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Abstract - While the use of complex ODE models describing tumor growth and tumor-
immune interactions may be desirable for accurately representing the biological mechanisms
that govern tumor growth, the high-dimensionality of the parameter space can make it
difficult to uniquely identify optimal parameter estimates during model calibration. Con-
struction of a surrogate model that can accurately approximate the quantity of interest with
fewer parameters may enable us to fit this alternate model to the data in place of the orig-
inal ODE system. In this investigation, we consider how active subspaces may be used to
construct time-dependent surrogate models with reduced parameter dimension, and analyze
the trade-offs in parameter identifiability, model fit error, and computational run-time to
provide a roadmap for ensuring an identifiable parameter set during model calibration.

Keywords : mathematical oncology; model calibration; surrogate models; dynamic active
subspaces; activity scores

Mathematics Subject Classification (2020) : 62H99; 00A71; 62H25; 65C50

1 Introduction

Though cancer is believed to have appeared as early as 1200 BC in ancient Egypt [1], effec-
tive cancer treatment only emerged in the early 20th century. These days, chemotherapy,
surgery, and radiotherapy are prevalent cancer treatments available [2], though targeted
drug therapeutics are often unsuccessful due to the emergence of resistance to treat-
ment among tumor cells [3]. Immunotherapy treatments, such as T-cell transfer therapy,
immune checkpoint inhibitors, monoclonal antibody treatment, and cancer-targeting vac-
cines, are currently under development in clinical trials [4, 5]. However, we are still far
from fully understanding the interactions between the immune system and tumor growth
dynamics. Experimentally validated mathematical models can provide an analytic frame-
work in which we can gain better insight into how tumor cells grow in the presence of the
immune system.

Various models using differential equations have been put forth to study tumor growth
[6, 7, 8]. Many of these models are simple, containing only a few parameters and con-
sidering tumor cell growth in isolation. Others are more complex and incorporate inter-
actions of the tumor cells with the tumor microenvironment and immune system. While
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complex ODE models are able to more accurately capture the physical reality of the bi-
ological system, they come with a significant drawback: the sparsity of available tumor
population data makes calibration of these complex models more difficult, due to the
high-dimensionality of the parameter space. The inability to uniquely infer all model
parameters has serious ramifications for the level of uncertainty in the resulting model
trajectory and the ability of the model to make useful predictions at future times.

With this in mind, we consider how one might build a surrogate model as an approx-
imation to an ODE system and calibrate this surrogate model in place of the original.
We use the tumor-immune ODE model developed in [9] as a test model, and use tools
from active subspace methodology to construct a surrogate model to approximate our
quantity of interest (QoI) from the ODE system. Active subspace methods use the gra-
dient of the QoI to identify a subspace of prominent directions upon which the function
changes the most. Directions in which the QoI is least sensitive to perturbations can
then be disregarded in order to reduce the dimension of the problem [10]. Essentially,
the active subspace method aims to reduce the number of parameters in the model by
rotating the coordinate system to align with linear combinations of the standard basis vec-
tors that are most influential to the output. Because these important directions can still
incorporate information from all of the original parameters, the active subspace method
is more powerful and general than a parameter subset selection method, in which only
a strict subset of the original parameters, ranked according to some sensitivity metric,
are retained. This rotation does comes with a price, however: defining new parameters
as linear combinations of the original parameters can make it difficult to interpret their
biological meaning. However, a new model can then be trained with dependence only
upon these active directions, allowing for better computational efficiency and presenting
a promising new outlook for the model calibration problem.

Active subspace methods have been employed in many applications with scalar-valued
quantities of interest—see [10] for several examples. More recently, work has been done
to extend this methodology to a time-dependent framework, as in [11], where the authors
use dynamic active subspaces to build a surrogate model that approximates T-cell count
in the progression of HIV over time, or in [12], where the authors use metrics derived
from active subspaces to quantify the time-dependent sensitivity of voltage and capacity
to various input parameters in a lithium ion battery model. We build upon these works,
using the procedure of [11] to construct a surrogate model and the sensitivity metrics of
[13, 12] to perform parameter selection. We then consider how such a surrogate model
may be employed for the purposes of model calibration.

In Section 2, we briefly discuss the model from [9] upon which we will test our pro-
cedure, then restate the highlights of the active subspace methodology and describe the
basics of our model calibration procedure. Section 3 contains the results of our investi-
gation, comparing the model calibration results across three models: the original ODE
system, the constructed surrogate model, and a reduced form of the surrogate model
that contains fewer parameters to be estimated. Finally, we summarize our work, discuss
limitations, and suggest possible avenues for future exploration in Section 4.
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2 Methods

In this section we introduce the system of ordinary differential equations that we will use
to analyze tumor growth, restate the highlights of the active subspace method for clarity,
and discuss our method for calibrating the various models to synthetic data.

2.1 Model explanation and synthetic data construction

In this investigation, we use the experimentally validated model published in [9] to demon-
strate our proposed methodology. This model describes growth of a solid tumor over
time—assuming that the tumor grows logistically in the absence of interference—and
accounts for interactions between tumor cells and the immune system, summarized by
natural killer (NK) cells and CD8+ T-cells. NK cells are large granular lymphocytes
which are assumed to always be active, representing the innate immune system. By con-
trast, CD8+ T-cells represent the tumor-specific immunity; they are cytotoxic to tumor
cells, but must first be recruited to the tumor site once tumor cells are detected. In the
model, it is assumed that both NK and CD8+ cells can kill tumor cells, but both will be
deactivated after some number of encounters with tumor cells, a mechanism representing
immune exhaustion. The model system is given in Equation (1), where T (t) represents
the tumor cell population, N(t) represents the total level of NK cell effectiveness (i.e., the
active NK cell population), and L(t) is the total level of CD8+ cell effectiveness, each at
a given time t. Further details regarding the functional forms of the chosen terms can be
found in [9]. For all simulations in this investigation, we use initial values of T (0) = 104

cells, N(0) = 103 cells, and L(0) = 0, representing the fact that we begin with only an
innate immune response.
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This model provides an excellent setting for us to investigate potential dimension
reduction; the model includes three state variables (T , N , and L), and a set of 16 pa-
rameters, whose biological descriptions and estimated nominal values are listed in Table
1. As described in [9], these values were chosen based on a combination of model fits to
mouse and human data and references from the literature. A sample simulation of system
(1) illustrating the dynamics of all three populations using the parameters listed in Table
1 is shown in Figure 1(a).

