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Abstract - We present a proof of an identity involving the Bernoulli numbers. This
identity has been proved, over the centuries, by many different methods. Our method uses a
technique from over a millennium ago for finding polynomial expressions for sums of powers
of integers.
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1 Introduction

The Bernoulli numbers are usually defined, following Euler, in terms of an exponential
generating function:

B(z) =
zez

ez − 1
=
∑
m≥0

Bm
zm

m!
, (1)

see [8, Equation 6.81, 34th printing, January 2022]. Note that this definition yields
B1 = 1/2, and that most sources, including earlier printings of [8], prefer a slightly
different definition involving z/(ez − 1) which yields B1 = −1/2 (the other values are not
affected). Donald Knuth explains in [10] that he decided to make the change after being
convinced by the arguments given by Peter Luschny in The Bernoulli Manifesto [11].

If we express B′(z) in terms of B(z) we get (see, e.g., [5, 3])

B(z)2 = (z + 1)B(z) − zB′(z),

and, using the definition of multiplication of power series, we get

Theorem 1.1 The Bernoulli numbers Bm satisfy, for integers m ≥ 1,

m∑
j=0

(
m

j

)
Bm−jBj = mBm−1 − (m− 1)Bm.

For even indices greater than 2, this can be written as a recurrence:

Corollary 1.2 For m > 1, we have:

B2m = −
(

1

2m+ 1

)m−1∑
j=1

(
2m

2j

)
B2m−2jB2j.
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These are well known; see [6, Equation 24.14.2], and [12, Chapter III, Section XII, Equa-
tion 13]. The earliest discovery seems to be Euler [4, Part 2, Chapter V, paragraph
123], and over the years the result has been proved many times in many different ways
[14, 15, 13, 5, 3]. The reference [13] discusses previous methods of proof:

The methods of these authors are varied—partial fraction decomposition of
rational functions, Laurent expansions of meromorphic functions, rearrange-
ment of absolutely convergent double series, Fourier expansions of Eisenstein
series and Apostol’s extension of a transformation formula due to Lehmer and
Newman.[13, p. 1176]

Subsequent authors [5, 3] have derived higher-order generalizations of Theorem 1.1) by
considering other differential equations satisfied by the function B(z) = zez/(ez − 1).

Bernoulli numbers were initially defined in a different way. Jakob Bernoulli (1654–
1705), and, independently, Takakazu Seki (?–1708) (see [9]), in their study of formulas for
sums of powers of integers, made a remarkable discovery. There is a sequence of numbers,
B0, B1, . . . with the property that they can be used to express the sum of the first n mth
powers as a polynomial in n of degree m+ 1:

n∑
k=1

km =
1

m+ 1

(
m∑
j=0

(
m+ 1

j

)
Bjn

m+1−j

)
, (2)

for all m,n ≥ 0 [8, Equation 6.78, 34th printing, January 2022]. Plugging in n = 1 and
starting with B0 = 1 allows one to express Bm in terms of B0, . . . , Bm−1 [8, Equation 6.79,
34th printing, January 2022], yielding :

m∑
j=0

(
m+ 1

j

)
Bj = m+ 1

(m+ 1)Bm = (m+ 1) −
m−1∑
j=0

(
m+ 1

j

)
Bj

Bm = 1 −
(

1

m+ 1

)m−1∑
j=0

(
m+ 1

j

)
Bj (3)

Note that this definition also yields B1 = 1/2, and that the one that yields B1 = −1/2 is
obtained similarly, starting with

∑n−1
k=0 k

m on the left hand side of (2).
The goal of this paper is to give another proof of Theorem 1.1, using the definition

(3) for Bernoulli numbers. We begin with an old geometric argument, Lemma 2.1, which
dates back to Abu Ali al-Hasan ibn al-Hasan ibn al-Haytham (ca. 965-1039), known also
as Alhazen (see [7, 2]). For nonnegative integers m and n, let Sm(n) denote the sum
of the first n mth powers,

∑n
j=1 j

m. Lemma 2.1, in Section 2 below, is a derivation of
an expression for Sm(n) involving products of coefficients of Sm−1(n) by the polynomials
Sk(n) for k ≤ m. When the coefficients of the Sk(n) are expressed in terms of the Bernoulli
numbers, via Lemma 3.2 in Section 3 below, we obtain Theorem 1.1.
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1m−1 + 2m−1 + · · · + nm−1

1m−1 + 2m−1 + 3m−1

1m−1 + 2m−1

1m−1

1m

︸ ︷︷ ︸
1m−1

2m

︸ ︷︷ ︸
2m−1

3m

︸ ︷︷ ︸
3m−1

nm

︸ ︷︷ ︸
nm−1

Figure 1: Proof of (4) [7, 2]

Our proof is most similar to that of Underwood [14] from 1928, only it uses Alhazen’s
geometric argument instead of Underwood’s algebraic manipulations.

