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Abstract - The kernel of an algebraic curvature tensor is a fundamental subspace that can
be used to distinguish between different algebraic curvature tensors. Kernels of algebraic
curvature tensors built only of canonical algebraic curvature tensors of a single build have
been studied in detail. We consider the kernel of an algebraic curvature tensor R that is a
sum of canonical algebraic curvature tensors of symmetric and skew-symmetric build. An
obvious way to ensure that the kernel of R is nontrivial is to choose the involved bilinear
forms such that the intersection of their kernels is nontrivial. We present a construction
wherein this intersection is trivial but the kernel of R is nontrivial. We also show how many
bilinear forms satisfying certain conditions are needed in order for R to have a kernel of any
allowable dimension.
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1 Introduction

In this section, we provide necessary background information, summarize previous results,
and give an outline of the paper.

1.1 Preliminaries

Throughout, let V be a finite-dimensional vector space of dimension n over R.

Definition 1.1 An algebraic curvature tensor is a multilinear function R : V 4 → R
such that

a) R(x, y, z, w) = −R(y, x, z, w),

b) R(x, y, z, w) = R(z, w, x, y), and

c) R(x, y, z, w) +R(z, x, y, w) +R(y, z, x, w) = 0

for all x, y, z, w ∈ V.
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The set of all algebraic curvature tensors on V is denotedA(V ). An algebraic curvature
tensor mimics the algebraic properties of the Riemann curvature tensor at a given point
of a manifold. An important subspace of V is the kernel of an algebraic curvature tensor
on V .

Definition 1.2 Let R ∈ A(V ). The kernel of R is

ker(R) := {x ∈ V | R(x, y, z, w) = 0 for all y, z, w ∈ V }.

The defining properties of algebraic curvature tensors can be used to show (see [4])
that the definition of the kernel of an algebraic curvature tensor is not biased towards the
first entry, that is,

ker(R) = {y ∈ V | R(x, y, z, w) = 0 for all x, z, w ∈ V }
= {z ∈ V | R(x, y, z, w) = 0 for all x, y, w ∈ V }
= {w ∈ V | R(x, y, z, w) = 0 for all x, y, z ∈ V }.

Kernels are worthy of study because they are one way to distinguish between algebraic
curvature tensors. The goal of this paper will be to demonstrate when an algebraic
curvature tensor of a specific build has nontrivial kernel if dim(V ) ≥ 3. The following
proposition, adopted from the proof of Theorem 3.2 in [9], illustrates why we do not
consider dim(V ) = 2.

Proposition 1.3 Let R ∈ A(V ). Then dim(ker(R)) 6= (n− 1).

Therefore, the zero tensor is the only algebraic curvature tensor that has nontrivial
kernel if dim(V ) = 2.

We now define the basic building blocks of all algebraic curvature tensors.

Definition 1.4 Given a symmetric bilinear form ϕ on V, the canonical algebraic cur-
vature tensor of symmetric build Rϕ associated to ϕ is

Rϕ(x, y, z, w) := ϕ(x,w)ϕ(y, z)− ϕ(x, z)ϕ(y, w).

Definition 1.5 Given a skew-symmetric bilinear form ψ on V, the canonical algebraic
curvature tensor of skew-symmetric build Rψ associated to ψ is

Rψ(x, y, z, w) := ψ(x,w)ψ(y, z)− ψ(x, z)ψ(y, w)− 2ψ(x, y)ψ(z, w).

It is easy to check that the canonical algebraic curvature tensors are in fact algebraic
curvature tensors. It will be clear from context if a given canonical algebraic curvature
tensor is of symmetric or skew-symmetric build. Also, it is easy to see that Raτ = a2Rτ

for all a ∈ R and any bilinear form τ on V. In particular, R−τ = Rτ .
It is known [6] that the sets of canonical algebraic curvature tensors of either symmetric

or skew-symmetric build are both spanning sets of A(V ):

span{Rϕ | ϕ ∈ S2(V ∗)} = span{Rψ | ψ ∈ Λ2(V ∗)} = A(V ).
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Gilkey has shown in [7] that if ψ is an antisymmetric bilinear form, then ker(Rψ) =
ker(ψ). If ϕ is a symmetric bilinear form, then Rϕ is the zero tensor if the rank of ϕ is 0
or 1, and ker(Rϕ) = ker(ϕ) if rank(ϕ) 6= 1. We now define a few key terms.

Definition 1.6 Let τ be any bilinear form on V.

a) τ is positive definite if τ(x, x) > 0 for all nonzero x ∈ V.

b) τ is nondegenerate if τ(x, y) = 0 for all y ∈ V implies x = 0.

Throughout, let ϕ and ϕi denote symmetric bilinear forms on V , let ψ and ψi denote
skew-symemtric bilinear forms on V, and let ε, εi ∈ {−1, 1}.