Though system (1) tracks the changes in all three cell populations over time, it is
unlikely that we will ever possess experimental or clinical data for all three populations.
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Param. Value Units Description

a 5.14× 10−1 day−1 Tumor growth rate

b 1.02× 10−9 cell−1 b−1 is the carrying capacity

c 3.23× 10−7 cell−1 day−1 Fractional non-ligand-transduced tumor cell
kill by NK cells

d 4.23 day−1 Saturation level of fractional tumor cell kill
by CD8+ T cells

σ 1.3× 104 cells day−1 Constant source of NK cells

λ 1.43 None Exponent of fractional tumor cell kill by
CD8+ T-cells

f 4.12× 10−2 day−1 Death rate of NK cells

g 2.5× 10−2 day−1 Max NK cell recruitment rate by non-ligand-
transduced tumor cells.

h 2.02× 107 cell2 Steepness coefficient of the NK cell recruit-
ment curve

j 3.75× 10−2 day−1 Maximum CD8+ T-cell recruitment rate

k 2.0× 107 cell2 Steepness coefficient of the CD8+ T-cell re-
cruitment curve

m 2.00× 10−2 day−1 Death rate of CD8+ T-cells

q 3.42× 10−10 cell−1 day−1 CD8+ T-cell inactivation rate by tumor cells

p 1.00× 10−7 cell−1 day−1 NK cell inactivation rate by tumor cells

s 3.6× 10−1 None Steepness coefficient of the Tumor-(CD8+ T-
cell) competition term

r 1.1× 10−7 cell−1 day−1 Rate of CD8+ T-cell stimulation due to NK-
induced tumor cell death

Table 1: Estimated parameter values and parameter descriptions

More likely, we would have access only to tumor volume scans at several points in time,
and all model parameters would have to be estimated using only information about the
observable quantity T (t). Thus, for the remainder of this investigation, we will focus
on T (t) as our quantity of interest (QoI). To mimic the model calibration procedure in
a clinical setting, we produce a set of synthetic data for model calibration by using the
simulation for T (t) in Figure 1(a), computing T (ti) for ti = 0, 10, 20, 30, 40, 50 days, and
adding up to 5% noise to each data point to represent possible measurement error:

Tdata(ti) = (1 + εi) Tsimulation(ti), for ti = 0, 10, . . . , 50,

where εi ∼ U [−0.05, 0.05]. Figure 1(b) shows the produced synthetic data that will be
used to calibrate all models in Section 3.
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(a) (b)

Figure 1: (a) Simulation of system (1) using the parameter values reported in Table 1.
(b) Synthetic data for use in model calibration.

2.2 Active subspace methodology

Full details regarding the construction and estimation of the active subspace are provided
in [10]. Here, we restate the relevant highlights for clarity.

2.2.1 Defining active subspaces

Let f(x), for f : Rm → R, denote a scalar-valued quantity of interest which depends upon
a vector of parameters x ∈ Rm drawn from a specified probability density ρ(x) such that
ρ : Rm → R. We assume that all parameters have been normalized (i.e., centered at zero
and rescaled to have equal ranges), in order to ensure that all parameters are weighted
equally in the analysis. As detailed in [10], common choices for ρ(x) include the uniform
hypercube U [−1, 1]m and the multivariate standard Gaussian density N (0, 1)m.

Assuming that f is differentiable with gradient vector ∇xf ∈ Rm, we define the m×m
symmetric, positive semidefinite matrix C as the expected value of the outer product of
the gradient with itself:

C =

∫
(∇xf) (∇xf)T ρ(x) dx, (2)

whose elements are the average product of partial derivatives,

Cij =

∫ (
∂f

∂xi

)(
∂f

∂xj

)
ρ(x) dx, i, j = 1, ...,m, (3)

When i = j, the elements on the main diagonal of C give an indication of how much
f perturbs with respect to parameter xi. Likewise, the off-diagonal elements represent
“pairwise” contributions of both parameters xi and xj to changes in the QoI. As discussed
in [10], C can be interpreted as the uncentered covariance matrix of the gradient vector
∇xf having density ρ(x).
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Being symmetric, C admits a real eigenvalue decomposition

C=WΛWT , (4)

with W = [w1,w2, ...,wm] being the orthonormal matrix of eigenvectors corresponding
to the matrix Λ= diag(λ1, λ2, ..., λm) of eigenvalues in decreasing order. It can be shown
that each eigenvalue λi is the mean-squared directional derivative of f with respect to its
corresponding eigenvector wi [10]; i.e.

λi =

∫ (
(∇xf)Twi

)2
ρ(x) dx, for i = 1, 2, ...,m. (5)

That is, the eigenvalue λi quantifies how much f perturbs on the direction specified by
wi. Furthermore, when λi ≈ 0, f barely perturbs along the direction wi; this can be
exploited to reduce the dimension of the parameter space.

Accordingly, we look for a natural gap—should one occur—appearing between two
consecutive eigenvalues in Λ, say λn and λn+1. Then, we partition the eigenvalues and
eigenvectors according to this gap:

Λ =

[
Λ1

Λ2

]
,W = [W1 W2] (6)

where Λ1 = diag(λ1, λ2, ..., λn) contains the first n largest eigenvalues in decreasing order
(by definition, n ≤ m), and W1 is the m× n matrix containing the corresponding first n
eigenvectors. As suggested in [10], we traditionally exploit the largest naturally occurring
gap in the eigenvalues, while recognizing that a trade-off exists between the goals of
reducing the dimension of the parameter space (which favors using fewer eigenvalues),
and maintaining accuracy in the eventual surrogate model (for which reserving more
dimensions may be more desirable). Coleman et al. [14] further explore the pros and cons
of several approaches for determining the dimension of the active subspace, including a
comparison of the gap-based approach, an error-based approach, and an energy-based
approach similar to that used in principle component analysis (PCA).

Having partitioned the eigenvalues and eigenvectors based on the largest gap in the
eigenvalues, we define the active variables y and inactive variables z, which are linear
combinations of the original parameters:

y = WT
1 x ∈ Rn and z = WT

2 x ∈ Rm−n. (7)

We define the active subspace to be the range of the eigenvectors in W1, and the inactive
subspace to be the range of the eigenvectors in W2. Since W is an orthonormal matrix,
we can write

x = WWTx = W1W
T
1 x + W2W

T
2 x = W1y + W2z. (8)

Then, since f is relatively insensitive to changes in the inactive variables z, we can ap-
proximate f by

f(x) = f(W1y + W2z) ≈ f(W1y).
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This approximation allows us to construct a surrogate model g(y), which depends only
on the active variables y, such that f(x) ≈ g(y). The construction of a surrogate model
will be described in Section 2.2.4.