2 Sums of Powers

Let m and n be nonnegative integers, with m > 0. We are interested in finding an
expression for Sm(n), assuming inductively that we have expressions for Sk(n) for 0 ≤
k < m, and that Sk(n) is a polynomial in n of degree k + 1:

Sk(n) =
k+1∑
j=1

sk,jn
j.

We start with S0(n) = n.

Lemma 2.1 For all m ≥ 1 we have

Sm(n) = (n+ 1)Sm−1(n) −
m∑
j=1

sm−1,jSj(n).

Proof. We prove first that for all integers m ≥ 1, the functions Sm and Sm−1 satisfy

Sm(n) +
n∑

k=1

Sm−1(k) = (n+ 1)Sm−1(n) (4)

for all n ≥ 1, which is the Alhazen identity [7, p. 84], [2] .
In Figure 1 we see that a rectangle of width Sm−1(n) and height n+1 can be partitioned

into:
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• Rectangles of width km−1 and height k, for k = 1 . . . n, with total area Sm(n).

• Rectangles of width 1m−1 + · · ·+ km−1 = Sm−1(k) and height 1, for k = 1 . . . n, with
total area

∑n
k=1 Sm−1(k).

Since the area of the large rectangle is (n+ 1)Sm−1(n), equating areas yields (4).
Note that the rectangles in Figure 1 have the correct proportions for the m = 2 case.

But the diagram holds true for arbitrary m > 0.
As we said before, we denote by si,j the nj coefficient of Si(n). We have si,0 = Si(0) =

0, so

Sm−1(k) =
m∑
j=1

sm−1,jk
j.

Rewriting (4) and expressing the Sm−1(k) in terms of the sm−1,j yields:

Sm(n) = (n+ 1)Sm−1(n) −
n∑

k=1

Sm−1(k)

= (n+ 1)Sm−1(n) −
n∑

k=1

m∑
j=1

sm−1,jk
j

= (n+ 1)Sm−1(n) −
m∑
j=1

n∑
k=1

sm−1,jk
j

= (n+ 1)Sm−1(n) −
m∑
j=1

sm−1,jSj(n).

�
Note that in Lemma 2.1, Sm(n) occurs on the right hand side (with a coefficient of
−sm−1,m, which is clearly negative). Thus we can solve for Sm(n), obtaining a polynomial
of degree m+1. But more interesting is the quadratic relation we obtain in the coefficients,
leading to Theorem 1.1, see (7) in Section 4.

3 Bernoulli Numbers

The Bernoulli numbers may be defined easily in our notation: Bm = sm,1. Bernoulli
realized that for all i, j, the coefficient si,j could be easily described in terms of Bi+1−j,
as in equation (2). For completeness, we give here a short derivation of this result.

We have seen by induction on m that for any m ≥ 0, there is a polynomial expression
in n of degree m + 1 which is equal to Sm(n) for all natural numbers n. This expression
may be evaluated at any real number, so we may speak of the polynomial function Sm(x)
where x is a real variable.

Lemma 3.1 For all nonnegative integers m, the polynomial Sm(x) is characterized by
the following:
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• Sm(x) − Sm(x− 1) = xm.

• Sm(0) = 0.

Proof. Let m be an arbitrary nonnegative integer. Clearly the condition Sm(0) = 0
holds. And for any natural number n > 0, Sm(n) − Sm(n − 1) = nm. So for any m, the
polynomial Sm(x) − Sm(x− 1) − xm is zero at x = n for all natural numbers n > 0; it is
the zero polynomial.

Conversely, suppose the polynomial f(x) is such that f(0) = 0 and f(x)− f(x− 1) =
xm. Then by induction on n we see that f(n) =

∑n
j=1 j

m = Sm(n). �
Let m be an arbitrary nonnegative integer. By differentiating both sides of the poly-

nomial identity
Sm+1(x) − Sm+1(x− 1) = xm+1,

we see that

S ′m+1(x) − S ′m+1(x− 1) = (m+ 1)xm

(1/(m+ 1))S ′m+1(x) − (1/(m+ 1))S ′m+1(x− 1) = xm

In other words, the polynomial (1/(m + 1))S ′m+1(x) satisfies the first of the criteria of
Lemma 3.1. Subtracting the constant term from this polynomial results in the second
criterion being satisfied as well. We have:

Sm(n) = (1/(m+ 1))(S ′m+1(n) − S ′m+1(0)). (5)

For m ≥ 0 and j > 1, considering the nj−1 coefficient of both sides of (5) yields an
equation relating sm+1,j and sm,j−1. Solving for sm+1,j, we obtain:

sm+1,j = ((m+ 1)/j)sm,j−1.