1.2 Previous Results

Several previous results about kernels of algebraic curvature tensors guided this study.
Kernels of algebraic curvature tensors built only of canonical algebraic curvature tensors
with a symmetric build were studied by Strieby in [9]:

Theorem 1.7 [9], Theorem 3.1: Let dim(V ) = n ≥ 3. Let ϕ1 be positive definite and let
ϕ2 be any symmetric bilinear form. Then dim(ker(Rϕ1 + εRϕ2)) ∈ {0, 1, n}.

Kernels of algebraic curvature tensors built only of canonical algebraic curvature ten-
sors with a skew-symmetric build were studied by Brundan in [2]. Note the choice of signs
in the following two results.

Theorem 1.8 [2], Theorem 3.1: Let R :=
k∑
i=1

Rψi
. Then ker(R) =

k⋂
i=1

ker(Rψi
).

Theorem 1.9 [2], Theorem 3.2: Let R := Rψ1 − Rψ2. Then either ker(R) = ker(Rψ1) ∩
ker(Rψ2) or ψ1 = ±ψ2, in which case R = 0 and ker(R) = V.

The above results have a certain rigidity: the kernel of an algebraic curvature tensor
built only of canonical algebraic curvature tensors of symmetric build cannot be of any
allowable dimension, while the kernel of an algebraic curvature tensor built only of canon-
ical algebraic curvature tensors of skew-symmetric build is no bigger than the kernel of
the individual bilinear forms involved.

1.3 Our Work

The goal of this paper is to expand on previous results by considering algebraic curvature
tensors built from canonical algebraic curvature tensors of both symmetric and skew-
symmetric build. We consider algebraic curvature tensors of the form

R := Rϕ +
k∑
i=1

εiRψi
.
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As shown in [3], we can assume that the only coefficients in the above linear combi-
nation are 1 and −1 because Raψ = a2Rψ. We can assume that the coefficient on Rϕ is
equal to 1 because ker(R) = ker(−R) for any R ∈ A(V ).

We aim to show what conditions on ϕ and the ψi’s are sufficient in order for R to
have nontrivial kernel. Since Rϕ is the zero tensor if the rank of ϕ is 0 or 1 [7], we only
consider the case when rank(ϕ) ≥ 2. An easy way to ensure that R has nontrivial kernel
is to choose ϕ and the ψj’s such that

K := ker(ϕ)
k⋂
i=1

ker(ψi) 6= {0},

which implies that K ⊆ ker(R) and ker(R) 6= {0}. As implied by Theorem 3.1 of [8], any
R ∈ A(V ) can be written as a linear combination of canonical algebraic curvature tensors
built from bilinear forms of full rank. Therefore, there must exist a case where K = {0}
but ker(R) 6= 0. A reasonable first step toward finding such a construction is to set ϕ to
be positive definite. This ensures that K = {0} and that there exists a basis B of V such
that B is orthonormal with respect to ϕ and any one skew-symmetric bilinear form ψ is
block-diagonal with respect to B (Theorem 6.37, [1]).

We now present a method used in this work to find ker(R). Let α ∈ ker(R), let
{e1, . . . , en} be a basis for V, and write α = γ1e1 + · · ·+ γnen for γi ∈ R. We can solve for
the γi’s by considering the system of equations obtained from all nonzero curvature entries,
up to symmetry, of the form R(α, ei, ej, ek), where i, j, k ∈ {1, . . . , n}. Note that repeating
α in the inputs to R is not necessary, as doing so only produces a linear combination of
already existing equations: for any ei, ej ∈ B, note that

R(α, α, ei, ej) = R(ei, ej, α, α) = 0 and

−R(α, ei, α, ej) = R(α, ei, ej, α) = R(α, ei, ej, γ1e1 + · · ·+ γnen)

= γ1R(α, ei, ej, e1) + · · ·+ γnR(α, ei, ej, en).

In Section 2, we investigate the kernel of an algebraic curvature tensor built of just two
canonical algebraic curvature tensors: one of symmetric and one of skew-symmetric build.
In Section 3, we show how to construct an algebraic curvature tensor that has a kernel
of any allowable dimension. Our construction does not require ϕ to be positive definite
but still ensures K = {0}. To construct an algebraic curvature tensor with a kernel of
allowable dimension m over a vector space V of dimension n, our method requires one

symmetric bilinear form ϕ and at least
m∑
k=1

(n−k) skew symmetric bilinear forms ψij, each

with just two nonzero entries: aij and −aij. Our construction also relies on our notion of
a popular basis vector ei of V, defined in Section 3.2. Below is our main theorem:

Theorem 1.10 Let ϕ be nondegenerate and let R := Rϕ+
k∑
i=1

εiRψi
. Let m ∈ {1, . . . , n−

2} ∪ {n} and let δij := ϕ(ei, ei)ϕ(ej, ej). Then dim(ker(R)) = m if and only if

a) At least m basis vectors are popular and
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b) δikj + 3εikja
2
ikj

= 0 for exactly m indexes {i1, . . . , im} and for all j 6= ik.