2.2.2 Estimating the active subspace

In reality, it is difficult to compute C directly because it requires integration across a
moderate- to high-dimensional parameter space. Instead, we can employ the sampling-
based Algorithm 1.1 from [10] to estimate the active subspace, range(W1). We restate
this procedure in Algorithm 1 below.

Algorithm 1 Estimating the active subspace (Algorithm 1.1, [10])

1: Draw independent samples {xi}Mi=1 according to the sampling density ρ(x).
2: For each sample xi, compute ∇xfi = ∇xf(xi) and the quantity of interest qi = f(xi).
3: Construct the matrix

Ĉ =
1

M

M∑
i=1

∇xfi∇xf
T
i = ŴΛ̂ŴT,

where Ŵ is the matrix of eigenvectors, and Λ̂ = diag(λ̂1, . . . , λ̂m) is the diagonal
matrix of eigenvalues ordered in decreasing order.

4: Partition Ŵ = [Ŵ1 Ŵ2] according to the natural split in the eigenvalues. The active
subspace can then be approximated by range(Ŵ1).

In practice, the number of gradient samples employed is chosen to be at least M =
αk log(m), where α is an oversampling factor chosen from the interval [2, 10] and k is
chosen to be one greater than the largest dimension that can be tolerated for the active
subspace (often determined by computational budget). This choice of M is motivated by
the convergence theorems presented in [10].

If the gradient vector is difficult to compute manually or beyond computing capabili-
ties, then a finite difference scheme can be employed to compute ∇xfi in Algorithm 1—see
[10] for further details.

2.2.3 Sensitivity metrics from the active subspace

Because the change in f with respect to each direction in the active subspace is encoded
in the pairs (λj,wj) for j = 1, . . . , n, we can use the information gathered from the
eigenpairs of C to define a sensitivity metric for the original parameter set x [13]. We
define the activity score of parameter xi as

Ai =
n∑
j=1

λjw
2
i,j. (9)

That is, we sum the contributions from parameter xi over all directions in the active
subspace, weighted according to the eigenvalue associated with each. In short, the activity
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scores defined above quantify the importance of each of our original parameters within
the active subspace itself.

We can use these activity scores to rank the importance of each of the original param-
eters with respect to the chosen quantity of interest f(x). This is the basis for parameter
subset reduction, wherein the most influential parameters are estimated while the rest are
fixed at a nominal value or removed from the model. This tool will be used in Section 3.3
to reduce the parameter dimension of our surrogate model.

2.2.4 Constructing surrogate models

Having estimated the active subspace, range(W1), in Algorithm 1, we seek to construct a
surrogate model g(y), which can be used as an approximation to f(x) but depends only
on the n active variables. Such surrogate models are often termed response surfaces, and
may be constructed using radial basis functions, polynomial interpolation, or regression
procedures [10]. Throughout this investigation, we will construct our response surfaces
using polynomial regression. Algorithm 2 details the construction of the response surface.

Algorithm 2 Constructing a response surface on the active variables

1: Use Algorithm 1 to compute Ŵ1.
2: Generate a set of training samples {xj}Nj=1, and evaluate f(xj) at each.

3: For each j = 1, 2, ..., N , compute the corresponding active parameter set yj = Ŵ1

T
xj.

4: Fit a polynomial response surface of order p, denoted g(y), to the pairs
{
(
yj, f(xj)

)
}Nj=1.

In Step 2 of Algorithm 2, the number of training samples, N , should be sufficiently large
to enable a polynomial regression of order p on the n active variables. In Step 4, it can be
helpful to first visualize the relationship between the active variables and the quantity of
interest via a scatter plot of yj = ŴT

1 xj versus f(xj) for j = 1, . . . , N—termed a sufficient
summary plot (SSP)—provided that the dimension of the active subspace permits such a
visualization. We use the trend observed in the SSP to choose a polynomial order p, then
employ the MATLAB function polyfit to find the best-fit polynomial of degree p to fit
the training points.

2.2.5 Extension to a time-dependent quantity of interest

Until now, we have only worked with a scalar QoI, f : Rm → R. For our tumor growth
application, however, we are interested in a time-dependent quantity of interest, T (t),
representing the size of the tumor population at time t. Thus, we need to extend the
active subspace methodology to analyze a time-dependent QoI, denoted f(x, t). We will
follow the procedure outlined by Loudon et al. in [11].

We begin by redefining our matrix C from Equation (3) as a time-dependent matrix:

C(t) =

∫
∇f(x, t)∇f(x, t)Tρ(x) dx = W(t)Λ(t)W(t)T (10)
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It is assumed that the probability density function on the parameter space, ρ(x), does
not change over time. By the above definition, the active subspace spanned by W1(t) is
time-dependent; that is, the combination of parameters that contribute most to changes
in the quantity of interest may vary over time.

We can analyze how the relationship between the active variables and the quantity of
interest changes over time by looking at the sufficient summary plots at a set of discrete
times {tk}Tk=1. For each discrete time point, we can construct a response surface g(y(tk)).
If a pattern persists across all of the response surfaces—for example, all of the SSPs can be
characterized by a response surface of the same order polynomial—then we can assemble
all of the response surfaces into a global function, h(y(t), t), whose form incorporates this
trend.

For example, if each sufficient summary plot can be characterized by a quadratic
response surface, g(y(tk)) = a2(tk)y(t)2 + a1(tk)y(t) + a0(tk) for k = 1, . . . , T , then we
could construct a global function

h(y(t), t) = α2(t)y(t)2 + α1(t)y(t) + α0(t),

where αi(t) for i = 0, 1, 2 are time-dependent functions which summarize how the constant
coefficients a2(tk), a1(tk), and a0(tk) change as tk ranges from t1 to tT . That is, for the
set {a0(tk)}Tk=1, we can find a functional form α0(t) such that α0(tk) ≈ a0(tk) for all k;
likewise, we do the same for the sets {a1(tk)}Tk=1 and {a2(tk)}Tk=1. In this investigation,
we use cubic splines to construct the time-dependent polynomial coefficients, using the
MATLAB function spline. The procedure for constructing such a global function in
general is summarized in Algorithm 3.