Expressing sm,j in terms of sm−1,j−1, this becomes

sm,j = (m/j)sm−1,j−1. (6)

Our goal is to prove Bernoulli’s expression for sm,j in terms of Bm+1−j [8, Equation 6.78]:

Lemma 3.2 For all m ≥ 0 and 1 ≤ j ≤ m+ 1

sm,j =

(
1

m+ 1

)(
m+ 1

j

)
Bm+1−j.

Proof. We proceed by induction on j. From the definition Bm = sm,1 we obtain the
base case:

sm,1 =

(
1

m+ 1

)(
m+ 1

1

)
Bm+1−1,
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for all m. Now suppose we have established the j − 1 case; the j case follows from (6):

sm,j = (m/j)sm−1,j−1

= (m/j)

(
1

m

)(
m

j − 1

)
Bm+1−j

=

(
1

m+ 1

)(
m+ 1

j

)
Bm+1−j.

�
Note that Lemma 3.2 is the same as (2), after equating coefficients. This leads to the
definition Bm = sm,1 at the beginning of Section 3 being equivalent to (3), since Bm = sm,1

implies Lemma 3.2, which is equivalent to (2), which implies (3).

4 A Quadratic Relation

We are ready to prove Theorem 1.1:
Proof. Equating the nk coefficients of both sides of the equality in Lemma 2.1 yields:

sm,k = sm−1,k−1 + sm−1,k −
m∑
j=1

sm−1,jsj,k. (7)

Substituting the expression in Lemma 3.2 for the si,j in (7), we obtain, in the k = 1 case,

m∑
j=0

(
m

j

)
Bm−jBj = mBm−1 − (m− 1)Bm.

Thus Theorem 1.1 is seen to hold. �
Before proving Corollary 1.2 we need the following:

Lemma 4.1 For odd m > 1, the Bernoulli number Bm is zero.

Proof. Starting with B0 = 1 and applying Theorem 1.1 repeatedly with m = 1, m = 2,
m = 3, we compute B1 = 1/2, B2 = 1/6, and B3 = 0. Since the quadratic terms in
Theorem 1.1 involve indices which sum to m, for odd m we must have exactly one odd
index in each summand, so for odd m greater than 1 we can see by induction that the
Bernoulli number Bm is zero (the terms involving Bm−1 cancel out). �

Now we are ready to prove Corollary 1.2:
Proof. By Lemma 4.1, for even m > 2, we can ignore the Bm−1 term in Theorem 1.1.
We have Bm on both sides of the equation (it occurs as Bj for j = m and Bm−j for j = 0);
solving for Bm yields the following:

Bm = −
(

1

m+ 1

)m−2∑
j=2

(
m

j

)
Bm−jBj,

valid for even m > 2. Since the terms on the right hand side are zero for odd j, the proof
is complete. �
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5 Bernoulli Polynomials

The Bernoulli polynomials are usually defined in terms of a generating function:

B(x, z) =
zezx

ez − 1
=
∑
m≥0

Bm(x)
zn

n!
,

[6, Equation 24.2.3], but in our notation we may equivalently define them as

Bm(x) = S ′m(x− 1) =
m∑
j=0

(
m

j

)
Bj(x− 1)m−j =

m∑
j=0

(−1)j
(
m

j

)
Bjx

m−j

[8, Equation 7.80]. Note that the Bernoulli number Bm is equal to Bm(1). In sources
which define B1 to be −1/2, the Bernoulli polynomials are the same as the ones defined
here, but there the Bernoulli number Bm equals Bm(0), and the xm−j coefficient of Bm(x)
is
(
m
j

)
Bj. Also note that (5) is [1, Lemma 2.3, p.35] or [8, Equation 7.79], showing that

the definitions (1) and (2) of Bernoulli numbers are equivalent.
In this Section we prove two identities regarding the Bernoulli polynomials, succes-

sively generalizing Theorem 1.1. At the level of coefficients, these are quadratic relations
in the Bernoulli numbers; indeed, we shall see that they are the same quadratic rela-
tions which we obtained via Lemma 2.1. So these identities may be seen as alternative
presentations of our main result.

If we denote the partial derivative of B(x, z) with respect to z by Bz(x, z), we get

B(z)B(x, z) = (1 + zx)B(x, z) − zBz(x, z),

and identifying coefficients yields the first identity:

Theorem 5.1 The Bernoulli polynomials satisfy

m∑
j=0

(
m

j

)
Bm−jBm(x) = mxBm−1(x) − (m− 1)Bm(x)

for m > 0.