We also present a lower bound on how many bilinear forms satisfying certain conditions
are needed to ensure that ker(R) 6= {0}. Finally, in Section 4, we present future directions
of study.

2 Kernel of Rϕ + εRψ

In this section, we compute the kernel of an algebraic curvature tensor built of one canon-
ical algebraic curvature tensor of symmetric build and one canonical algebraic curvature
tensor of skew-symmetric build. Let R := Rϕ + εRψ. In Section 2.1, we show that if
ϕ is positive definite then ker(R) = {0}. This contrasts with Theorem 3.1 of [9], which
states that the sum of two canonical algebraic curvature tensors of symmetric build can
have a nontrivial kernel. In Section 2.2, we consider only the case when dim(V ) = 3 and
show that if ϕ is not necessarily positive definite but rank(ϕ) ≥ 2, then ker(R) is equal
to the intersection of the kernels of the bilinear forms used to construct R. This is similar
to Theorem 3.1 in [2], which states that the kernel of the sum of two canonical algebraic
curvature tensors of skew-symmetric build is equal to the intersection of the kernels of
the two skew-symmetric bilinear forms involved.

2.1 Positive Definite ϕ

We will show that if ϕ is positive definite and dim(V ) ≥ 3, then the kernel of R is trivial.
If ϕ is positive definite, there is a basis

B = {e1, f1, . . . , es, fs, x1, . . . , xt}

of V such that 2s + t = n, ϕ = In, and ψ is block-diagonal with respect to B (Theorem
6.37, [1]). Note that s ≥ 1, or else ψ = 0. Also note that if s = 1 then t ≥ 1. We
have ψ(ei, fi) = bi > 0 for i ∈ {1, . . . , s} and span{xi} = ker(ψ). We will use B in the
statements below.

Lemma 2.1 If ϕ is positive definite and we use the basis B defined above, then

Rϕ(ei, ej, ej, ei) = Rϕ(fi, fj, fj, fi)

= Rϕ(xi, xj, xj, xi)

= 1

for i 6= j.

Proof. Let i 6= j. Note that

Rϕ(ei, ej, ej, ei) = ϕ(ei, ei)ϕ(ej, ej)− ϕ(ei, ej)ϕ(ej, ei) = 1.

Since ϕ can be written as In with respect to B, it is also the case that Rϕ(fi, fj, fj, fi) =
Rϕ(xi, xj, xj, xi) = 1. �
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Lemma 2.2 If ψ is skew-symmetric and we use the basis B defined above, then

Rψ(ei, ej, ej, ei) = Rψ(fi, fj, fj, fi)

= Rψ(xi, xj, xj, xi)

= 0

for i 6= j.

Proof. Let i, j ∈ {1, . . . , s} and i 6= j. Note

Rψ(ei, ej, ej, ei) = ψ(ei, ei)ψ(ej, ej)− ψ(ei, ej)ψ(ej, ei)− 2ψ(ei, ej)ψ(ej, ei) = 0.

As the only nonzero entries of ψ are those of the form ψ(ei, fi), it is also the case that
Rψ(fi, fj, fj, fi) = Rψ(xi, xj, xj, xi) = 0. �

We now show that if ϕ is positive definite then ker(R) = {0}.

Theorem 2.3 Let dim(V ) = n ≥ 3 and let ϕ be positive definite. Then ker(Rϕ + εRψ) =
{0}.

Proof. Let α ∈ ker(R). Using the basis B defined above, we may express α as

α = p1e1 + q1f1 + · · ·+ pses + qsfs + r1x1 + · · ·+ rtxt

for pi, qi, ri ∈ R. We will show that α = 0.
First, assume s = 1. Recall that it must be true that t > 0. Note that

0 = R(α, x1, x1, e1) = ϕ(α, e1) = p1 and

0 = R(α, x1, x1, f1) = ϕ(α, f1) = q1.

If s > 1, fix i ∈ {1, . . . , s} and let j ∈ {1, . . . , s} with j 6= i. Note that, by Lemma 2.1
and Lemma 2.2,

0 = R(α, ej, ej, ei) = ϕ(α, ei) = pi and

0 = R(α, fj, fj, fi) = ϕ(α, fi) = qi.

If t = 0 then we are done, as pi = qi = 0 for all i ∈ {1, . . . , s} and therefore α = 0. If
t > 0, note that for every i ∈ {1, . . . , t},

0 = R(α, e1, e1, xi) = ϕ(α, xi) = ri = 0.