Algorithm 3 Constructing a global, time-dependent polynomial surrogate model

1: For each tk, k = 1, . . . , T , compute Ŵ1(tk) using Algorithm 1.
2: For each tk, k = 1, . . . , T , use Algorithm 2 to fit a polynomial response surface of

order p,
g(y(tk)) = ap(tk)y(tk)

p + ap−1(tk)y(tk)
p−1 + · · ·+ a0(tk),

by determining the best-fit constant coefficients ap(tk), ap−1(tk), . . . , a0(tk).
3: Construct a global polynomial function

h(y(t), t) = αp(t)y(t)p + αp−1(t)y(t)p−1 + · · ·+ α0(t),

where αi(t) for i = 0, . . . , p represents a cubic spline functional fit to the constant
coefficients ai(tk) for k = 1, . . . , T .

We note that the construction described in Algorithm 3 requires that the response
surfaces g(y(tk)) all be of the same form (e.g., polynomials of the same degree). Global
surrogate models can be built in a piecewise manner for scenarios in which this is not
the case; see [11] for an example of a model in which the functional form of the response
surface changes over time.
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Finally, we note that the activity score sensitivity metric defined in Equation (9)
can be extended to a time-dependent scenario by computing a parameter’s activity score
at each discrete time step tk and then summing the activity scores over all time steps,
k = 1, . . . , T . Assuming that the time steps are evenly-spaced, this is essentially equivalent
to employing a time-averaged sensitivity metric. For a parameter xi, we define the overall
activity score to be

Ai,Total =
T∑
k=1

Ai(tk) =
T∑
k=1

n∑
j=1

λj(tk)wi,j(tk)
2. (11)

2.3 Model Calibration

Our model in Equation (1) contains sixteen parameters, a moderate- to high-dimensional
problem for model calibration. One of the aims in the field of uncertainty quantification
is to uniquely estimate the set of optimal parameters given a set of data; that is, we look
for the set of parameter values that is most likely to have produced the given data set.
Because this procedure requires working backwards to measure the model inputs from the
data representing the quantity of interest, we call it an inverse problem.

Conventionally, both frequentist and Bayesian perspectives have been employed to
solve the inverse problem. In the former, parameters are assumed to be fixed but un-
known point estimates. From a Bayesian perspective, however, parameters are considered
to be random variables whose associated distributions can be updated to reflect new in-
formation: i.e., acquisition of new data. In this study, we use the Bayesian framework
for parameter estimation. One benefit of using a Bayesian method is the construction of
a posterior density for each parameter, which quantifies the level of uncertainty in that
particular input. These posterior densities can then be propagated through the model to
quantify how uncertainties in the model inputs may impact our level of certainty in the
model output. We discuss the basics of the Bayesian Metropolis algorithm employed for
parameter estimation below, and refer the interested reader to [15, 16] for more details.

For each parameter, we begin with a uniform (i.e., non-informative) prior distribution.
The Metropolis algorithm employs Monte Carlo sampling to sample from the admissible
parameter space, constructing a Markov chain of parameter candidates with each candi-
date chosen from a multivariate Gaussian proposal function centered at the previously
accepted candidate. The optimization of the parameter estimates is based upon compu-
tation of the likelihood function; if we assume that errors are independent and identically
distributed as ε ∼ N (0, σ2)—where σ2 represents the error variance—then this likelihood
function takes the form

L(θ|v) =
1

(2πσ2)N/2
exp

(
− 1

2σ2

N∑
i=1

[vi − f(θ, ti)]
2

)
,

where vi represents the ith observed data point and f(θ, ti) represents the model quan-
tity of interest evaluated at parameter set θ and time ti, for i = 1, . . . , N . With this
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formulation, maximizing the likelihood function is equivalent to minimizing the sum-of-
squares error between the model predictions and the observed data. For each proposed
parameter candidate in the Markov chain, we compute the likelihood function; if the
function increases compared to the evaluation at the previous candidate, we accept this
new candidate as the next parameter set in our chain. Else, we reject the candidate
with a probability based upon the ratio of the proposed candidate’s likelihood to that of
the previous candidate—see [15] for further details. The stationary distribution to which
the Markov parameter chain converges is equivalent to the posterior distribution of the
parameters given the observed data. The mode of each distribution is considered the
maximum a posteriori (MAP) estimate for that parameter, and is used for further model
analysis.

During parameter estimation, it is also worthwhile to investigate whether such a “best”
set of parameter values is unique. Given a quantity of interest f(x) which depends on
parameter vector x, we define the parameter set x to be identifiable at x∗ if f(x) = f (x∗)
implies x = x∗ for all x in the admissible parameter space. One method by which to
assess whether a parameter is identifiable is to consider the posterior density of that
parameter. Assuming an initial uniform prior distribution for parameters, an identifiable
parameter will have a posterior density with a unimodal peak, with a range that is greatly
narrowed from the given flat, uniform prior distributions. On the contrary, non-identifiable
parameters often have multimodal or flat posterior densities that are relatively unchanged
from the uniform priors. A model is only considered identifiable if all model parameters
are identifiable, and obtaining an identifiable parameter set is not guaranteed during
model calibration; see [15] for further information.

For the purposes of building a model with reasonable predictive power, we desire
that all model parameters be identifiable. Else, propagating wide, uninformed posterior
densities for non-identifiable parameters through the model results in a large degree of
uncertainty in our final model trajectory. Thus, a major question of interest for us will
be to determine the maximum number of identifiable parameters for a model, and we will
eliminate all others from consideration.

3 Results

We now present the results of our investigation. Recall, our quantity of interest is the
number of tumor cells at time t over a period of 50 days, denoted by T (t), for the model
described in Equation (1). We use MATLAB 2022a to run simulations in parallel with 32
cores using Lafayette College’s High Performance Computing cluster for the construction
of the global surrogate model. For all numerical solutions of the ODE system in (1), we
use the ODE solver ode45 with a time step of 10−1. Model calibration is performed on
a MacBook Pro with 16GB of memory, using the Metropolis algorithm code provided in
the MATLAB MCMC toolbox [16].
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3.1 Calibrating the original model

We first attempt to calibrate the full model, estimating all sixteen parameters from the
system in (1) by fitting the model trajectory for T (t) to the synthetic data shown in Figure
1(b). The results of our model calibration are shown in Figure 2. While we can achieve an
excellent model fit to the data, as shown in Figure 2(a), the posterior densities in Figure
2(b) make it clear that the parameter estimates used to generate that model fit are not
unique. Because the posterior densities are non-smooth and multimodal, this suggests
that there are many different parameter combinations that can yield the same optimal
model fit. Thus, we conclude that the set of all sixteen parameters is non-identifiable,
motivating our search for a alternative model in the following section. We note also that
calibrating the full model is time-consuming, since every evaluation of the sum-of-squares
function requires solving the ODE system before comparing the model predictions for
T (t) to the data. Specifically, running the Metropolis algorithm for the full model with a
total chain length of 100,000 parameter candidates requires 35 minutes of computational
time.

