(
10
4

) =
140

210
= .67.
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That means 67% of groups of size 4 will choose V . Note that this is smaller than the
probability for a subgroup of size 3.

In general, suppose a voting body G of size g contains a members that vote for V
and ã that vote against V . If a subset of size s is selected from G, the probability that i
members of the subgroup vote for V is given by the hypergeometric probability(

a
i

)(
ã

s−i

)(
g
s

) . (2)

See [1], pgs. 208-216, for a thorough discussion of hypergeometric probabilities.
A majority of the subset votes for V if more than half its members vote for V . That

is,

i ≥
⌊s

2

⌋
+ 1.

Here,
⌊
s
2

⌋
is the largest integer that is less than or equal to s

2
.

Suppose we randomly-select a subset of G. Let Y (short for “yes”) denote the event
where a majority of the subset members vote for proposal V . In set-theoretic notation,

Y = {S ⊆ G
∣∣ |S ∩ A| > |S ∩ Ã|}.

For a fixed nonnegative integer s, the probability of randomly-selecting a subset S of
size s where V wins is given by the conditional probability P (Y

∣∣ |S| = s). This probability
equals the sum of probabilities of the form (2) where i starts with b s

2
c+ 1 and ends with

s:

P (Y
∣∣ |S| = s) =

s∑
i=b s

2
c+1

(
a
i

)(
ã

s−i

)(
g
s

) . (3)

For now, we use the convention that
(
n
k

)
= 0 if k > n. This convention would be

needed if s > a. As we will see, in practice the subset sizes will be smaller than a.
We can now express the problem of choosing the smallest subset size that guarantees

a high probability that its members vote for V in terms of P (Y
∣∣ |S| = s). Let q be a

probability close to 1 (e.g. q = .95). Find the smallest s such that

P (Y
∣∣ |S| = s) ≥ q. (4)

If q = .95, for example, finding the smallest s that satisfies this inequality would give
a subset size that guarantees that at least 95% of subsets of that size would vote for V .

4 Odds and Evens

Solving inequality (4) algebraically is difficult. For that reason, we wrote Python code to
find the smallest value of s that satisfies (4). A straightforward algorithm would be to
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first calculate P (Y
∣∣ |S| = s) when s = 1, and then repeatedly increase s by 1, calculating

P (Y
∣∣ |S| = s) each time. The algorithm would stop when it finds the first value of

P (Y
∣∣ |S| = s) that is greater than or equal to the probability q.

Numerical experiments suggested to us that if s is odd, then P (Y
∣∣ |S| = s) is larger

than P (Y
∣∣ |S| = s + 1). The next theorem establishes that this is true in general, and it

implies that the smallest value of s that satisfies (4) will be odd.

Theorem 4.1 If s is odd, then

P (Y
∣∣ |S| = s) > P (Y

∣∣ |S| = s + 1) (5)

Proof.
Let Ỹ be the event where at least half of the members of a randomly-chosen subset

vote against V . Then
P (Y

∣∣ |S| = s) + P (Ỹ
∣∣ |S| = s) = 1,

and
P (Y

∣∣ |S| = s + 1) + P (Ỹ
∣∣ |S| = s + 1) = 1.

Thus inequality (5) is equivalent to the complementary inequality

P (Ỹ
∣∣ |S| = s) < P (Ỹ

∣∣ |S| = s + 1).

As in equation (3), the complementary probabilities are sums of hypergeometric prob-
abilities:

P (Ỹ
∣∣ |S| = s) =

b s
2
c∑

i=0

(
a
i

)(
ã

s−i

)(
g
s

)
and

P (Ỹ
∣∣ |S| = s + 1) =

b s+1
2
c∑

i=0

(
a
i

)(
ã

s+1−i

)(
g

s+1

) .

So proving the theorem is equivalent to proving

b s
2
c∑

i=0

(
a
i

)(
ã

s−i

)(
g
s

) <

b s+1
2
c∑

i=0

(
a
i

)(
ã

s+1−i

)(
g

s+1

) . (6)

To simplify the terms being summed, we will express
(

g
s+1

)
in terms of

(
g
s

)
. Notice that(

g
s+1

)(
g
s

) =

g !
(s+1) !(g−s−1) !

g !
(s) !(g−s) !

=
g − s

s + 1
.

So (
g

s + 1

)
=

g − s

s + 1

(
g

s

)
. (7)
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Substituting (7) into inequality (6) and canceling the common factor of
(
g
s

)
from both

sides gives the following inequality, which is equivalent to (6):

b s
2
c∑

i=0

(
a

i

)(
ã

s− i

)
<

b s+1
2
c∑

i=0

s + 1

g − s

(
a

i

)(
ã

s + 1− i

)
. (8)

Since s is odd, b s
2
c = s−1

2
and b s+1

2
c = s+1

2
. Thus the sum on the right side of inequality

(8) has one more term than the sum on the left side (if s were even, both sums would
have the same number of terms). We can thus rewrite the right side of inequality (8) as

b s+1
2
c∑

i=0

s + 1

g − s

(
a

i

)(
ã

s + 1− i

)
=

s + 1

g − s

(
ã

s + 1

)
+

s−1
2∑

i=0

s + 1

g − s

(
a

i + 1

)(
ã

s− i

)
.

On the right side, the term outside the summation is always nonegative. We can thus
finish the proof by showing that if 0 ≤ i ≤ s−1

2
, then

s + 1

g − s

(
a

i + 1

)(
ã

s− i

)
>

(
a

i

)(
ã

s− i

)
.