Thus pi = qi = 0 for all i ∈ {1, . . . , s} and ri = 0 for all i ∈ {1, . . . , t}, so α = 0 and
ker(R) = {0}. �

the pump journal of undergraduate research 6 (2023), 301–316 306



2.2 Any ϕ; dim(V ) = 3

We now consider the case when ϕ is any symmetric bilinear form, not necessarily positive
definite, and show that if dim(V ) = 3 then the kernel of R can only be equal to the
intersection of the kernels of the bilinear forms that make up R.

Theorem 2.4 Let dim(V ) = 3. Let ϕ be any symmetric bilinear form on V of rank 2 or
higher. If R = Rϕ + εRψ, then ker(R) = ker(ϕ) ∩ ker(ψ).

Proof. Let dim(V ) = 3. As ϕ is symmetric, there exists a basis B = {e1, e2, e3} of V
such that ϕ is diagonal with respect to B and only takes values of 0, 1, or −1 on the
diagonal. As rank(ϕ) ≥ 2, we can reorder the basis vectors so that the only zero diagonal
entry of ϕ, if one exists, is ϕ(e3, e3). As Rϕ = R−ϕ, we can also assume, without loss of
generality, that ϕ(e1, e1) = 1. We express the entries of ϕ and ψ with respect to B in the
following arrays:

ϕ =

1 0 0
0 δ2 0
0 0 δ3

 , ψ =

 0 y z
−y 0 w
−z −w 0


for δ2 ∈ {−1, 1} and δ3 ∈ {−1, 0, 1}. Let α ∈ ker(R) and write α = γ1e1 + γ2e2 + γ3e3.
We consider all possible {R(α, ei, ej, ek)} and obtain the following:

γ2yw + γ3zw = 0, (1)

γ1yz − γ3zw = 0, (2)

γ1yz + γ2yw = 0, (3)

γ2(δ2 + 3εy2) + 3εγ3yz = 0, (4)

γ3(−δ3 − 3εz2)− 3εγ2yz = 0, (5)

γ1(−δ2 − 3εy2) + 3εγ3yw = 0, (6)

γ3(δ2δ3 + 3εw2)− 3εγ1yw = 0, (7)

γ2(−δ2δ3 − 3εw2)− 3εγ1zw = 0, (8)

γ1(−δ3 − 3εz2)− 3εγ2zw = 0. (9)

Case 1: Let z, w 6= 0. Note that (2) implies γ1yw = γ3w
2. Substituting into (7)

implies γ3δ3 = 0. If δ3 6= 0, then ker(ϕ) ∩ ker(ψ) = {0} and γ3 = 0. Then (1) and (2)
imply that either y = 0 or γ1 = γ2 = 0. If y = 0, then (4) implies γ2 = 0. Then (8) implies
γ1 = 0 and the kernel of R is trivial; in fact, ker(R) = ker(ϕ) ∩ ker(ψ).

If δ3 = 0, then ker(ϕ) = span{e3} and ker(ϕ) ∩ ker(ψ) = {0}, as e3 ∈ ker(ψ) only
if z = w = 0. Note (2) implies γ3 = y

w
γ1, and (3) implies γ2 = − z

w
γ1. Substituting

these values into (4) and (6) implies γ1 = 0, which implies γ1 = γ2 = γ3 = 0. Thus
ker(R) = {0} = ker(ϕ) ∩ ker(ψ).

Case 2: Let z = 0. Note that (5) and (9) imply that either δ3 = 0 or γ1 = γ3 = 0. If
δ3 6= 0, then ker(ϕ) = {0} and γ1 = γ3 = 0. If γ2 6= 0, say γ2 = 1, then (4) implies y 6= 0;
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thus (1) implies w = 0. Then (8) implies that δ2 = 0 or δ3 = 0, which is a contradiction
because δ2 is never zero. Thus γ1 = γ2 = γ3 = 0 and ker(R) = {0} = ker(ϕ) ∩ ker(ψ).

If δ3 = 0, then ker(ϕ) = span{e3} and (8) implies that either γ2 = 0 or w = 0. If
w = 0, then ker(ψ) = span{e3}. We are left with the system of equations

γ2(δ2 + 3εy2) = 0

γ1(−δ2 − 3εy2) = 0,

which implies span{e3} ⊆ ker(R). As dim(ker(R)) 6= 2, it must be true that ker(R) =
span{e3}. Then ker(R) = ker(ϕ) ∩ ker(ψ).

Now let γ2 = 0. We are left with the system of equations

γ1(−δ2 − 3εy2) + 3εγ3yw = 0

−γ1yw + γ3w
2 = 0,

which has a nonzero solution if w = 0. Then e3 ∈ ker(R) and, as above, ker(R) =
span{e3} = ker(ϕ) ∩ ker(ψ).