(a) (b)

Figure 2: Calibrating the full model (1) to synthetic data. (a) Model fit to synthetic data,
and (b) parameter posterior densities.

3.2 Surrogate model construction and calibration

To address the issue of parameter non-identifiability when calibrating the original model,
we use active subspace methodology to exploit prominent linear combinations of the
original sixteen parameters to build a lower-dimensional surrogate model. We construct
the active subspace every 0.5 days, starting at time t = 0, using M = 500 samples
to estimate C(t). The sampled parameters for the gradient matrix computations are
uniformly sampled from the hypercube [−1, 1]16, then scaled and shifted so that the
sampling means are the nominal values listed in Table 1 and the ranges are the 2.5%
neighborhood around each mean, following the procedure in [11]. At each step tk, a plot
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of the eigenvalue matrix Λ(tk) indicates a significant gap between the first and second
eigenvalue. Thus, we conclude that an active subspace of dimension n = 1 should be
sufficient to characterize the majority of the dynamics in our quantity of interest. To
confirm, we plot the sufficient summary plot for each time tk, k = 1, . . . , T . In all cases,
the relationship between the active variable y = W1(tk)

Tx and the quantity of interest
f(x, tk) exhibits a strong linear relationship, indicating that (a) a single dimension is
enough to capture the relationship, and (b) the relationship can be characterized by a
linear model. (Note that since y is now 1-dimensional, we drop the vector notation used
in Section 2.) The sufficient summary plots for days 10, 20, 30, 40, and 50 are shown in
Figure 3(a)-(e), respectively.

Because all of the SSPs display a univariate linear relationship, we construct a surro-
gate model of the form

T (t) ≈ h(y(t), t) = α1(t)y(t) + α0(t), (12)

where y(t) = W1(t)
Tx. In this setting, α1(t) represents a time-dependent function de-

scribing the slope of each SSP over time, and α0(t) describes the behavior of the intercept
of the SSPs over time. Plots of the SSP slopes and intercepts with respect to time are
shown in Figure 4. To describe the functional forms of these time-dependent coefficients,
we use a cubic spline interpolation—utilizing the spline function in MATLAB—to fit
curves for α1(t) and α0(t) to the coefficients collected from the SSPs. It should be noted
that, due to the global nature of the active subspace method, these spline functions are
valid for simulating model trajectories for any set of parameter values from inside the
2.5% range specified for the gradient sampling; that is, the coefficients of these spline
functions do not need to be re-estimated for each simulation.

To verify the accuracy of the surrogate model with regards to approximating the
quantity of interest from the original model in Equation (1), we plot the QoI over time
calculated both by solving (1) and by using the surrogate model h(y(t), t) in Figure 5,
for a set of parameter values generated randomly from the ranges described above. The
surrogate model trajectory is constructed in a discrete manner, where at each time step
tk we use the spline functions to determine α1(tk) and α0(tk), and calculate the active
variable y(tk) by projecting the centered and scaled set x into the active subspace defined
by W1(tk). As seen in Figure 5, the surrogate model provides a very close approximation
to T (t). Furthermore, the simulation of the surrogate model does not require solving an
ODE system, and is therefore more computationally efficient.

However, while our surrogate model provides a good approximation to our quantity of
interest—and increases computational efficiency for model simulations—performing model
calibration with this surrogate model still requires the estimation of all sixteen original
model parameters, since the full set x is required in order to determine the active variable
y(t) at any given time step. The results of the model calibration for h(y(t), t) are shown in
Figure 6. The vector x is estimated within the scaled and centered space of [−1, 1]m, after
which all parameter chains are mapped back into the original parameter space defined
above.

While the model fit to data is still excellent (see Figure 6(a)), we do not see any sig-
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(a) (b)

(c) (d)

(e)

Figure 3: Sufficient summary plots at days 10, 20, 30, 40, and 50.

nificant improvement in the identifiability of the full parameter set. Figure 6(b) shows
the posterior densities for each of the sixteen model parameters; most are wide and un-
informed, with accepted parameter candidates stretching across the entire permissible
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(a) (b)

Figure 4: (a) Slope and (b) intercept plots.

Figure 5: Demonstrating the accuracy of the surrogate model as an approximation to
T (t) from Equation (1).

range. Our next step is to determine how we might reduce the number of parameters to
be estimated, such that the set of those estimated may be identifiable.

3.3 Reduced surrogate model construction and calibration

We now seek to reduce the parameter dimension of the surrogate model h(y(t), t) built
in Section 3.2 by using the time-averaged activity scores defined in Equation (11) to
determine a subset of the original parameters can be uniquely identified. Whereas the
construction of our surrogate model relies on subspace-based reduction, this selection of

the pump journal of undergraduate research 6 (2023), 1–28 15



(a) (b)

Figure 6: Calibrating the surrogate model (12) with 16 parameters to data. (a) Model fit
to synthetic data, and (b) parameter posterior densities.

original model parameters is now equivalent to employing parameter subset selection.
Based on the time-averaged activity scores, we can rank the sixteen parameters in de-
creasing order according to how influential they are to our quantity of interest. The
logarithms of the time-averaged activity scores for all parameters (normalized to have a
maximum value of one) are shown in Figure 7—the scores are shown in log scale in order
to better differentiate between their magnitudes. Note that, by definition (11), all activity
scores are positive; however, the score for h is so small that the normalized log value turns
out to be negative. We observe that parameter a is the most influential. Recall, in our
ODE system, a controls the growth rate of the tumor; thus, it is unsurprising that this
parameter has a large impact on the total tumor volume at any given time. The second
most influential parameter is b, representing the inverse of the tumor carrying capacity.
Rounding out the top three influential parameters is λ, which controls how the kill rate of
tumor cells by CD8+ immune cells is affected by the immune-to-tumor cell ratio. While
other parameters may be important to the system (1) as a whole, they are determined to
play less of a role in influencing T (t), our quantity of interest.