A calculation similar to the one used to show (7) gives(
a

i + 1

)
=

a− i

i + 1

(
a

i

)
.

We will finish by showing that if 0 ≤ i ≤ s−1
2

, then(
s + 1

g − s

)(
a− i

i + 1

)
> 1.

Rewrite the left side of this inequality as(
s + 1

2i + 2

)(
2a− 2i

g − s

)
.

Since i ≤ s−1
2

, then 2i ≤ s− 1. So 2i+ 2 ≤ s+ 1. Hence s+1
2i+2
≥ 1. Also, a majority of the

members of G are in A. Thus 2a > g. So g − s < 2a− s ≤ 2a− 2i− 1 < 2a− 2i, which
implies 2a−2i

g−s > 1. �
Theorem (4.1) implies that the algorithm described at the beginning of the section

only needs to calculate (3) for odd values of s.
We implemented the algorithm using Python. The program uses the scientific calcu-

lation library Scipy to calculate the necessary hypergeometric probabilities (see [3]). For
those interested in experimenting with the program, the code is available at [2].

The method to find the smallest value of s has three inputs: the voting body size g,
the percentage of votes for option A, and the wanted probability q. Taking these values,
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1 0.698
2 0.485
3 0.784
4 0.649
5 0.839
6 0.745
7 0.879
8 0.810
9 0.908
10 0.857

11 0.930
12 0.892
13 0.947
14 0.918
15 0.960
16 0.938
17 0.970
18 0.953
19 0.978
20 0.965

Table 1: Probabilities for Subsets of the Drury Faculty Assuming p = .70

it calculates P (Y
∣∣ |S| = s) for odd values of s starting at s = 1 until reaching the first

value such that P (Y
∣∣ |S| = s) ≥ q. At this point, it returns s. The user can also choose

to see lists of values of P (Y
∣∣ |S| = s).

As Theorem 4.1 implies, increasing s does not necessarily increase P (Y
∣∣ |S| = s). We

believe that the possibility of a tie in an even-sized subset is the cause of the up and down
behavior of the values of P (Y

∣∣ |S| = s).

5 Numerical Examples

The algorithm can be applied to our initial example on Drury University’s faculty voting
problem. Drury has 116 voting faculty. Based on historical voting patterns, a reasonable
minimum value for p is 70%. The Python code returned the values seen in Table 1. In
the table, the left column is the size of a randomly-selected subset of the faculty. The
right column is the probability that the subset will vote the same as the entire faculty.

These numerical results show that even small subsets of the entire faculty have a high
probability of voting the same as the full faculty. A subset of size 9 will vote the same as
the full faculty 90% of the time. Increasing the subset size to 15 increases the probability
to 96%. Notice that our numerical results follow Theorem 4.1, as each odd-sized subset
probability is always larger than the probability for the subsequent even-sized subset.

Other numerical results show that even for large voting bodies, small subsets have a
high probability of voting the same as the entire body. For example, suppose a voting
body has 100000 members, and that we have data that suggests that 75% of this body
will vote on option A. The probabilities for the smallest 20 subgroups appear in table 2.

Nearly all (99.1%) subsets of size 19 will vote for the same option as the entire body.
Results are still good for subsets with as few as 9 members. These numerical calculations
suggest that changing p has a larger effect on the probabilities than increasing the size
of the voting body. Again, we can see how the probabilities of the odds and evens follow
the pattern predicted by Theorem 4.1.
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1 0.75
2 0.562
3 0.844
4 0.738
5 0.896
6 0.831
7 0.929
8 0.886
9 0.951
10 0.921

11 0.966
12 0.945
13 0.975
14 0.962
15 0.982
16 0.973
17 0.988
18 0.981
19 0.991
20 0.986

Table 2: Probabilities for a Body of Size 10000 with p = .75

6 Possibilities for Future Work and Conclusion

The results in this paper depended on two assumptions. First, we assumed that the subset
was randomly-chosen from the entire voting body. Second, we assumed that an individual
in a small-group setting would always vote the same as if they were voting with the entire
voting body.

Large voting bodies are typically divided into different groups, each with their own
interests and agendas. University faculty, for example, are grouped into departments and
colleges. Faculty in a behavioral sciences department might have stronger opinions on a
specific issue than faculty in a biology department.

Randomly choosing a subset of a voting body could leave some groups with no repre-
sentation. In future work, we hope to generalize the work done in this paper to a voting
body that is divided into subgroups, each of which has a different probability of voting for
a particular issue, and each of which must be represented in the subset that is selected.

Also, individuals in a small subset may vote differently than they would if they were
voting with a larger group of people. In a small-group setting, people might be more
comfortable advocating for one option over another. Lively discussions could sway some
voters to change their votes. We want to explore this phenomenon further.

Theorem 4.1 says that if s is odd, then P (Y
∣∣ |S| = s) > P (Y

∣∣ |S| = s+1). Numerical
results suggest that if x = (s + 1)/2, then the following is true:

P (Y
∣∣ |S| = s) = P (Y

∣∣ |S| = s + 1) +

(
a
x

)(
ã
x

)
2
(

g
s+1

) . (9)

The last term on the right is half the probability that the votes in a randomly-selected
subset of size s + 1 are tied. If (9) is true in general, then Theorem 4.1 follows. We hope
to prove (9) in future work.

Given our assumptions, however, we see that tiny subsets of a voting body will often
vote the same as the entire body. For a university faculty, the results suggest that a small
faculty senate could represent the entire faculty.
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