Case 3: Let w = 0. Then (7) and (8) imply that either δ3 = 0 or γ2 = γ3 = 0. If
δ3 = 0 then ker(ϕ) = span{e3} and (9) implies that either γ1 = 0 or z = 0. If z = 0, then
ker(ψ) = span{e3} and ker(ϕ) ∩ ker(ψ) = span{e3}. We are left with the system

γ2(δ2 + 3εy2) = 0

γ1(−δ2 − 3εy2) = 0,

which means e3 ∈ ker(R) and therefore, as above, ker(R) = span{e3}. Then ker(R) =
ker(ϕ) ∩ ker(ψ).

Now let γ1 = 0. We are left with the system of equations

γ2(δ2 + 3εy2) + 3εγ3yz = 0

γ2yz + γ3z
2 = 0,

which has a nonzero solution if z = 0. Then e3 ∈ ker(R) and, as before, ker(R) =
span{e3} = ker(ϕ) ∩ ker(ψ).

If γ2 = γ3 = 0 and δ3 6= 0, then ker(ϕ) = {0}. If γ1 6= 0, then (2) implies that
y = 0 or z = 0. If y = 0, then (6) implies δ2 = 0, which is a contradiction as δ2 is
always nonzero. If z = 0, then (5) gives the contradiction δ3 = 0. Therefore, γ1 = 0 and
ker(R) = {0} = ker(ϕ) ∩ ker(ψ). �

Note that this result is similar in rigidity to the previously discussed results of [2]:
the kernel of R is no bigger than the kernel of either of the bilinear forms involved in the
construction of R.

3 In Search of a Nontrivial Kernel

The goal of this section is to present a construction in which an algebraic curvature tensor
of the form

R := Rϕ +
k∑
i=1

εiRψi
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has a kernel of any allowable dimension, with the additional requirement that the in-
tersection of the kernels of the bilinear forms used to build R is trivial. In Section 3.1,
we consider the case when dim(V ) = 3 and ϕ is positive definite and show when an
algebraic curvature tensor built of three canonical algebraic curvature tensors can have
a one-dimensional kernel. This leads us to a construction that is valid in any finite di-
mension and does not require that ϕ be positive definite. We present this construction
in Section 3.2, where we also give a lower bound on how many bilinear forms satisfying
certain conditions are required for R to have a kernel of a given dimension.

3.1 Positive Definite ϕ, dim(V ) = 3

Section 2 shows that if ϕ is positive definite, one symmetric and one skew-symmetric
bilinear form are not enough to build an algebraic curvature tensor with nontrivial kernel.
We now show when an algebraic curvature tensor built from one symmetric positive
definite bilinear form and two skew-symmetric bilinear has a nontrivial kernel of dimension
1.

Let dim(V ) = 3, let ϕ be positive definite and set R := Rϕ + ε1Rψ1 + ε2Rψ2 . Then
there exists a basis B of V such that

ϕ =

1 0 0
0 1 0
0 0 1

 , ψ1 =

 0 b 0
−b 0 0
0 0 0

 , ψ2 =

 0 y z
−y 0 w
−z −w 0

 .
Lemma 3.1 Unless ε1 = ε2 = −1, ker(R) = {0}.

Proof. Let α ∈ ker(R) and write α = γ1e1 + γ2e2 + γ3e3 for γi ∈ R. By considering all
possible {R(α, ei, ej, ek)}, we obtain the following system of equations:

γ2yw + γ3zw = 0 (10)

−γ1yz + γ3zw = 0 (11)

γ1yz + γ2yw = 0 (12)

γ2(3ε1b
2 + 3ε2y

2 + 1) + 3ε2γ3yz = 0 (13)

γ3(−3ε2z
2 − 1)− 3ε2γ2yz = 0 (14)

γ1(−3ε2y
2 − 3ε1b

2 − 1) + 3ε2γ3yw = 0 (15)

γ3(1 + 3ε2w
2)− 3ε2γ1yw = 0 (16)

γ2(−3ε2w
2 − 1)− 3ε2γ1zw = 0 (17)

γ1(−3ε2z
2 − 1)− 3ε2γ2zw = 0. (18)

First, let ε1 = 1 and ε2 = −1 and assume, towards a contradiction, that one of the
γi’s is nonzero and that one of y, z, w is nonzero.

Case 1: Assume γ1 6= 0. Without loss of generality, let γ1 = 1 : if γ1 6= 1, simply
scale α so that γ1 = 1. Assume z 6= 0. Note (11) implies y = γ3w. Substituting into (15)
implies −3b2 − 1 = 0, which is a contradiction as b ∈ R. Thus z = 0. Now, (18) gives the
contradiction −1 = 0. Thus γ1 = 0.
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Case 2: Knowing that γ1 = 0, let γ2 = 1. Assume w 6= 0. Note (10) implies y = −γ3z.
Then (13) gives the contradiction 3b2 + 1 = 0, so w = 0. Now, (17) implies −1 = 0, so we
must have γ2 = 0.