We are interested in defining a reduced surrogate model—that is, a surrogate model
of a lower parameter dimension—by identifying the largest subset of most influential pa-
rameters that will yield an identifiable model. Let θk denote the parameter set containing
only the k most influential parameters, as defined by their activity scores ranking. For
example, θ3 = [a, b, λ], as discussed above. We define xred,k to be a vector of length m,
with the m− k least influential parameters replaced by zeros. That is,

xred,k = [1θk(x1) · x1, 1θk(x2) · x2, . . . , 1θk(xm) · xm],

where the indicator function 1θk(xi) is defined as

1θk(xi) =

{
1 if xi ∈ θk
0 if xi /∈ θk.
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Figure 7: Normalized log of activity scores for all parameters summed over time steps
t = 0, 1, . . . , 50.

We then define the reduced surrogate model with k parameters to be

hred,k(yred,k(t), t) = α1(t) yred,k(t) + α0(t), (13)

where yred,k(t) = W1(t)
Txred,k. In essence, this fixes the m − k least influential param-

eters at the mean values of their proposed ranges when constructing the active variable
y, since setting the scaled parameter equal to zero is equivalent to setting the natural
parameter value equal to its mean once transformed back into the original parameter
space. Accordingly, we expect that when one retains the majority of the m parameters in
the reduced surrogate model, the approximation of T (t) will still be relatively accurate;
as the number of retained parameters decreases, the accuracy of the approximation may
deteriorate slightly. This trend is illustrated in Figure 8(a), where simulations are shown
for the original model (1), the surrogate model with sixteen parameters (12), and the
reduced surrogate models using k = 2, 4, . . . , 14 most influential parameters, using the
same randomly generated parameters as in Figure 5. Figure 8(b) shows a close-up of
the simulations to allow better visualization of how the loss of parameters impacts the
accuracy of the surrogate model.

In order to determine the maximum number of parameters that can be uniquely
identified in our reduced surrogate model, we calibrate the reduced surrogate model
hred,k(yred,k(t), t) for k = 1, . . . , 16 (recall: k = 16 represents the surrogate model that
was calibrated in Section 2.2.4). For each calibration, we consider the resulting posterior
densities for all estimated parameters, and determine which parameters are identifiable,
as indicated by a clear unimodal peak in the distribution. The results of our identifiability
analysis for the reduced surrogate models are summarized in Figure 9.

The results show that k = 3 is the maximum number of parameters that can be
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Figure 8: Comparison of reduced surrogate models and original ODE system (1): (a) Full
time scale, and (b) Close-up of days [22,26].

Figure 9: Identifiability of model parameters for each of the 16 surrogate models. Green
indicates that a parameter was identifiable, a red × indicates a non-identifiable parameter,
and gray indicates that the parameter was not utilized for that particular reduced model.

uniquely identified during model calibration, namely a, b, and λ, whose meanings are
discussed above. The model fit and parameter posterior densities for the calibration of
hred,3(yred,3(t), t) are shown in Figure 10. The maximum a posteriori (MAP) estimate
is easily identified in the posterior densities, indicating the value of the optimal point
estimate for each parameter.
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Figure 10: Calibrating the reduced surrogate model (13) with three parameters to data.
(a) Model fit to synthetic data, and (b) parameter posterior densities.

Because decreasing the number of parameters to be estimated reduces the flexibility of
the model trajectory, there exists a trade-off between the number of estimated parameters
and the resulting sum-of-squares error between the model predictions and the synthetic
data. This trade-off is summarized in Figure 11. We note that the SSE does not im-
prove drastically after k = 3, providing further support for our use of hred,3(yred,3(t), t),
since using more parameters gains us very little in terms of model accuracy and costs us
significantly in terms of parameter identifiability.

Figure 11: Log of the sum-of-squared errors between model trajectory and synthetic data
for each of the 16 possible surrogate models.
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3.4 Comparison of models

We have compared three models for our QoI; in terms of decreasing complexity, we have
the original ODE system with 16 parameters (Section 3.1), the surrogate model with 16
parameters (Section 3.2), and the reduced surrogate model with three parameters (Section
3.3). We employed a Metropolis algorithm to estimate the parameters and produce the
best curve fit for the QoI, and used the posterior densities of the parameters to determine
which parameters were uniquely identifiable. In addition to considering the issue of identi-
fiability, we also recorded the CPU running time and calculated the sum-of-squared errors
of the best curve fits for each model. The results of these three metrics are summarized
in Table 2.

Model Curve fit SSE Calibration Time Identifiable

ODE system 7.50× 1010 35.30 minutes No

Surrogate model 1.36× 1013 3.14 minutes No

Reduced surrogate model 2.50× 1013 3.97 minutes Yes

Table 2: Comparison of model calibration procedure.

Since the synthetic data used for model fitting was generated from the ODE system
itself, it is unsurprising that the sum-of-squared errors for the ODE system is numerically
superior to those of the surrogate models, though we note that all three models are able
to provide an excellent visual fit to the data, as shown in Figures 2(a), 6(a), and 10(a). In
terms of computational efficiency, the two surrogate models far outstrip the original model,
since there is no need to solve an ODE system for each evaluation of the sum-of-squares
function in the Metropolis algorithm. Finally, we note that while information criteria
such as the Akaike Information Criterion (AIC) or Bayesian Information Criterion (BIC)
are often employed to choose between models—rewarding a good model fit but penalizing
the use of two many extraneous parameters—the fact that only the reduced surrogate
model permits a fully identifiable parameter set suggests that such a comparison should
not determine which model we select. Our primary consideration was to find a model
with identifiable parameters, and the reduced surrogate model with three parameters is
the only contender that meets this criterion. Thus, we conclude that if the goal is to
calibrate a model to use for later analysis by estimating all model parameters—with an
emphasis on reducing uncertainty in the model inputs in order to better control the model
output—use of the reduced surrogate model is suggested.

4 Conclusion

The calibration of tumor growth models to experimental or clinical data is of utmost
importance for validation of the models and subsequent use for prediction. However,
clinical data is often limited in quantity, making estimation of the full parameter set
infeasible. In this investigation, we considered alternate approaches to calibrating the full
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model, by constructing surrogate models which can approximate the quantity of interest
but contain fewer parameters to be estimated.

By analyzing which linear combinations of the original model parameters are most
influential in driving changes in the quantity of interest, we can build surrogate models
that can capture the dynamics of a more complex ODE system with far less computational
power and, in some cases, a reduced parameter set. Following the procedure of [11], we
have illustrated how to construct a global surrogate model that can approximate the tumor
population from a three-compartment ODE system describing tumor-immune interactions
by using dynamic active subspaces. We then considered how such a surrogate model
might be calibrated to synthetic data, and discussed the trade-offs between parameter
identifiability, model fit error, and computational run time.