Proof. We provide a proof similar to the one of Theorem 1.1. We take the polynomial
identity in Lemma 2.1, substitute x− 1 for n, and differentiate, obtaining:

Bm(x) = xBm−1(x) + Sm−1(x− 1) −
m∑
j=1

sm−1,jBj(x).

Using (5) we can substitute (1/(m))(S ′m(x − 1) − S ′m(0)) = (1/m)(Bm(x) − Bm) for
Sm−1(x− 1). And using Lemma 3.2 we substitute (1/m)

(
m
j

)
Bm−j for sm−1,j, obtaining:

Bm(x) = xBm−1(x) + (1/m)(Bm(x) −Bm) −
m∑
j=1

(1/m)

(
m

j

)
Bm−jBj(x).
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Note that Bm =
(
m
0

)
BmB0(x), and so it may be absorbed into the sum by including a

term corresponding to j = 0. Multiplying through by m and rearranging terms completes
the proof. �
This can be generalized further. Subtracting mBm−1(x+y) from both sides of Theorem 5.1
for x replaced by x+ y produces [6, Equation 24.14.1]:

Theorem 5.2 The Bernoulli polynomials satisfy

m∑
j=0

(
m

j

)
Bm−j(y)Bj(x) = m(x+ y − 1)Bm−1(x+ y) − (m− 1)Bm(x+ y)

for m > 0.

Proof. We are providing again a proof based on identifying coefficients.
The following equation, satisfied for all for m ≥ 0, is [6, Equation 24.4.12].

Bm(x+ y) =
m∑
`=0

(
m

`

)
ym−`B`(x) (8)

To check this, consider,for any nonnegative integers n, p, Sm(n+ p). We have:

Sm(n+ p) =

p∑
k=1

km +
n∑

k=1

(k + p)m

= Sm(p) +
n∑

k=1

m∑
`=0

(
m

`

)
k`pm−`

= Sm(p) +
m∑
`=0

(
m

`

)
pm−`

n∑
k=1

k`

= Sm(p) +
m∑
`=0

(
m

`

)
pm−`S`(n)

This is a polynomial identity. Substituting x− 1 for n and y for p, we obtain:

Sm(x+ y − 1) = Sm(y) +
m∑
`=0

(
m

`

)
ym−`S`(x− 1).

Taking the partial derivative with respect to x completes the proof of (8).
Now working first with the left hand side in the statement of the theorem, expanding

Bm−j(y) yields:

m∑
j=0

(
m

j

)
Bm−j(y)Bj(x) =

m∑
j=0

m−j∑
k=0

(
m

j

)
(−1)k

(
m− j

k

)
Bky

m−j−kBj(x).
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Parametrizing by ` = j + k and using the identity(
m

j

)(
m− j

`− j

)
=

(
m

`

)(
`

j

)
,

we get:

m∑
j=0

(
m

j

)
Bm−j(y)Bj(x) =

m∑
`=0

(
m

`

)
ym−`

(∑̀
j=0

(−1)`−j
(
`

j

)
B`−jBj(x)

)
(9)

Note that since the only nonzero Bk with k odd is B1 = 1/2, the factor of (−1)`−j in (9)
only affects the j = `−1 term. If we remove that factor from the sum, we can compensate
by subtracting `B`−1(x):

m∑
j=0

(
m

j

)
Bm−j(y)Bj(x) =

m∑
`=0

(
m

`

)
ym−`

(
−`B`−1(x) +

∑̀
j=0

(
`

j

)
B`−jBj(x)

)

=
m∑
`=0

(
m

`

)
ym−` (`(x− 1)B`−1(x) − (`− 1)B`(x)) (10)

where (10) is obtained by applying Theorem 5.1.
For each `, (10) gives us an expression for the terms on the left hand side involving

ym−`. Working similarly with the right hand side, we are interested in the ym−` terms of

m(x+ y − 1)Bm−1(x+ y) − (m− 1)Bm(x+ y).

That is,

• The y(m−1)−(`−1) terms of m(x− 1)Bm−1(x+ y).

• The y(m−1)−`) terms of mBm−1(x+ y).

• The ym−` terms of −(m− 1)Bm(x+ y).

Applying (8) to all three of these summands, we obtain:

m(x− 1)

(
m− 1

`− 1

)
B`−1(x) +m

(
m− 1

`

)
B`(x) − (m− 1)

(
m

`

)
B`(x),

which, after some rearrangement, becomes(
m

`

)
(`(x− 1)B`−1(x) − (`− 1)B`(x)) ,

matching the ym−` terms from (10). �
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