Case 3: Knowing that γ1 = γ2 = 0, let γ3 = 1. Note (14) implies z =
√

1
3

and (16)

implies w =
√

1
3
. However, we must have that either z = 0 or w = 0, by (11). Therefore

γ3 = 0.
We have shown that ker(R) = {0} if ε1 = 1 and ε2 = −1. If ε1 = −1 and ε2 = 1, simply

block-diagonalize ψ2 with respect to ϕ. Then the above proof implies ker(R) = {0}.
Now, let ε1 = ε2 = 1. Again, towards a contradiction, assume that one of the γi’s is

nonzero and that one of y, z, w is nonzero.
Case 1: Assume γ1 = 1 and let y 6= 0. Then (12) implies z = −γ2w. Substituting

into (14) implies −1 = 0, so it must be true that y = 0. Then (15) yields a contradiction
as b ∈ R, so γ1 = 0.

Case 2: Knowing that γ1 = 0, let γ2 = 1. By (12), either y = 0 or w = 0. If y = 0,
then (13) gives a contradiction as b ∈ R. If w = 0, then (17) yields the contradiction
−1 = 0. Thus γ2 = 0.

Case 3: Knowing that γ1 = γ2 = 0, let γ3 = 1. Then (10) implies that either z = 0 or
w = 0. If z = 0, then (14) yields the contradiction −1 = 0, and if w = 0, then (16) yields
the contradiction 1 = 0. Thus γ3 = 0 and ker(R) = {0} if ε1 = ε2 = 1. �

Lemma 3.2 Consider the same construction as in Lemma 3.1. If b 6=
√

1
3
, then ker(R) =

{0}.

Proof. By Lemma 3.1, we know that ker(R) = {0} if it is not true that ε1 = ε2 = −1.

We therefore set ε1 = ε2 = −1 and show that ker(R) = {0} if b 6=
√

1
3
. Let α ∈ ker(R)

and write α = γ1e1 + γ2e2 + γ3e3. We consider the system of equations produced in the
proof of Lemma 3.1.

Case 1: Assume γ1 = 1. Then (11) implies y = γ3w, if z 6= 0. Substituting into (15)
gives the contradiction 3b2 = 1. Thus z = 0. Then (18) gives the contradiction 1 = 0, so
γ1 = 0.

Case 2: Assume γ2 = 1. Then (12) implies that either y = 0 or w = 0. If y = 0,
then (13) gives the contradiction −3b2 = −1. If w = 0, then (17) gives the contradiction
−1 = 0. Thus γ2 = 0.

Case 3: Assume γ3 = 1. Then (10) implies that either z = 0 or w = 0. If z = 0 then
(14) gives the contradiction −1 = 0, and if w = 0 then (16) gives the contradiction 1 = 0.

Thus γ3 = 0 and ker(R) = {0} if b 6=
√

1
3
. �

We present a necessary and sufficient condition for R to have a one-dimensional kernel:

Theorem 3.3 Consider the same construction as in Lemma 3.1. Then ker(R) is spanned

by a single basis vector ei, and thus dim(ker(R)) = 1, if and only if ε1 = ε2 = −1, b =
√

1
3
,

and either
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a) y = w = 0 and z =
√

1
3
, or

b) y = z = 0 and w =
√

1
3
.

Proof. First, assume that dim(ker(R)) = 1. Note that as ker(R) 6= {0}, Lemma 3.1 and

Lemma 3.2 imply that ε1 = ε2 = −1 and b =
√

1
3
.

Case 1: Assume ker(R) = span{e1}, that is, assume γ1 = 1 and γ2 = γ3 = 0. We
again consider the system of equations used in the proof of Lemma 3.1. Note that (15)

implies y = 0, (18) implies z =
√

1
3
, and (17) implies w = 0, as z 6= 0.

Case 2: Assume ker(R) = span{e2}, that is, assume γ2 = 1 and γ1 = γ3 = 0. Then

(13) implies y = 0, (17) implies w =
√

1
3
, and (18) implies z = 0, as w 6= 0.

Note that it is not possible that ker(R) = span{e3}. To see this, assume, towards a
contradiction, that γ3 = 1. Then (10) implies z = −γ2y if w 6= 0. Substituting into (14)
implies −1 = 0, so it must be true that w = 0. Substituting into (16) implies 1 = 0, which
is a contradiction. Thus γ3 = 0 and ker(R) 6= span{e3}.