In particular, we found that using a reduced surrogate model—which uses subspace-
based reduction for model construction and then subset-based reduction for parameter
selection—can allow for the generation of identifiable parameter estimates. In addition,
using this model is computationally superior to the original model in terms of run-time.
However, we note that by “removing” the contributions of uninfluential parameters from
the model, we are essentially fixing those values at the means of their proposed parameter
ranges. Further work should be conducted to determine whether this is the best choice;
that is, the dependency of the model calibration results upon the values chosen for the
means of the fixed parameters remains an open question and should be studied further.
We also remark that one could render the original ODE system identifiable by similarly
fixing parameters at their mean values; however, a thorough sensitivity analysis would be
required in advance in order to determine which parameters should be fixed and which
should be estimated. In the reduced surrogate modeling approach, this ranking informa-
tion is already freely available via the activity scores, requiring no further computational
power than has already been utilized to construct the model.

Because the surrogate models are constructed by determining significant contributions
from linear combinations of the original model parameters and then exploiting structural
relationships between these linear combinations and the quantity of interest, these models
should be considered phenomonological, in the sense that the model form is chosen to
optimize model fit with no focus on accurately representing the underlying biological
mechanisms. Thus, while this model has been shown to be a good explanatory model
for the tumor population over the considered time interval, further work is required to
determine whether the model can accurately predict future behavior beyond 50 days, since
we can no longer guarantee that model outputs will behave within biological constraints.
Furthermore, we note that all results from this investigation hold for the single set of
synthetic data plotted in Figure 1(b), but that we cannot guarantee the same results
would be obtained from a data set generated from different parameters than those listed
in Table 1.

Finally, we remark that the approach used here employs parameter estimation on (a
subset of) the original parameter space. An interesting alternative would be to calibrate
the model by estimating the rotated active parameters y and then transforming the
resulting parameter chains back into the original parameter space to yield estimates for
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x, as done in [17]. This method would enable calibration to be conducted on a lower-
dimensional space while still allowing for the possibility that all of the original parameters
could be informed. However, the procedure in [17] was employed only for scalar-value
quantities of interest; additional work is currently being done to extend this framework
to vector-valued QoIs such as that considered in this investigation.

A Sample Code

Below, we include sample code for the construction and calibration of the surrogate model
with 16 parameters. Note that the calibration code can be easily altered to calibrate any
of the reduced surrogate models by setting all parameters not to be estimated equal to
zero. In order to run the calibration code, one must first download the MCMC toolbox
code from [16].

%% TASK 1: Construct global surrogate model

% Nominal parameter values (from de Pillis et al.)

a = 5.14*10^-1;

b = 1.02*10^-9;

c = 3.23*10^-7;

d = 4.23;

sigma = 1.3*10^4;

lambda = 1.43;

f = 4.12*10^-2;

g = 2.5*10^-2;

h = 2.02*10^-7;

j = 3.75*10^-2;

k = 2*10^7;

m = 2*10^-2;

q = 3.42*10^-10;

p = 1*10^-7;

s = 3.6*10^-1;

r = 1.1*10^-7;

% Create parameter vector and bounds (plus/minus 2.5%)

x_pars = [a; b; c; d; lambda; s; sigma; f; g; h; p; m; j; k; q; r];

lb = x_pars-.025*x_pars;

ub = x_pars+.025*x_pars;

% Initial conditions

T0 = 10^4;

N0 = 10^3;

L0 = 0;

initial_values = [T0; N0; L0];

ssp_period = 1; %How often to generate sufficient summary plots

ss_period = 0.5; %How often to compute active subspace

the pump journal of undergraduate research 6 (2023), 1–28 22



% Preparation for calculating active subspace

M = 500; %number of gradient samples at each time step

G = zeros(16,M); %allocate storage for gradient matrix

h_fd = 10^-2; %step size for finite differences

evec = zeros(16,16,50/ssp_period+1); %storage for eigenvectors

sing = zeros(16,M,50/ssp_period+1); %storage for singular values

activity = zeros(1,16,50/ssp_period+1); %storage for activity scores

% Loop over time from day 1 to 50

for t=1:(50/ss_period)

fprintf(’Building gradient of QoI at time t=%.1f days\n’,t*ss_period);

% Compute gradient matrix at time t

for i=1:M

% Draw random samples from [-1,1]

x_r = -1+2*rand([16,1]);

% Rescale random parameters to reside in natural parameter ranges

x = lb+.5*(x_r+1).*(ub-lb);

% Computing gradients

for j=1:16

x_h = zeros(16,1);

x_h(j,1) = 1;

perturb_r = x_r+h_fd*x_h;

perturb = lb+.5*(perturb_r+1).*(ub-lb);

G(j,i) = (1/sqrt(M))*(ODEModel(perturb,initial_values,t*ss_period)...

-ODEModel(x,initial_values,t*ss_period))/h_fd;

end

end

% Compute singular value decomposition of G

[U,S,~] = svd(G);

if real(U(1,1)) >0 %align eigenvectors in same direction across time steps

U = -U;

end

% Saving singular values and eigenvalues for choosing dimensions

if floor(t/(ssp_period/ss_period))==t/(ssp_period/ss_period)

evec(:,:,t/(ssp_period/ss_period)+1)=U;

sing(:,:,t/(ssp_period/ss_period)+1)=S;

a_score = zeros(1,16);

for j=1:16

a_score(1,j) = S(1,1)^2*U(j,1)^2; %activity score for 1D active subspace

end

activity(:,:,t/(ssp_period/ss_period)+1)=a_score;

end

% Build sufficient summary plot to evaluate efficacy of active subspace

W_1 = U(:,1); %dimension of subspace, according to eigenvalues

n_train = 50; %number of training points

y_train = zeros(1,n_train);
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q_train = zeros(1,n_train);

for a=1:n_train

% Compute active variables at training samples

x_train_r = -1+2*rand([16,1]);

y_train(1,a) = W_1’*x_train_r;

% Compute QoI at training samples

x_train = lb+.5*(x_train_r+1).*(ub-lb);

q_train(a) = ODEModel(x_train,initial_values,t*ss_period);

end

% Plot sufficient summary plots

slope = zeros(1,50/ssp_period+1); %storage for slope coefficients

yintercept = zeros(1,50/ssp_period+1); %storage for intercept coefficients

if floor(t/(ssp_period/ss_period))==t/(ssp_period/ss_period)

p = polyfit(y_train,q_train,1); %Fit linear response surface to training pts

slope(1,t*ss_period/ssp_period+1) = p(1);

yintercept(1,t*ss_period/ssp_period+1) = p(2);

figure

plot(y_train,q_train,’ko’)

xlabel(’w_1^Tx_j’)

ylabel(’ODEModel cells’)

title(sprintf(’Sufficient Summary Plot After %.1f days’, t*ss_period))

end

end

% Consider how slope and intercept change over time

p_slope = spline(0:ssp_period:50,slope);

figure

plot(0:ssp_period:50,ppval(p_slope,0:ssp_period:50),’r-’,0:ssp_period:50,slope,’bo’)

ylabel(’Slope (cells/days)’)

xlabel(’Time (days)’)

set(gca,’fontsize’,14)

legend(’Spline Model’,’Slope of SSP’)

p_yinterceptfit = spline(0:ssp_period:50,yintercept);

figure

plot(0:ssp_period:50,ppval(p_yinterceptfit,0:ssp_period:50),’r-’,...