Now, let ε1 = ε2 = −1 and b =
√

1
3
. If y = w = 0 and z =

√
1
3
, then (16) implies

γ3 = 0, (17) implies γ2 = 0, and (18) implies that γ1 can take any value. Thus ker(R) =

span{e1} and dim(ker(R)) = 1. If y = z = 0 and w =
√

1
3
, then (14) implies γ3 = 0, (18)

implies γ1 = 0, and (17) implies that γ2 can take any value. Thus ker(R) = span{e2} and
dim(ker(R)) = 1. �

Theorem 3.3 implies that if dim(V ) = 3, we need one positive definite symmetric and
two skew-symmetric bilinear forms of a particular construction in order for the kernel of
R to be one-dimensional: we must either have

ψ1 =

 0
√

1
3

0

−
√

1
3

0 0

0 0 0

 and ψ2 =

 0 0
√

1
3

0 0 0

−
√

1
3

0 0

 , or

ψ1 =

 0
√

1
3

0

−
√

1
3

0 0

0 0 0

 and ψ2 =


0 0 0

0 0
√

1
3

0 −
√

1
3

0

 .
In both of the above cases, ψ1 and ψ2 have exactly two nonzero entries. This suggests

a construction that allows for a nontrivial kernel and does not rely on ϕ being positive
definite. Before exploring this construction in arbitrary dimension, we introduce some
notation. Let i < j and let ψij denote a skew-symmetric bilinear form such that

a) ψij(ei, ej) 6= 0 and

b) ψij(e`, ek) = 0 if (`, k) 6= (i, j).
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Then if dim(V ) = 3, and given our previous choice of basis, we either need

ψ1 = ψ12 and ψ2 = ψ13 or ψ1 = ψ12 and ψ2 = ψ23

in order for R to have a one-dimensional kernel.

3.2 Nondegenerate ϕ, dim(V ) = n ≥ 3

Recall that a goal of this paper was to construct an algebraic curvature tensor with a kernel
of any allowable dimension without intersecting the kernels of the bilinear forms involved.
To this end, we investigate the construction from Section 3.1 in arbitrary dimension and
without assuming ϕ is positive definite. Let dim(V ) = n ≥ 3 and let ϕ be nondegenerate.
Note that there exists a basis B = {e1, . . . , en} of V such that

ϕ =


±1

±1
. . .

±1


with respect to B [5]. Consider an indexing set S ⊆ {1, . . . , n} × {1, . . . , n} such that
i < j for all (i, j) ∈ S. Consider only the construction from Section 3.1, that is, let

R := Rϕ +
∑

(i,j)∈S

εijRψij
, εij = ±1.

Note that ker(ϕ) = {0}, so the intersection of the kernels of the bilinear forms involved
in the construction of R is trivial. We fix the basis B described above and this particular
curvature tensor R for the remainder of this section. At the risk of being informal, and
to present our results in the most intuitive way, we introduce two new terms.

Definition 3.4 Let ei, ej ∈ B for i < j. We say ei is friends with ej if (i, j) ∈ S. If
i > j, we say ej is friends with ei if (i, j) ∈ S.

Note that being friends is symmetric by definition (that is, if ei is friends with ej then
ej is friends with ei). Note also that ei is friends with ej if one of the canonical algebraic
curvature tensors out of which R is built is Rψij

.

Definition 3.5 Let ei ∈ B. We say ei is popular if ei is friends with every ej ∈ B for
j 6= i.

Let α ∈ ker(R) and write α = γ1e1 + · · · + γnen for γi ∈ R. Before showing when R
must have a trivial kernel, we present a useful lemma:

Lemma 3.6 If ei is not popular, then γi = 0.

Proof. There exists an ej ∈ B that is not friends with ei. Then R(α, ej, ej, ei) = ±γi = 0.
�
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Theorem 3.7 If no basis vector is popular, then ker(R) = {0}.

Proof. By Lemma 3.6, γi = 0 for all i. �
We now state our main result, which gives a way to ensure that R has a kernel of any

allowable dimension.

Theorem 3.8 Let m ∈ {1, . . . , n − 2} ∪ {n}. Let δij := ϕ(ei, ei)ϕ(ej, ej) and let aij :=
ψij(ei, ej). Then dim(ker(R)) = m if and only if

a) At least m basis vectors are popular, and

b) δikj + 3εikja
2
ikj

= 0 for exactly m indices {i1, . . . , im} and for all j 6= ik.

Proof. First, we assume dim(ker(R)) = m and show that a) and b) must hold. Let
α ∈ ker(R) and write α = γ1e1 + · · ·+ γmem for γi ∈ R. Assume, towards a contradiction,
that less than m basis vectors are popular. Note that without loss of generality (by
permuting the basis vectors), we can assume that {e1, . . . , e`} are popular for ` < m. By
Lemma 3.6, γ`+1 = · · · = γm = · · · = γn = 0. The number of nonzero γi’s is therefore
at most ` and dim(ker(R)) ≤ ` < m, which is a contradiction. Thus a) must hold.
Next, let ` < m and assume δikj + 3εikja

2
ikj

= 0 for only ` indices {i1, . . . , i`}. Note that
δikj + 3εikja

2
ikj
6= 0 implies γik = 0. Therefore, the number of γi’s that are equal to 0 is

greater than m, so dim(ker(R)) < m. Now, let p > m and assume δikj + 3εikja
2
ikj

= 0
for p indices {i1, . . . , ip}. Then the number of γi’s that are equal to 0 is less than m, so
dim(ker(R)) > m and b) holds.

Next, we assume a) and b) both hold and show that dim(ker(R)) = m. Let α ∈ ker(R)
and write α = γ1e1+· · ·+γnen for γi ∈ R. Note that the only potentially nonzero curvature
entries will be those of the form R(α, ei, ei, ej) and R(α, ej, ej, ei) for (i, j) ∈ S. Without
loss of generality, assume that {e1, . . . , ek} are popular for k ≥ m. We can further relabel
S to assume, without loss of generality, that δikj + 3εikja

2
ikj

= 0 for only ik ∈ {1, . . . ,m}.
We obtain the following system of equations:
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γ1(δ12 + 3ε12a
2
12) = 0,

γ2(δ12 + 3ε12a
2
12) = 0,

...

γ1(δ1m + 3ε1ma
2
1m) = 0,

γm(δ1m + 3ε1ma
2
1m) = 0,

...

γ1(δ1k + 3ε1ka
2
1k) = 0,

γk(δ1k + 3ε1ka
2
1k) = 0,

...

γ1(δ1n + 3ε1na
2
1n) = 0,

...

γ2(δ2n + 3ε2na
2
2n) = 0,

...

γm(δmn + 3εmna
2
mn) = 0,

...

γk(δkn + 3εkna
2
kn) = 0.

Notice that if (`, j) /∈ {1, . . . ,m} × {1, . . . , n}, then γ` = 0. If (`, j) ∈ {1, . . . ,m} ×
{1, . . . , n}, then γ` only appears in the system with a factor of 0, and there are no
constraints on γ`. Thus only {γ1, . . . , γm} are free, so ker(R) = span{e1, . . . , em} and
dim(ker(R)) = m. �

We now give a few examples to illustrate the use of Theorem 3.8.

Example 3.9 Let dim(V ) = 4 and let S = {(1, 2), (1, 3), (1, 4), (2, 3), (2, 4)}. If ϕ is
positive definite and ψij(ei, ej) = 1 for all (i, j) ∈ S, then

Rϕ −
1

3

∑
(i,j)∈S

Rψij

has a two-dimensional kernel, since only e1 and e2 are popular and therefore ker(R) =
span{e1, e2}. Note that the coefficient of 1

3
follows from the property that Raϕ = a2Rϕ.

Example 3.10 Let ϕ be positive definite and assume all n basis vectors of V are popular.
Then

Rϕ =
1

3

∑
(i,j)∈S

Rψij
.
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Example 3.11 Let

ϕ =


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

 .
Then

0 = Rϕ +
1

3
(−Rψ12 +Rψ13 +Rψ14 +Rψ23 +Rψ24 −Rψ34)

=⇒ Rϕ =
1

3
(Rψ12 −Rψ13 −Rψ14 −Rψ23 −Rψ24 +Rψ34) .

As illustrated in Example 3.10 and Example 3.11, our results provide a method of
expressing a canonical algebraic curvature tensor of one build as a linear combination of
canonical algebraic curvature tensors of another build. Before presenting some corollaries
of Theorem 3.8, we make a note:

Remark 3.12 Assume {e1, . . . , em} are popular. Then the set

{ (1, 2),
(1, 3), (2, 3),
(1, 4), (2, 4), (3, 4),
(1, 5), (2, 5), (3, 5), (4, 5),

...
...

...
...

. . .
...

...
...

...
... (m,m+ 1)

...
...

...
...

...
...

(1, n), (2, n), (3, n), (4, n) . . . (m,n) }

is contained in S and |S| ≥
m∑
k=1

(n− k).

Corollary 3.13 To have dim(ker(R)) = m, we need one ϕ and
m∑
k=1

(n− k) many ψi’s.

Corollary 3.14 To have dim(ker(R)) = n, we need one ϕ and
(
n
2

)
many ψi’s.

Note that the construction given in Theorem 3.8 is restricted to algebraic curvature
tensors built of canonical algebraic curvature tensors coming from exactly one positive
definite symmetric bilinear form and any number of skew-symmetric bilinear forms that
have exactly two nonzero entries.

4 Future Work

• Investigate if ker(R) = ker(ϕ) ∩ ker(ψ) if ϕ is symmetric of rank 2 or higher, ϕ is
not necessarily positive definite, ψ is skew-symmetric, and dim(V ) > 3.
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• In our construction in Section 3.2, investigate how ker(R) changes when ϕ has a
kernel.

• Find a construction that requires fewer bilinear forms than the construction pre-
sented in Section 3.2. Investigate this by allowing each skew-symmetric bilinear
form to have more than two nonzero entries.

• Find a construction involving more than one symmetric bilinear form that allows
for a nontrivial kernel.
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