0:ssp_period:50,yintercept,’bo’)

ylabel(’Intercept (cells)’)

xlabel(’Time (days)’)

set(gca,’fontsize’,14)

legend(’Spline Model’,’Intercept of SSP’)

%% TASK 2: Calibrate surrogate model to data

% Load data

data.xdata = [0; 10; 20; 30; 40; 50]; %data point every ten days

data.ydata = [9.6211e3 1.1752e6 1.1094e8 9.2171e8 9.5605e8 9.5661e8]; %tumor cells
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global evec p_slope p_yinterceptfit

params = repmat(0,1,16);

lb = repmat(-1,1,16);

ub = repmat(1,1,16);

%Run Metropolis algorithm to get Bayesian posteriors; sample each from

%[-1,1] uniform prior

params1 = {

{’a’,params(1),lb(1),ub(1)}

{’b’,params(2),lb(2),ub(2)}

{’c’, params(3),lb(3),ub(3)}

{’d’, params(4),lb(4),ub(4)}

{’\lambda’,params(5),lb(5),ub(5)}

{’s’,params(6),lb(6),ub(6)}

{’\sigma’,params(7),lb(7),ub(7)}

{’f’,params(8),lb(8),ub(8)}

{’g’,params(9),lb(9),ub(9)}

{’h’,params(10),lb(10),ub(10)}

{’p’,params(11),lb(11),ub(11)}

{’m’,params(12),lb(12),ub(12)}

{’j’,params(13),lb(13),ub(13)}

{’k’,params(14),lb(14),ub(14)}

{’q’,params(15),lb(15),ub(15)}

{’r’,params(16),lb(16),ub(16)}

};

model.ssfun = @sse_tumorimmune;

options.updatesigma = 1;

no_smps = 50000;

%burn-in period

options.nsimu = no_smps;

[results,chain,s2chain] = mcmcrun(model,data,params1,options);

%official run

options.nsimu = no_smps;

[results,chain,s2chain,ss2chain] = mcmcrun(model,data,params1,options,results);

% Find the optimal parameters based on minimum SSE

ind = find(ss2chain == min(ss2chain)); ind = ind(1);

bayesparams = chain(ind,:)

% Plot graph to compare fit

t = 0:1:50;

figure

cells = zeros(length(t),1);

for i_cells = 1:length(t)

U = real(evec(:,:,i_cells));

y_test = U(:,1)’*bayesparams’;

% Generate surrogate model at optimal parameter set

cells(i_cells) = ppval(p_slope,t(i_cells))*y_test...
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+ppval(p_yinterceptfit,t(i_cells));

end

plot(t,cells,’-b’,’Linewidth’,2)

hold on

plot(data.xdata,data.ydata,’or’,’Linewidth’,2)

ylabel(’Tumor Cells’,’Fontsize’,14)

xlabel(’Time (days)’,’FontSize’,14);

set(gca,’fontsize’,14)

%Convert chains back to natural parameter range

for p = 1:16

chain(:,p) = lb(p)+.5*(chain(:,p)+1)*(ub(p)-lb(p));

end

paramLabels = {’a’,’b’,’c’,’d’,’\lambda’,’s’,’\sigma’,’f’,’g’,’h’,...

’p’,’m’,’j’,’k’,’q’,’r’};

%Look at the chains

figure(2)

mcmcplot(chain,[],paramLabels,’chainpanel’)

%Look at the posterior densities

figure(3)

mcmcplot(chain,[],paramLabels,’denspanel’)

%% HELPER FUNCTIONS

function tumor = ODEModel(params, initConds, time)

[t,V] = ode45(@(t,V) TNL_System(t,V,params),0:.1:50,initConds);

idx = find(t==time);

tumor = V(idx,1);

end

function tumorode = TNL_System(t,V,x)

% x: parameter space [a,b,c,d,lambda,s,sigma,f,g,h,p,m,j,k,q,r]

% V: dependent variable space [T,N,L]

tumorode = zeros(3,1);

% ODE system from "A Validated Mathematical Model of Cell-Mediated Immune

% Response to Tumor Growth" - Pillis, Radunskaya, Wiseman

D_tumorode = x(4,1)*V(1)/(1+x(6,1)/(V(3)/V(1))^x(5,1));

tumorode(1) = x(1,1)*V(1)*(1-x(2,1)*V(1))-x(3,1)*V(2)*V(1)-D_tumorode;

tumorode(2) = x(7,1)-V(2)*x(8,1)+V(2)*x(9,1)*V(1)^2/(V(1)^2+x(10,1))...

-x(11,1)*V(2)*V(1);
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tumorode(3) = -x(12,1)*V(3)+V(3)*x(13,1)*D_tumorode^2/(D_tumorode^2+x(14,1))...

-x(15,1)*V(3)*V(1)+x(16,1)*V(2)*V(1);

end

function SSE = sse_tumorimmune(params, data)

global evec p_slope p_yinterceptfit

time = 0:1:50;

cells = zeros(length(time),1);

for i_cells = 1:length(time)

U = real(evec(:,:,i_cells));

y_test = U(:,1)’*params’;

% Build surrogate model at current parameter candidate

cells(i_cells,1) = ppval(p_slope,time(i_cells))*y_test...

+ppval(p_yinterceptfit,time(i_cells));

end

if length(cells(:,1))<51 %Model output is ill-behaved

SSE = 1000; %penalty to get it away from samples that are forcing...

solution to blow up

else

idx = [1 11 21 31 41 51]; %use only the points that match our data times

SSE = sum(sum((data.ydata-cells(idx,1)).^2));

end

end
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